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Abstract. This study investigates the different novel forms of the
dynamical equations of a particle orbiting a rotating asteroid and the
effective potential, the Jacobi integral, etc. on different manifolds. Nine
new forms of the dynamical equations of a particle orbiting a rotating
asteroid are presented, and the classical form of the dynamical equations
has also been found. The dynamical equations with the potential and the
effective potential in scalar form in the arbitrary body-fixed frame and
the special body-fixed frame are presented and discussed. Moreover, the
simplified forms of the effective potential and the Jacobi integral have
been derived. The dynamical equation in coefficient-matrix form has been
derived. Other forms of the dynamical equations near the asteroid are pre-
sented and discussed, including the Lagrange form, the Hamilton form,
the symplectic form, the Poisson form, the Poisson-bracket form, the
cohomology form, and the dynamical equations on Kähler manifold and
another complex manifold. Novel forms of the effective potential and the
Jacobi integral are also presented. The dynamical equations in scalar form
and coefficient-matrix form can aid in the study of the dynamical system,
the bifurcation, and the chaotic motion of the orbital dynamics of a par-
ticle near a rotating asteroid. The dynamical equations of a particle near
a rotating asteroid are presented on several manifolds, including the sym-
plectic manifold, the Poisson manifold, and complex manifolds, which
may lead to novel methods of studying the motion of a particle in the
potential field of a rotating asteroid.
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1. Introduction

The orbital mechanics of a spacecraft around an asteroid has recently become a topic
of interest. If the spacecraft is sufficiently far from the asteroid, the asteroid can be
approximately modelled as a particle, and the solar gravitation must be considered
to study the dynamics of the spacecraft near the asteroid. If the shape of the body

17



18 Yu Jiang & Hexi Baoyin

is nearly a spheroid, as in the case of Earth, Mars, etc., the classical method of the
Legendré polynomial series can be applied to study the gravitational potential of the
bodies, and the convergence of the series is sufficiently fast (Riaguas et al. 1999).
The stability regions for orbital motion in uniformly rotating second degree and order
gravity fields can be calculated numerically (Hu & Scheeres 2004). When the shape
of the asteroid is irregular, the Legendré polynomial series barely converges in the
vicinity of the asteroid (Riaguas et al. 1999; Blesa 2006); it may perhaps diverge at
certain points in the gravitational field of the asteroid (Balmino 1994; Elipe & Lara
2003).

The motion of a particle near some other simply shaped bodies has been simulated
for the purpose of studying the chaotic motion, periodic orbits, equilibrium points,
etc. around such asteroids (Scheeres 1994; Riaguas et al. 1999; Hu & Scheeres 2002;
Elipe & Lara 2003; Broucke & Elipe 2005; Garcia-Abdeslem 2005; Mufti 2006a,
b; Alberti & Vidal 2007; Fukushima 2010; Liu et al. 2011; Chappell et al. 2013).
For instance, some asteroids can be found for which an elongated body is the main
feature of their shape, e.g., Eros, Ida and Amaltea; this elongated shape means that
the pseudo-spherical approach to the gravitational field of such a mass distribution is
far from providing a sufficient description of the true effect of the gravitational field
of the asteroid (Riaguas et al. 1999). Other specially shaped bodies have also been
considered for the analysis of the motion in their gravitational fields. Blesa (2006)
calculated the gravitational potentials of square and triangular plates and presented
several families of periodic orbits in the planes of these plates by computing the
Poincaré surface. Broucke & Elipe (2005) studied the dynamics and the families of
periodic orbits in a potential field of a solid circular ring. Alberti & Vidal (2007)
discussed the motion of a particle moving in the gravitational field induced by a
homogeneous annular disk on a fixed plane. Fukushima (2010) described a precise
numerical method to evaluate the acceleration vector of the gravitational force caused
by a uniform ring or disk. Liu et al. (2011) investigated the equilibria of a rotating
homogeneous cube and the periodic orbits around these equilibria. These researches
provide some simple and important examples of orbital dynamics in the potential
field of a rotating body, and they can help one to understand the dynamics of orbits
near an irregularly shaped rotating asteroid.

Werner (1994) modelled the geometries of irregularly shaped asteroids with a
constant-density polyhedron, expressed the exterior gravitational potential and accel-
eration components in terms of the polyhedron’s edges and vertex angles, and
applied this method to the inner Martian satellite Phobos with 146 vertices and
288 triangular faces. Werner & Scheeres (1996) derived the exterior gravitation of
a constant-density polyhedron in closed form. Scheeres et al. (1996) used a radar-
derived physical model of the asteroid 4769 Castalia to study the orbital dynamics
near the asteroid with a kilometre-sized particle and established a Jacobi inte-
gral for such a particle in the vicinity of the asteroid; the zero-velocity surfaces
were discussed, and the periodic orbit families were computed. After this, sev-
eral studies were conducted concerning the dynamics near other asteroids, such
as 4179 Toutatis (Scheeres et al. 1998), 433 Eros (Scheeres et al. 2000), 216
Kleopatra (Yu & Baoyin 2012a, b), as well as asteroids 2002 AT4 and 1989 ML
(Scheeres 2012).

As an extension to the study about satellite orbits around an asteroid under the
assumption of Newtonian gravity, the general relativistic corrections can be calcu-



Orbital Mechanics near a Rotating Asteroid 19

lated (Iorio 2005). However, these effects will only become significant for special
situations, such as those involving high orbital speeds or a fast spinning rate for the
central body producing the Lense-Thirring effect (Iorio 2005; Iorio et al. 2011).

