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Abstract. In this paper, an efficient algorithm is established for com-
puting the maximum (minimum) angular separation ρmax(ρmin), the cor-
responding apparent position angles (θ |ρmax , θ |ρmin) and the individual
masses of visual binary systems. The algorithm uses Reed’s formulae
(1984) for the masses, and a technique of one-dimensional uncon-
strained minimization, together with the solution of Kepler’s equation for
(ρmax, θ |ρmax) and (ρmin, θ |ρmin). Iterative schemes of quadratic coverage
up to any positive integer order are developed for the solution of Kepler’s
equation. A sample of 110 systems is selected from the Sixth Catalog of
Orbits (Hartkopf et al. 2001). Numerical studies are included and some
important results are as follows: (1) there is no dependence between ρmax
and the spectral type and (2) a minor modification of Giannuzzi’s (1989)
formula for the upper limits of ρmax functions of spectral type of the
primary.

Key words. Stars: spectral types—binaries: visual—numerical: opti-
mization.

1. Introduction

The maximum separations of the visual binaries are of interest in assessing the effects
of chance encounters with neighboring stars and molecular clouds, and the effects
of the general galactic potential. Also it is connected with the problem of binary
formation. The dependence between maximum separations and spectral types of the
components in visual binary systems have been studied by several authors (Öpik
1924; Halbwachs 1983, 1986; Abt 1986, 1988a, 1988b; Giannuzzi 1989). By using
the published catalogs of known binaries, Öpik (1924) and Abt (1986) showed that
there was an evolutionary decrease in binary separations with the spectral type of the
primary. Moreover Öpik clearly showed that early-type visual binaries have greater
angular separation on the average, at the same apparent magnitudes, than late-type
binaries, even though the former were more distant. Therefore their separations in
AU are much greater on the average. Abt (1986, 1988b) found a decrease of the
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limiting upper separation from the early to late-type systems. Another study was
done by Giannuzzi (1989) who showed that the result obtained by Abt was due to
selective constraints.

Due to the importance of the maximum (minimum) separations among catalogued
binaries, the present paper is devoted for two purposes. First, to establish a compu-
tational algorithm for maximum (ρmax) or minimum (ρmin) angular separations and
the corresponding apparent position angles (θ |ρmax , θ |ρmin) for visual binary systems
from their orbital elements. Second, to illustrate the applications of the algorithm for
studying the upper limits of ρmax as functions of spectral type.

2. Basic formulation

2.1 Individual masses of a binary system

The individual masses (Ma, Mb) of the components of binary systems, in solar units,
could be computed (Reed 1984) from the knowledge of their apparent magnitudes
(ma, mb), orbital period P (in years), and the semimajor axis a′′ of the true orbit (in
seconds of arc), by the equations

log Mb = 15

{
mb + α − 5

3
log(1 + 10�/β) − �

} /(
5

3
+ β

)
, (1)

Ma = Mb(10�/β), (2)

where
α = 4.5, β = −9.5 (3)

and

� = 10

3
log P − 5 log a̋ − 5. (4)

2.2 Two-body formulations

The relative two-body problem is represented by the differential system

r̈ = − μ

r3
r, (5)

where dots denote the second differentiation with respect to time t , and μ is the
Gaussian constant. With the units usually used in double star computations, μ is
given as

μ = 4π2(Ma + Mb) π ′′3, (6)

where π ′′ is the parallax. The relation between position and time t , for an elliptic
orbit, is given by Kepler’s equation as√

μ

a3
(t − T ) = E − e sin E, (7)

where T , e and E are respectively, the time of periastron passage, the eccentricity,
and the eccentric anomaly.
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The relation between the ephemerides (θ0, ρ′′) and r , f and the orientation angles
are given as

tan(θ − 	) = tan( f + ω) cos i, (8)

ρ = r cos( f + ω) sec(θ − 	). (9)

where θ is the apparent position angle and ρ is the angular separation. Equations (8)
and (9) convert f and r of the true orbit into θ and ρ. Finally, the values of r and f
in these equations are determined from

r = a (1 − e cos E), (10)

to avoid a possibility of numerical trouble when f is computed from the classical
equation

f = 2 tan−1

{√
1 + e

1 − e
tan

1

2
E

}
,

for angles near 90◦, we use the remarkably elegant formula (Broucke & Cefola 1972)

f = E + 2 tan−1
{

sin E

ν − cos E

}
, (11)

where

ν = 1

e

{
1 +

√
1 − e2

}
, (12)

which is free of numerical trouble.

3. Computational developments

3.1 Solution of Kepler’s equation

Kepler’s equation (7) is usually solved by iteration methods. To apply any of these
methods one needs (a) initial guess and (b) an iterative scheme. For the initial guess
E0, we use (Sharaf et al. 2000):

E0 = M + e sin M

1 − sin(M + e) + sin M
, (13)

where the mean anomaly M is given by

M =
{ μ

a3

} 1
2
(t − T ). (14)
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For the second point, that is, the iterative scheme, let us write equation (7) as

G(E) = E − e sin E − M = 0. (15)

Clearly G: R → R is a smooth map. Equation (15) has a solution E = (γ ) (say). To
construct an iterative scheme for solving equation (15), some basic definitions are
recalled as follows:

(1) The error in the nth iterate is defined as

εn = γ − E . (16)

(2) If the sequence (En) converges to E = γ ,

limn→∞En = γ. (17)

(3) If there exists a real number p such that

limi→∞
|Ei+1 − γ |
|Ei − γ |p

= limi→∞
|εi+1|
|εi |p

= K �= 0, (18)

we say that the iterative scheme is of order p at γ . The constant K is called the
asymptotic error constant. For p = 1, the convergence is linear; for p = 2, the
convergence is quadratic; for p = 3, 4, 5, the convergence is cubic, quartic and
quintic respectively.

An iterative scheme for solving equation (15) includes derivatives of G as much as
the order of the scheme. In fact, as it is clear from the above definitions, the higher the
order of an iterative scheme, the higher its accuracy and rate of convergence will be.

Due to the simplicity of the derivative formulae of the trigonometric functions
involved, we are encouraged to establish the solution of Kepler’s equation, an
iterative scheme of any desired order.

To achieve this scheme, Taylor series method (Broucke & Cefola 1972) is used by
means of which, it is easy to form a class of iteration formulae, containing members
of all integral orders to solve equation (15) as

Ei+1 = Ei + δi,m+2; i = 0, 1, 2, . . . ; m = 0, 1, 2, . . . , (19)

δi,m+2 = −Gi∑m+1
j=1 (δi,m+1) j−1G(i)

i /j !
; δi,1 = 1; ∀i ≥ 0, (20)

G( j)
i ≡ d j G(E)

dE j
|E−Ei ; Gi ≡ G(0)

i , (21)

Gi
(2r) = (−1)r+1 e sin Ei ; r = 1, 2, . . . , (22)

Gi
(2r+1) = (−1)r+1 e cos Ei ; r = 1, 2, . . . . (23)

The convergence order is m + 2, and is given as

εi+1 = − 1

(m + 2)!
Gm+2(ξ)

G(1)(ξ1)
εm+2

i , (24)

where ξ is between Ei+1, Ei and ξ1 is between Ei+1 and γ .
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3.2 Minimization (maximization) process

Since the tasks of maximization and minimization are trivially related to each other,
we shall restrict the following analysis to the minimization process.

The objective function to be minimized is ρ given by equation (9) as

F ≡ ρ = r cos s( f + ω) sec(θ − 	),

where the corresponding apparent position angle θ is given by equation (8). Thus the
problem of the minimum angular separation could be treated by any of the methods
for one-dimensional unconstrained minimization. In these methods two algorithms
are to be used. The first algorithm is to bracket the minimum from two given initial
values of t as t̃ and t̃ + �t̃ (say). The second algorithm is to isolate the minimum
by, for example, Golden Section Search or Brent’s method. Full details of such
algorithms could be found in Numerical Recipes Book (Press et al. 1992).

4. Numerical studies

FORTRAN 77 code was constructed for digital computations of the above formu-
lations and applied to a sample of 110 systems selected from the Sixth Catalogue
of Visual Binary Orbits such that �m ≤ 0.2. The results of the present section are
presented in the following subsections.

4.1 Calculations of Ma , (ρmax, θ |ρmax) and (ρmin, θ |ρmin)

The algorithm described above was used to calculate (ρmax, θ |ρmax) and (ρmin, θ |ρmin)

for the binaries of the sample from their orbital elements. For minimizing the objec-
tive function (equation (9)) two subroutines were used, MNBRAK for bracketing
the minimum and GOLDEN for isolating it. These subroutines are found in Press
et al. (1992). The two initial values of the time t̃, t̃ + �t̃ needed for bracketing are
taken as t̃ = T (in years) and �t = one year for all binaries of the sample. Finally,
for the solution of Kepler’s equation we used an iterative scheme of quantic conver-
gence order (p = 5) with maximum number of iterations N = 5 and a stopping
tolerance = 10−10. The numerical results of this application are listed in Table 1.
The designation of the table is: the first column is ADS number, the second column
is apparent magnitude of the primary, the third column is the mass of the primary,
the fourth column is minimum separation, the fifth column is the position angle at
minimum separation, the sixth column is the maximum separation, and finally the
position angle at maximum separation is listed in the seventh column.