The polyhedron method can effectively avoid poor convergence behaviour when
modelling an irregular gravitational field. This method makes it possible to combine
theoretical research and higher-precision numerical methods to discuss the dynamics
of orbits close to certain special asteroids, perhaps including the periodic orbit, the
quasi-periodic orbits, the equilibrium points, the dynamical system, the bifurcation,
and the chaotic motion of the orbital dynamics of a particle near a rotating asteroid.
Theoretical research of the orbital mechanics near a rotating asteroid is therefore
required in certain special forms; these special forms include the dynamical equa-
tions in the scalar form, the coefficient-matrix form, and the Lagrange form. The
dynamical equations of a particle near a rotating asteroid on several different novel
manifolds may perhaps lead to some novel methods of studying the motion of a par-
ticle in the potential field of a rotating body; these manifolds include the symplectic
manifold, the Poisson manifold, and complex manifolds.

In this work, we are interested in the different novel forms of the dynamical equa-
tions of a particle around a rotating asteroid and in the effective potential, the Jacobi
integral, etc. on different manifolds. In addition to the classical form of the dynam-
ical equations, 9 new forms of the dynamical equations of a particle near a rotating
asteroid are presented: the scalar form, the coefficient-matrix form, the Lagrange
form, the Hamilton form, the symplectic form, the Poisson-bracket form, the Poisson
form, the complex form and the cohomology form. We proceed as follows: We first
discuss the classical form of the equations of motion of a particle around a rotating
asteroid. Then, the dynamical equations, along with the potential and the effective
potential, in scalar form in an arbitrary body-fixed frame and a special body-fixed
frame are presented and studied. The simplified forms of the effective potential and
the Jacobi integral are given. The dynamical equations in coefficient-matrix form
are derived, and this form of the dynamical equations is in the form of a first-order
ordinary differential equation; using dynamical systems theory, the dynamical equa-
tions in scalar form and coefficient-matrix form can aid in the study of the dynamical
system, the bifurcation, and the chaotic motion of the orbital dynamics of a particle
around a rotating asteroid.

Other forms of dynamical equations near the asteroid are presented and studied,
including the Lagrange form, the Hamilton form, the symplectic form, the Poisson-
bracket form, the Poisson form, the cohomology form, and the dynamical equations
on the Kähler manifold and another complex manifold. Novel forms of the effective
potential and the Jacobi integral are also presented.

The dynamical equation in the classical form is the motion of the particle
expressed in 3-dimensional Euclidean space, and the dynamical equation in Hamil-
ton form is the motion of the particle expressed in phase space. Analogously, the
dynamical equations in symplectic form and Poisson-bracket form represent the
motion of the particle expressed on the symplectic manifold, while the dynamical
equation in Poisson form is the motion of the particle expressed on the Poisson man-
ifold. The motion of a particle in the potential field of a rotating asteroid can also be
expressed on complex manifolds, including the Kähler manifold. Using the Hodge
star operator and the differential operator, the dynamical equation of the particle can
be expressed simply and beautifully in the cohomology form.
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2. Equations of motion near a rotating asteroid

As stated at the end of section 1, in addition to the classical form of the dynamical
equations, we present 9 new forms of the dynamical equations of a particle near a
rotating asteroid. We begin with the classical form.

2.1 Classical form

The equation of motion can be expressed as a second-order ordinary differential
equation (Scheeres et al. 1996)

r̈ + 2ω × ṙ + ω×(ω × r)+ ω̇ × r + ∂U(r)
∂r

= 0, (1)

where r is the radius vector from the asteroid’s centre of mass to the particle, the
first and second time derivatives of r are with respect to the body-fixed coordinate
system, ω is the rotational angular velocity vector of the asteroid relative to inertial
space, and U(r) is the gravitational potential of the asteroid. Equation (1) is the
equation of motion of the particle expressed in 3-dimensional Euclidean space. The
Jacobi integral can be given as (Scheeres et al. 1996)

H = 1

2
r̈ · r̈ − 1

2
(ω × r) · (ω × r)+ U(r), (2)

which is the Hamilton function of the dynamical system and is the integral of the
relative energy. If ω is time invariant, then H is also time invariant and is referred to
as the Jacobi constant. We can write

E = 1

2
vI · vI + U(r), (3)

where vI = ṙ + ω × r is the velocity of the particle relative to inertial space, and E
is the mechanical energy of the particle. Then, if ω is time invariant, the mechanical
energy E is not conservative, but the Jacobi integral is conservative.

The kinetic energy is then

T = 1

2
(ṙ + ω × r) · (ṙ + ω × r). (4)

The effective potential is defined as (Yu & Baoyin 2012a)

V (r) = −1

2
(ω × r) · (ω × r)+ U(r). (5)

Substituting this into equation (1) yields

r̈ + 2ω × ṙ + ω̇ × r + ∂V (r)
∂r

= 0. (6)

The Hamilton function can then be written as (Yu & Baoyin 2012a)

H = 1

2
ṙ · ṙ + V (r). (7)
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The orbital dynamics of a particle near a variable-velocity rotating asteroid are
markedly different from the dynamics of a particle near the uniformly rotating aster-
oid (Scheeres et al. 1996, 1998). In particular, if ω is time invariant, then equation (6)
can be expressed as (Yu & Baoyin 2012a)

r̈ + 2ω × ṙ + ∂V (r)
∂r

= 0, (8)

and equation (1) can be expressed as (Yu & Baoyin 2013)

r̈ + 2ω × ṙ + ω×(ω × r)+ ∂U(r)
∂r

= 0. (9)

The zero-velocity manifolds can be defined by the following equation (Scheeres
et al. 1996; Yu & Baoyin 2012a):

V (r) = H. (10)

The forbidden region for the particle can be determined from the inequality V (r) >
H , while the allowed region for the particle can be determined from the inequality
V (r) < H . The equation V (r) = H implies that the particle is static relative to the
rotating body-fixed frame.

2.2 Dynamical equations in scalar form

2.2.1 General dynamical equations in the arbitrary body-fixed frame. The body-
fixed frame is defined by an orthonormal right-handed set of unit vectors {e}:

{e} ≡
⎧
⎨

⎩

ex
ey
ez

⎫
⎬

⎭
. (11)

The dynamical equations of the particle can be written as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẍ + ω̇yz − ω̇zy + 2ωyż − 2ωzẏ + ωxωyy − ω2
yx − ω2

zx + ωzωxz+ ∂U
∂x

= 0

ÿ + ω̇zx − ω̇xz + 2ωzẋ − 2ωxż+ ωyωzz − ω2
zy − ω2

xy + ωxωyx + ∂U
∂y

= 0

z̈ + ω̇xy − ω̇yx + 2ωxẏ − 2ωyẋ + ωxωzx − ω2
xz − ω2

yz + ωyωzy + ∂U
∂z

= 0

.

(12)
Using the effective potential, the dynamical equations can be rewritten as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẍ + ω̇yz− ω̇zy + 2ωyż − 2ωzẏ + ∂V
∂x

= 0

ÿ + ω̇zx − ω̇xz + 2ωzẋ − 2ωxż + ∂V
∂y

= 0

z̈+ ω̇xy − ω̇yx + 2ωxẏ − 2ωyẋ + ∂V
∂z

= 0

. (13)

Equations (12) and (13) are the general dynamical equations of a particle near a
rotating asteroid expressed in the arbitrary body-fixed frame.
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2.2.2 General dynamical equations in the special body-fixed frame. Let ω be the
norm of the vector ω. If the unit vector ez is defined by ω = ωez, then the dynamical
equations in component form simplify to

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẍ − ω̇y − 2ωẏ − ω2x + ∂U
∂x

= 0

ÿ + ω̇x + 2ωẋ − ω2y + ∂U
∂y

= 0

z̈ + ∂U
∂z

= 0

. (14)

The effective potential becomes

V = U − ω2

2
(x2 + y2); (15)

it is related only to the position of the particle in the body-fixed frame and is
independent of z.

The Jacobi integral reduces to

H = U + 1

2
(ẋ2 + ẏ2 + ż2)− ω2

2
(x2 + y2). (16)

If ω is time invariant, then H is a constant, which means that the integral of the
relative energy is conserved.

The Lagrange function is given by

L = 1

2
(ẋ2 + ẏ2 + ż2)+ 1

2
ω2(x2 + y2)+ ω(xẏ − ẋy)− U. (17)

Using the effective potential, the dynamical equations can be written as
⎧
⎪⎪⎨

⎪⎪⎩

ẍ − ω̇y − 2ωẏ + ∂V
∂x

= 0

ÿ + ω̇x + 2ωẋ + ∂V
∂y

= 0

z̈ + ∂V
∂z

= 0

. (18)

The effective potential has the following properties:

(a) If |r| → +∞, V (r) → −ω2

2 (x2 + y2).

(b)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂V (r)
∂x

= −ω2x + ∂U(r)
∂x

∂V (r)
∂y

= −ω2y + ∂U(r)
∂y

∂V (r)
∂z

= ∂U(r)
∂z

.

(c) The asymptotic surface of V = V (r) is a circular cylindrical surface that can be

expressed as V ∗ = −ω2

2 (x2 + y2); the radius of the circular cylindrical surface

is
√

2
2 ω

√
x2 + y2.
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(d) The function V = V (r) is a 3-dimensional smooth manifold, and V (r) = C

denotes a 2-dimensional curved surface, where C is a constant.

2.2.3 Dynamical equations near the uniformly rotating asteroid in the special body-
fixed frame. If the unit vector ez is defined by ω = ωez, for the uniformly rotating
asteroid, the dynamical equations in scalar form can be expressed as (Scheeres et al.
1996) ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

ẍ − 2ωẏ − ω2x + ∂U
∂x

= 0

ÿ + 2ωẋ − ω2y + ∂U
∂y

= 0

z̈ + ∂U
∂z

= 0

, (19)

where the effective potential, the Jacobi integral, and the Lagrange function are in
the forms of equations (15)–(17).

Using the effective potential, the dynamical equations of a particle near the
uniformly rotating asteroid can be rewritten as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẍ − 2ωẏ + ∂V
∂x

= 0

ÿ + 2ωẋ + ∂V
∂y

= 0

z̈+ ∂V
∂z

= 0

. (20)

2.3 Dynamical equations in coefficient-matrix form

If the dynamical equations of the particle can be expressed in the coefficient-matrix
form, dynamical systems theory can be easily applied to study the orbital dynamical
system, the bifurcation, and the chaotic motion of the orbital motion of a particle
near a rotating asteroid.

Let v = ṙ and τ = ω̇, where

ω̂ =
⎛

⎝
0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎞

⎠

and

τ̂ =
⎛

⎝
0 −τz τy
τz 0 −τx
−τy τx 0

⎞

⎠ .

Substituting this into equation (6) yields
{

ṙ = v
v̇ = −∇V (r)− 2ω̂v − τ̂r . (21)

Let X =
[

r
v

]

, A =
(

I3×3 03×3
−2ω̂ −τ̂

)

and B =
(

03×3
−∇V (r)

)

. Then, equation (21)

can be written as

Ẋ = AX + B(X), (22)
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where B = B(X) is a function of X and ω; to be precise, B is a function of r and ω and
is independent of v. Equation (22) is the dynamical equation expressed in coefficient-
matrix form, and it appears in the form of a first-order ordinary differential equation.