Some statistical results could be obtained from these numerical results. Here we
shall demonstrate one of them. The relation between the semi major axis (ä) and
the maximum separation (ρmax) for the selected binaries is plotted in Fig. 1. As it is
clear, asymmetric distribution around the fitted line is well noticed. Fitting the data
yield the linear relation

log ä = 1.0738 log ρ̈max + 0.38 (25)

with a correlation coefficient (R = 0.82), which indicate a relatively high correla-
tion between the semi major axis and the maximum separation. Figure 2 presents



380 M. I. Nouh & M. A. Sharaf

Table 1. Apparent magnitude (ma) of the primary component, mass of the primary component
(Ma), minimum ephemeredes (ρmin and θ |ρmin ) and maxium ephemeredes (ρmax and θ |ρmax ) of
the 110 selected visual binaries.

ADS ma Ma ρmin θ |ρmin ρmax θ |ρmax

.... 6.40 1.99 0.38 14.52 157.4 7.7
15902 6.50 2.18 41.7 120.3 151.2 92.5
8891 8.10 1.85 8.29 74.67 314.3 134.3
14775 7.70 1.87 22.8 28.25 26.48 306.6
16314 3.00 2.04 30.0 34.46 112.4 206.8
7158 5.20 2.37 23.9 123.8 284.0 179.3
9744 4.30 3.96 0.22 0.743 348.1 157.8
4890 6.70 1.47 4.91 13.89 95.99 237.4
9505 6.10 1.75 6.54 10.44 319.3 140.2
2616 7.60 1.75 42.4 124.6 222.3 139.6
13944 6.60 2.69 15.4 133.3 268.7 148.6
3182 5.80 2.80 13.4 20.87 278.3 1.015
.... 7.20 1.65 2.16 95.24 144.8 64.3
11842 5.70 1.69 20.5 57.11 37.60 30.0
.... 6.90 1.74 37.3 47.52 266.8 86.17
.... 7.80 1.97 55.7 83.57 260.1 82.47
14761 7.00 1.48 10.5 46.59 225.3 45.37
.... 6.50 2.02 15.1 66.95 97.69 278.8
11574 8.50 1.38 1.85 21.58 186.3 96.41
8987 3.48 1.38 5.54 17.70 309.5 58.95
8987 7.80 1.38 11.0 37.48 1.699 221.3
8630 6.30 1.56 25.9 619.8 274.1 34.66
9689 6.30 1.60 20.7 88.37 58.87 237.4
.... 7.50 1.35 9.17 24.29 274.7 183.8
4396 8.80 1.41 0.33 24.48 250.5 160.4
9247 6.00 1.42 16.0 26.92 78.38 264.6
3064 6.00 1.47 5.23 9.507 85.04 268.2
.... 6.10 1.04 0.16 2.769 63.15 334.3
.... 7.00 1.20 5.69 14.30 155.4 247.0
.... 8.00 1.35 6.65 17.14 274.8 32.46
10421 6.40 1.45 12.1 31.08 70.65 152.3
15267 9.40 0.79 23.3 41.52 229.8 48.77
8804 7.50 1.00 18.5 43.77 82.03 196.2
9392 5.05 1.18 5.48 12.03 44.27 129.5
17052 7.60 1.21 23.9 176.2 279.2 32.30
3475 8.30 1.27 8.66 11.22 134.5 211.8
16539 8.10 1.28 1.98 8.961 78.01 347.5
10345 8.60 0.86 10.5 37.29 160.6 46.95
16800 5.20 1.07 5.54 13.57 163.3 69.78
.... 7.00 1.20 4.10 10.04 231.2 51.21
14773 9.60 1.23 7.53 15.80 62.22 323.8
16819 5.65 1.26 5.84 9.630 136.0 45.73
11998 5.65 1.26 64.7 157.9 134.0 16.34
.... 7.50 1.30 17.7 137.1 58.95 234.4
16819 7.20 1.31 9.71 42.41 119.4 226.9
6483 7.50 1.31 10.4 16.79 171.1 51.98
6811 8.10 1.36 3.04 7.712 303.7 32.57
10345 5.40 2.53 91.2 269.3 182.8 52.97
918 7.18 0.96 11.7 48.95 111.3 203.2
5871 8.30 1.25 2.26 15.63 312.0 221.3
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Table 1. (Continued)