If we define F(X) = AX + B(X), then

dF(X)

dX
= A +

(
03×3 03×3

−∇2V (r) 03×3

)

=
(

I3×3 03×3

−2ω̂ −∇2V (r) −τ̂

)

. (23)

2.4 Dynamical equations in Lagrange form

The generalized momentum is p = (ṙ + ω × r), and the generalized coordinate is
q = r. The Lagrange function is then given by

L = 1

2
(ṙ + ω × r) · (ṙ + ω × r)− U(r) = p · p

2
− U(q), (24)

L = 1

2
ṙ · ṙ + ṙ · (ω × r)− V (r) = 1

2
q̇ · q̇ + q̇ · (ω × q)− V (q), (25)

and the dynamical equations of a particle in the potential field of a rotating asteroid
can be expressed in the Lagrange form (Libermann & Marle 1987; Berndt 1998)

d

dt

(
∂L

∂q̇

)

= ∂L

∂q
. (26)

The effective potential is then given by

V (q) = −1

2
(ω × q) · (ω × q)+ U(q), (27)

and the Hamilton function can be expressed as

H = −p · p
2

+ U(q)+ p · q̇. (28)

The zero-velocity manifold can be written as follows:

V (q) = −p · p
2

+ U(q)+ p · q̇. (29)

There is no explicit time in equation (29).
When the dynamical equations of a particle in the potential field of a rotating

asteroid are expressed in the Lagrange form, one can think of the motion as the
autonomous curve of the functional � = ∫ t1

t0
Ldt .

2.5 Symplectic manifold and dynamical equations

The symplectic structure is a differential exterior 2-form � defined on a differen-
tiable manifold M; (M, �) is then a symplectic manifold (Fomenko 1988; Sternberg
2012). The symplectic manifold (M, �) is an even-dimensional manifold.
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2.5.1 Dynamical equations in hamilton form. According to Libermann & Marle
(1987), a Hamilton system is a triplet (M, �,H), where (M, �) is a symplectic
manifold, and H is a real differentiable function defined on M; the symplectic mani-
fold (M, �) is referred to as the phase space of the system, and the real differentiable
function H is referred to as the Hamilton function of the system.

For the orbital mechanics of a particle near an asteroid, the Hamilton function is

H = m

2
ṙ · ṙ − m

2
(ṙ + ω × r) · (ṙ + ω × r)+ U(r)

= −p · p
2m

+ U(q)+ p · q̇. (30)

The dynamical equations of a particle in the potential field of a rotating asteroid can
be expressed in the Hamilton form (Libermann & Marle 1987; Berndt 1998)

⎧
⎨

⎩

ṗ = − ∂H
∂q

q̇ = ∂H
∂p

. (31)

If ω is time invariant, then the asteroid rotates uniformly, and if the Jacobi integral
H is also time invariant, then the symplectic geometric algorithm can be used to
calculate the dynamical equation (31); otherwise, the asteroid has a variable rotating
velocity, and the Jacobi integral H is not a constant. Equation (31) expresses the
dynamical equations of the particle in phase space.

2.5.2 Dynamical equations in symplectic form. Define

z = [ p q ]T , (32)

where z is a 6 × 1 vector. Then, the dynamical equations of a particle in the potential
field of a rotating asteroid can be expressed in the symplectic form (Marsden & Ratiu
1999)

ż =
(

0 −I
I 0

)

∇H(z), (33)

where I and 0 are 3 × 3 matrices, and ∇H(z) =
(
∂H
∂p

∂H
∂q

)T
is the gradient of H(z).

Define J =
(

0 −I
I 0

)

, where J is a symplectic matrix, J∇H(z) is the Hamiltonian

vector field on the symplectic manifold, and the dynamical equations in symplectic
form can be rewritten as

Jż +∇H(z) = 0. (34)

If ω is time invariant, then the integral of the relative energy H(z) is also
time invariant, and the symplectic geometric algorithm can be used to calculate the
dynamical equations (33) or (34).
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2.6 Poisson bracket and dynamical equations

The Poisson bracket {f, g} is a bilinear map of two smooth functions f and g on a
symplectic manifold (M, �), from C∞(M,R) × C∞(M,R) to C∞(M,R), which
satisfies the following conditions: (a) {f, g} is skew-symmetric, {f, g} = −{g, f };
and (b) the Jacobi identity {f, {g, h}} + {g, {h, f }} + {h, {f, g}} = 0 is satisfied for
any f, g and h (Fomenko 1988). Using the Poisson bracket, the dynamical equations
of a particle in the potential field of a rotating asteroid can be given in Poisson-
bracket form on the symplectic manifold (M,�).

Define the Poisson bracket as

{f, g} = ∂f

∂q
· ∂g
∂p

− ∂f

∂p
· ∂g
∂q

. (35)

The dynamical equations of a particle in the potential field of a rotating asteroid can
then be expressed as (Libermann & Marle 1987)

ḟ = {f, H }, (36)

where the integral of the relative energy is

H = −p · p
2m

+ U(q)+ p · q̇ = 1

2
(p − ω × q) · (p − ω × q)+ V (q). (37)

Substituting p = f into equation (36), one can obtain ṗ = − ∂H
∂q , while substituting

q = f into equation (36), one can obtain q̇ = ∂H
∂p .

2.7 Poisson manifold and dynamical equations

A Poisson manifold is a differentiable manifold that defines a Poisson structure,
which is a bilinear map from C∞(M,R)×C∞(M,R) to C∞(M,R), and the bilin-
ear map satisfies the following conditions: (a) {f, g} is skew-symmetric, {f, g} =
−{g, f }; (b) the Jacobi identity {f, {g, h}} + {g, {h, f }} + {h, {f, g}} = 0 is sat-
isfied for any f, g and h; and (c) it is a derivation on each of its arguments,
{fg, h} = f {g, h} + g{f, h} (Fomenko 1988; Sternberg 2012). Every symplec-
tic manifold is a Poisson manifold, but not every Poisson manifold is a symplectic
manifold. Z denotes the manifold formed by z = [p q ]T ; Z∗ is the dual space of Z.

We can write

H = 1

2
(p − ω × q) · (p − ω × q)+ V (q) = 1

2
ṙ · ṙ + V (r)

= 1

2
ṙ · ṙ − 1

2
(ω × r) · (ω × r)+ U(r) (38)

Define �# : Z∗ → Z : ∇H → XH as

∇H(z) =
(

∂H
∂p

∂H
∂q

)T →
(

−∂H

∂q
,
∂H

∂p

)T

, (39)

where
(
− ∂H

∂q ,
∂H
∂p

)T
� XH(z), and XH is the entire smooth Hamiltonian vector field.
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�(XH) denotes the set of the entire smooth Hamiltonian vector field. The mapping
of equation (39) can be rewritten as (Marsden & Ratiu 1999)

XH(z) = �# ◦ ∇H(z) = �#∇H(z), (40)

where ◦ denotes the composition operator of �# and ∇; it can be omitted without
ambiguity. Then, the dynamical equations of a particle in the potential field of a
rotating asteroid can be expressed on the Poisson manifold as

ż = XH(z) (41)

or
ż = �#∇H(z). (42)

Let �b be the inverse mapping of �#, �b = (�#)−1; clearly, �bXH(z) = ∇H(z),
and the dynamical equations transform into

�bż = ∇H(z). (43)

2.8 Complex manifold and dynamical equations

An n-dimensional complex manifold is a complex space χ with the following prop-
erties: (a) χ is a Hausdorff space; (b) χ has a countable basis; and (c) χ is equipped
with an n-dimensional complex structure (Fritzsche & Grauert 2002). If the dynami-
cal equations of a particle in the potential field of a rotating asteroid can be expressed
on the complex manifold, then the equations can be studied on complex manifold
with the theories of complex manifolds.

2.8.1 Dynamical equation on the Kähler manifold. A complex manifold with a
symplectic structure is a Kähler manifold (Berndt 1998). If we write

� = q + ip = r + im(ṙ + ω × r), (44)

then it is easy to show that the dynamical equations of a particle near a rotating
asteroid expressed on the Kähler manifold can be written as (Marsden & Ratiu 1999)

� = −2i
∂H

∂�̄
, (45)

where ∂

∂�̄
� 1

2

(
∂
∂q + i ∂

∂p

)
.

2.8.2 Dynamical equations on a complex manifold. Let
⎧
⎨

⎩

z1 = x + ivx
z2 = y + ivy
z3 = z + ivz

; (46)

then the dynamical equations can be transformed into the form of several complex
variables, and the motion of a particle in the potential field of a rotating asteroid can
be studied using multi-complex function theory.
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It is easy to show that
⎧
⎨

⎩

x = z1+z̄1
2

vx = z1−z̄1
2i

⎧
⎨

⎩

y = z2+z̄2
2

vy = z2−z̄2
2i

⎧
⎨

⎩

z = z3+z̄3
2

vz = z3−z̄3
2i

. (47)

The dynamical equations of the particle in multi-complex analysis form are

1

2i

d

dt

⎡

⎢
⎢
⎣

z1 − z̄1

z2 − z̄2

z3 − z̄3

⎤

⎥
⎥
⎦ + 1

i
ω̂

⎡

⎢
⎢
⎣

z1 − z̄1

z2 − z̄2

z3 − z̄3

⎤

⎥
⎥
⎦ + 1

2
ω̂ω̂

⎡

⎢
⎢
⎣

z1 + z̄1

z2 + z̄2

z3 + z̄3

⎤

⎥
⎥
⎦ + 1

2
τ̂

⎡

⎢
⎢
⎣

z1 + z̄1

z2 + z̄2

z3 + z̄3

⎤

⎥
⎥
⎦

+ 1

2

⎡

⎢
⎢
⎢
⎣

∂U(z,z̄)
∂z1

+ ∂U(z,z̄)
∂z̄1

∂U(z,z̄)
∂z2

+ ∂U(z,z̄)
∂z̄2

∂U(z,z̄)
∂z3

+ ∂U(z,z̄)
∂z̄3

⎤

⎥
⎥
⎥
⎦

= 0 (48)

or

d

dt

⎡

⎢
⎢
⎣

z1 − z̄1

z2 − z̄2

z3 − z̄3

⎤

⎥
⎥
⎦ + 2ω̂

⎡

⎢
⎢
⎣

z1 − z̄1

z2 − z̄2

z3 − z̄3

⎤

⎥
⎥
⎦ + iω̂ω̂

⎡

⎢
⎢
⎣

z1 + z̄1

z2 + z̄2

z3 + z̄3

⎤

⎥
⎥
⎦ + iτ̂

⎡

⎢
⎢
⎣

z1 + z̄1

z2 + z̄2

z3 + z̄3

⎤

⎥
⎥
⎦

+ i

⎡

⎢
⎢
⎢
⎣

∂U(z,z̄)
∂z1

+ ∂U(z,z̄)
∂z̄1

∂U(z,z̄)
∂z2

+ ∂U(z,z̄)
∂z̄2

∂U(z,z̄)
∂z3

+ ∂U(z,z̄)
∂z̄3

⎤

⎥
⎥
⎥
⎦

= 0 (49)

where z =
⎡

⎣
z1
z2
z3

⎤

⎦ and z̄ =
⎡

⎣
z̄1
z̄2
z̄3

⎤

⎦.

Using the effective potential, the dynamical equations of the particle in multi-
complex analysis form can be expressed as

1

2i

d

dt

⎡

⎣
z1 − z̄1
z2 − z̄2
z3 − z̄3

⎤

⎦ + 1

i
ω̂

⎡

⎣
z1 − z̄1
z2 − z̄2
z3 − z̄3

⎤

⎦ + 1

2
τ̂

⎡

⎣
z1 + z̄1
z2 + z̄2
z3 + z̄3

⎤

⎦

+ 1

2

⎡

⎢
⎢
⎢
⎢
⎣

∂V (z,z̄)
∂z1

+ ∂V (z,z̄)
∂z̄1

∂V (z,z̄)
∂z2

+ ∂V (z,z̄)
∂z̄2

∂V (z,z̄)
∂z3

+ ∂V (z,z̄)
∂z̄3

⎤

⎥
⎥
⎥
⎥
⎦

= 0 (50)
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or

d

dt

⎡

⎣
z1 − z̄1
z2 − z̄2
z3 − z̄3

⎤

⎦ + 2ω̂

⎡

⎣
z1 − z̄1
z2 − z̄2
z3 − z̄3

⎤

⎦ + iτ̂

⎡

⎣
z1 + z̄1
z2 + z̄2
z3 + z̄3

⎤

⎦

+ i

⎡

⎢
⎢
⎣

∂V (z,z̄)
∂z1

+ ∂V (z,z̄)
∂z̄1

∂V (z,z̄)
∂z2

+ ∂V (z,z̄)
∂z̄2

∂V (z,z̄)
∂z3

+ ∂V (z,z̄)
∂z̄3

⎤

⎥
⎥
⎦ = 0. (51)

The effective potential is written as

V (z, z̄) = U(z, z̄)− 1

8
|ω̄(z + z̄)|2 = U(z, z̄)− 1

8
(ω̄(z + z̄))2. (52)

The integral of the relative energy becomes

H = U (z, z̄)− 1

8
|z − z̄|2 − 1

8
|ω̄ (z + z̄)|2

= U (z, z̄)− 1

8
(z − z̄)2 − 1

8
(ω̄ (z + z̄))2 . (53)

Using the effective potential, the integral of the relative energy is given by

H = V (z, z̄)− 1

8
|z − z̄|2 = V (z, z̄)− 1

8
(z − z̄)2 . (54)

If the attitude motion of the asteroid is uniformly rotating, then τ̂ = 03×3 is a 3 ×
3 zero matrix. The dynamical equations take the form

1

2i

d

dt

⎡

⎣
z1 − z̄1
z2 − z̄2
z3 − z̄3

⎤

⎦+1

i
ω̂

⎡

⎣
z1 − z̄1
z2 − z̄2
z3 − z̄3

⎤

⎦+1

2
ω̂ω̂

⎡

⎣
z1 + z̄1
z2 + z̄2
z3 + z̄3

⎤

⎦+1

2

⎡

⎢
⎢
⎢
⎣

∂U(z,z̄)
∂z1

+ ∂U(z,z̄)
∂z̄1

∂U(z,z̄)
∂z2

+ ∂U(z,z̄)
∂z̄2

∂U(z,z̄)
∂z3

+ ∂U(z,z̄)
∂z̄3

⎤

⎥
⎥
⎥
⎦

= 0

(55)
or

d

dt

⎡

⎣
z1 − z̄1
z2 − z̄2
z3 − z̄3

⎤

⎦+ 2ω̂

⎡

⎣
z1 − z̄1
z2 − z̄2
z3 − z̄3

⎤

⎦+ iω̂ω̂

⎡

⎣
z1 + z̄1
z2 + z̄2
z3 + z̄3

⎤

⎦+ i

⎡

⎢
⎢
⎢
⎣

∂U(z,z̄)
∂z1

+ ∂U(z,z̄)
∂z̄1

∂U(z,z̄)
∂z2

+ ∂U(z,z̄)
∂z̄2

∂U(z,z̄)
∂z3

+ ∂U(z,z̄)
∂z̄3

⎤

⎥
⎥
⎥
⎦
=0.

(56)

Using the effective potential, the dynamical equations of a particle near the
uniformly rotating asteroid can be expressed in multi-complex analysis form as

1

2i

d

dt

⎡

⎣
z1 − z̄1
z2 − z̄2
z3 − z̄3

⎤

⎦ + 1

i
ω̂

⎡

⎣
z1 − z̄1
z2 − z̄2
z3 − z̄3

⎤

⎦ + 1

2

⎡

⎢
⎢
⎣

∂V (z,z̄)
∂z1

+ ∂V (z,z̄)
∂z̄1

∂V (z,z̄)
∂z2

+ ∂V (z,z̄)
∂z̄2

∂V (z,z̄)
∂z3

+ ∂V (z,z̄)
∂z̄3

⎤

⎥
⎥
⎦ = 0 (57)
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or

d

dt

⎡

⎣
z1 − z̄1
z2 − z̄2
z3 − z̄3

⎤

⎦ + 2ω̂

⎡

⎣
z1 − z̄1
z2 − z̄2
z3 − z̄3

⎤

⎦ + i

⎡

⎢
⎢
⎢
⎣

∂V (z,z̄)
∂z1

+ ∂V (z,z̄)
∂z̄1

∂V (z,z̄)
∂z2

+ ∂V (z,z̄)
∂z̄2

∂V (z,z̄)
∂z3

+ ∂V (z,z̄)
∂z̄3

⎤

⎥
⎥
⎥
⎦

= 0. (58)

2.9 Cohomology and dynamical equations

Using cohomology theory, the dynamical equations of a particle near the uni-
formly rotating asteroid can be expressed simply and beautifully. The Hodge star
operator is a significant linear map which is defined on the exterior algebra of a
finite-dimensional oriented inner product space. Using the Hodge star operator, the
dynamical equation of a particle near the uniformly rotating asteroid is equivalent to
the duality of two 1-vectors.

Let us write the kinetic energy as

T = 1

2
(q̇ + ω × q) · (q̇ + ω × q) . (59)

Let {
T1 = ∂T

∂q̇ dt
U1 = −Udq

. (60)

Apply the Hodge star operator * and the differential operator d to equation (60),

d ∗ T1 = d

dt

(
∂T

∂q̇

)

dt ∧ dq̇ ∧ dq, (61)

d ∗ U1 = −∂U

∂q
dq ∧ dt ∧ dq̇. (62)

The dynamical equations of the particle can then be written as

d ∗ T1 = d ∗ U1. (63)

If the kinetic energy and the effective potential can be expressed as
{
TV = 1

2 q̇ · q̇
V (q) = − 1

2 (ω × q) · (ω × q)+ U (q)
(64)

and we define ⎧
⎨

⎩

T1
V = ∂TV

∂q̇ dt

V1 = −V dq
, (65)

then, using the Hodge star operator * and the differential operator d,

d ∗ T1
V = d

dt

(
∂TV

∂q̇

)

dt ∧ dq̇ ∧ dq, (66)

d ∗ V1 = −∂V

∂q
dq ∧ dt ∧ dq̇. (67)
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The dynamical equations of the particle can then be written as

d ∗ T1
V = d ∗ V1. (68)

Equations (63) and (68) are the dynamical equations of a particle in the potential
field of a rotating asteroid expressed in cohomology form.

3. Summary of the dynamical equations

The classical form of the dynamical equations includes the second-order derivative
of the position vector of the particle, which is the radius vector from the asteroid’s
centre-of-mass to the particle. There are 2 classical forms of the dynamical equa-
tions: one is written in terms of the potential, while the other uses the effective
potential. For the uniformly rotating asteroid, the dynamical equations can be simpli-
fied. There are 4 scalar forms of the general dynamical equations for a particle near
a rotating asteroid presented here, using the potential or the effective potential and
using the arbitrary body-fixed frame or the special body-fixed frame. If the dynamical
equations are expressed in the special body-fixed frame, then the effective potential
is simplified to equation (15), the Jacobi integral is simplified to equation (16), and
the Lagrange function is reduced to equation (17). In addition, the asymptotic sur-
face of the effective potential expressed in the special body-fixed frame is a circular
cylindrical surface.

The dynamical equations of the particle in coefficient-matrix form appear as a
first-order ordinary differential equation, and dynamical systems theory can be easily
applied to this form of the dynamical equations to study the orbital dynamical sys-
tem, the bifurcation, and the chaotic motion of the orbital motion of a particle near a
rotating asteroid.

The dynamical equations of a particle in the potential field of a rotating asteroid
expressed in the Lagrange form regard the motion of the particle as the autonomous
curve of the functional � = ∫ t1

t0
Ldt . To express the dynamical equations of a

particle near a rotating asteroid in phase space, one can utilize the dynamical equa-
tions in Hamilton form. The dynamical equations can also be given in symplectic
form with the Hamiltonian vector field on the symplectic manifold. If the aster-
oid rotates uniformly, then the Jacobi integral is time invariant, and the symplectic
geometric algorithm can be used to integrate the dynamical equations. Using the
Poisson bracket, the dynamical equations of a particle in the potential field of a rotat-
ing asteroid can be re-written in Poisson-bracket form on the symplectic manifold.
In addition, the dynamical equations of a particle near a rotating asteroid can be
expressed on the Poisson manifold with the entire smooth Hamiltonian vector field.
This leads to a novel method of studying the motion of a particle near a rotating
asteroid on the Poisson manifold.

The dynamical equations on the Kähler manifold take on a simplified form and
appear as a first-order complex differential equation. The dynamical equations on
other complex manifolds considered here exhibit a complicated form and lead to
a novel method of studying the motion of a particle near a rotating asteroid using
multi-complex function theory.

The dynamical equations can be expressed simply and beautifully in cohomology
form; the Hodge star operator and the differential operator are applied to express the
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motion of a particle near a rotating asteroid, and this form of the dynamical equations
allows the conclusion of the cohomology group to be applied to the study of the
motion of a particle in the potential field of a rotating asteroid.

Nine types of dynamical models of a particle near a rotating asteroid are presented:
the scalar form, the coefficient-matrix form, the Lagrange form, the Hamilton form,
the symplectic form, the Poisson-bracket form, the Poisson form, the complex form
and the cohomology form. The scalar forms of dynamical models in sections 2.2.1
and 2.2.2 are suitable to all of the irregular asteroids, while the scalar forms of
dynamical models in section 2.2.3 are only suitable to uniformly rotating irregu-
lar asteroids. Besides, the coefficient-matrix form, the Lagrange form, the Hamilton
form, the symplectic form, the Poisson-bracket form and the Poisson form of dynam-
ical models are suitable to all of the irregular asteroids. The cohomology form of
dynamical model is only suitable to uniformly rotating irregular asteroids. About the
complex forms of dynamical models, equations (45), (48), (49), (50) and (51) are
suitable to all of the irregular asteroids, while equations (55), (56), (57) and (58) are
only suitable to uniformly rotating irregular asteroids.

The difference among different formalisms is comprised of: the characteristic of
the equation; which manifold the solution of the equation is in; the scope of appli-
cation for uniformly rotating or variable-velocity rotation asteroids; the formalism
of the potential functions; available or unavailable for numerical calculation etc.
The characteristic of the equation includes classical, coefficient-matrix, Lagrange,
Hamilton, symplectic, Poisson-bracket, Poisson, complex and cohomology form;
the formalism of the potential function embodies potential or effective potential.
Table 1 shows a comparison among the various forms of the dynamical equations
of a particle in the potential field of a rotating asteroid. Each form of the dynamical
equations can be written with 2 types of potential-field functions: the potential and
the effective potential. The dynamical equations of a particle in the potential field of
the uniformly rotating asteroid can be obtained from the dynamical equations in the
potential field of a variable-velocity rotating asteroid and have a simpler form. The
collective advantage of classical, coefficient-matrix, Lagrange, Hamilton, symplectic
and complex forms is available for numerical calculation. The collective advantage
of Hamilton, symplectic and Kähler forms is available for symplectic numerical
calculation. The disadvantage of Poisson-bracket, Poisson and cohomology forms
is unavailable for direct numerical calculation; besides, the Poisson-bracket and
Poisson form of equations can be used for numerical calculation when it is trans-
formed into Hamilton or symplectic forms while the cohomology form of equation
can be used for numerical calculation when it is transformed into Lagrange
form.

Solutions of different equations are in different manifolds and have different
imminent behaviors. The solution of the scalar form or the coefficient-matrix form
is in the body-fixed frame, which can be used to calculate the orbits of the particle
orbiting a rotating asteroid with numerical method easily. The solution of the Hamil-
ton form or the symplectic form is in the symplectic manifold and can be used to
calculate the orbits of the particle orbiting the uniformly rotating asteroid with sym-
plectic numerical method; besides, the conservation of the Jacobi integral has good
numerical phenomenon. The solution of the complex form is in the complex man-
ifold; specially, the solution of the complex form which is on the Kähler manifold
is the corresponding solution with symplectic behaviors in the complex manifold.
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The solution in the cohomology form is the trajectory which satisfies the Hodge star
operator equation.

4. Orbital dynamics close to asteroids 216 Kleopatra and 1620 Geographos

In this section, the orbital dynamics equations around a rotating asteroid are applied
to 216 Kleopatra and 1620 Geographos. We used the coefficient-matrix form of
dynamical models to simulate the orbital dynamics close to asteroids 216 Kleopatra
and 1620 Geographos, because this dynamics model is easy and suitable for pro-
gramming. The methodology for the application of the coefficient-matrix form of
dynamical models to simulate the orbital dynamics close to asteroids is: let the unit
vector ez is defined by ω = ωez. Integrate the first-order ordinary differential equa-

tion (22), which is Ẋ = AX + B (X), where X =
[

r
v

]

, A =
(

I3×3 03×3
−2ω̂ −τ̂

)

,

B =
(

03×3
−∇V (r)

)

and ∇V (r) = ∇U (r) − ω2 (x + y). ∇U (r) is calculated by

the polyhedron model (Werner 1994; Werner & Scheeres 1996) using the data from
radar observations (Neese 2004).

The rotation period of 216 Kleopatra is 5.385 h and with overall dimensions of
217 × 94 × 81 km (Ostro et al. 2000); in addition, the estimated bulk density
is 3.6 g cm−3 (Descamps et al. 2010). The physical model of 216 Kleopatra that
we used here was calculated with radar observations using the polyhedral model
with 2048 vertices and 4096 faces (Neese 2004). The unit vector ez of the body-
fixed frame is defined by ω = ωez, the initial position of the particle in the
body-fixed frame is r = [−92863.5, 49248.6, 21413.9] m and the initial velocity is
v = [42.247, 71.958,−3.468] m · s−1. The total flight time of the particle is 27 h
42 min. Figure 1 shows the orbit of the particle around the asteroid 216 Kleopatra
with the initial position and initial velocity in the body-fixed frame.

Figure 1. An orbit of the particle around the asteroid 216 Kleopatra (km).
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Figure 2. (a) An orbit of the particle around the asteroid 1620 Geographos in the body-fixed
frame (km). (b) An orbit of the particle around the asteroid 1620 Geographos in the inertia
frame (km).

The rotation period of 1620 Geographos is 5.222 h (Ryabova 2002), the estimated
bulk density is 2.0 g · cm−3 (Hudson & Ostro 1999), and with an overall dimension
of (5.0 × 2.0 × 2.1)± 0.15 km (Hudson & Ostro 1999). The physical model of 1620
Geographos that we used here was calculated with radar observations using the poly-
hedral model with 8192 vertices and 16380 faces (Neese 2004). The initial position
of the particle in the body-fixed frame is r = [139995.2,−600.4,−7053.3] m and
the initial velocity is v = [−0.8944,−4.3202,0.42324] m · s−1. The total flight time
of the particle is 10 h 6 min. Figure 2a shows the orbit of the particle around the aster-
oid 1620 Geographos with the initial position and initial velocity in the body-fixed
frame, while Fig. 2b shows the orbit in the inertia frame. From Fig. 2, one can know
the particle with this orbital initial parameter will leave asteroid 1620 Geographos.
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5. Conclusions

In addition to the classical form of the dynamical equations, 9 new forms of the
dynamical equations of a particle orbiting a rotating asteroid have been derived
and presented: the scalar form, the coefficient-matrix form, the Lagrange form, the
Hamilton form, the symplectic form, the Poisson-bracket form, the Poisson form, the
cohomology form, and the dynamical equations on the Kähler manifold and another
complex manifold. Novel forms of the effective potential and the Jacobi integral have
also been presented.

The dynamical equations in scalar form with the potential and the effective poten-
tial in the arbitrary body-fixed frame and the special body-fixed frame were presented
and studied, and the simplified forms of the effective potential and the Jacobi integral
were given. The dynamical equations in coefficient-matrix form have been derived
and shown to take the form of a first-order ordinary differential equation; expressing
the dynamical equations in this form can aid in the study of the dynamical system,
the bifurcation, and the chaotic motion of the orbital dynamics of a particle near a
rotating asteroid.

The dynamical equations in symplectic form and Poisson-bracket form represent
the motion of the particle expressed on the symplectic manifold, while the dynam-
ical equations in Poisson form represent the motion of the particle expressed on
the Poisson manifold. The motion of a particle in the potential field of a rotating
asteroid can also be expressed on a complex manifold, including the Kähler man-
ifold. The dynamical equations on the Kähler manifold take on a simplified form
and appear as a first-order complex differential equation. The dynamical equations
on the other complex manifold considered here have a complicated form and lead
to a novel method of studying the motion of a particle near a rotating asteroid using
multi-complex function theory. Using the Hodge star operator and the differential
operator, the dynamical equations of the particle can be expressed in cohomology
form; this form of the dynamical equations looks simple and beautiful, and it allows
the conclusions of the cohomology group to be applied to the study of the motion of
a particle in the potential field of a rotating asteroid.
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