ADS ma Ma ρmin θ |ρmin ρmax θ |ρmax

9557 8.00 1.28 27.2 903.0 108.0 297.1
3082 7.90 1.58 46.0 124.4 72.29 249.8
.... 6.60 1.60 6.43 8.538 46.20 327.0
16138 7.60 0.89 18.8 35.17 52.02 318.9
1538 7.60 0.91 11.7 21.76 49.91 224.6
16138 8.20 0.92 31.4 117.0 77.94 299.4
6354 8.20 0.95 7.63 25.74 239.0 107.1
2236 7.80 0.98 9.82 76.06 63.58 321.2
1538 6.76 1.18 33.7 190.2 79.23 236.0
2236 6.76 1.18 5.88 20.90 76.86 178.4
9578 8.80 0.81 3.98 51.53 338.4 69.19
.... 6.50 0.87 10.5 49.97 352.5 114.2
16644 9.40 0.88 3.42 15.48 341.7 254.6
17149 7.20 0.91 3.86 15.44 48.63 228.6
.... 7.80 0.93 1.42 14.95 144.6 27.96
14893 7.33 0.98 27.9 55.45 234.4 339.4
5720 7.20 1.00 4.00 87.17 333.3 173.8
9182 7.50 1.02 36.6 182.5 232.2 351.3
2373 8.70 0.98 11.2 16.19 231.2 52.65
2524 8.30 1.16 17.8 48.42 154.5 321.7
7054 8.20 1.00 11.5 68.92 147.3 283.6
11483 6.80 1.24 57.8 165.6 191.5 23.80
13169 9.30 0.96 24.1 36.81 215.6 103.1
3701 5.70 0.60 8.22 19.24 128.1 298.1
2028 8.60 0.92 0.96 19.91 84.81 233.3
.... 8.90 0.76 28.7 11043 272.1 136.2
363 8.90 0.76 14.1 69.41 15.37 220.0
363 7.20 0.82 3.69 20.96 71.04 164.6
520 9.00 0.72 8.61 14.26 66.80 295.7
8901 6.30 0.80 7.33 14.66 278.6 4.604
10871 8.60 0.86 12.8 34.78 75.71 255.2
2980 7.30 0.66 1.94 3.768 95.67 247.9
.... 9.30 0.76 7.95 68.98 33.13 288.6
5949 8.20 1.20 18.7 28.11 148.0 328.0
.... 2.90 2.95 19.49 332.6 51.27 263.4
.... 6.00 1.63 2.424 4.402 157.6 297.2
7545 5.30 2.93 8.466 62.91 99.93 266.0
.... 5.30 1.62 4.459 110.3 176.8 268.8
3391 7.30 2.14 12.62 27.87 231.4 95.35
6871 6.90 1.53 8.070 20.70 314.6 159.3
.... 6.10 1.64 3.396 51.54 132.7 41.22
.... 5.10 1.80 6.050 23.11 125.3 2.435
.... 6.60 1.46 1.187 6.402 42.09 310.2
.... 5.10 2.09 1.117 11.30 48.90 142.6
9159 8.30 1.65 39.04 105.8 98.59 287.6
16497 6.10 1.72 5.001 9.011 324.8 132.2
.... 7.00 1.39 34.76 296.4 125.8 308.8
16497 6.10 1.73 47.30 83.68 225.2 96.41
.... 5.60 1.58 12.84 71.57 4.641 271.0
.... 5.60 1.21 3.473 15.37 33.29 125.1
.... 7.00 1.66 13.29 97.66 355.4 141.2
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Table 1. (Continued)

ADS ma Ma ρmin θ |ρmin ρmax θ |ρmax

9909 4.90 1.49 3.218 16.21 228.5 318.6
999 8.00 1.15 1.331 6.680 198.9 110.6
.... 6.90 1.15 23.47 305.3 53.85 201.8
11520 7.20 0.99 12.48 48.45 148.8 332.3
16098 9.00 0.86 4.967 47.32 271.0 92.21
3041 8.10 1.14 4.874 8.808 158.0 67.75
14783 7.00 1.15 7.844 10.35 331.3 226.9
.... 7.20 1.19 5.575 38.03 305.8 199.6
10598 6.00 0.87 9.557 23.42 34.94 159.7

ρ̈max−(log ä)−ρ̈max) distribution with very low correlation coefficient (R = 0.096).
This behavior is also obtained by many authors (e.g. Bartkevicius 2008).

4.2 Upper limits of ρmax

The second application is a preliminary study on the upper limits of ρmax as functions
of spectral types. Before starting, let us summarize the most important results of
previous work on this subject.

4.2.1 Summary of the previous work. Abt (1988a, 1988b) showed that the reason
for studying catalogued pairs is because they usually have data for long time intervals
that show whether the members have common motions (no significant variation in
separations and angles that cannot be attributed to orbital motion). Also it is found
that maximum separations have upper limits as functions of spectral type of the
primary components given by

d(AU ) = 2500(Ma)
1.54. (26)

Figure 1. Relation of the semi-major axis and the maximum separation for selected binaries.
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Figure 2. The correlation between the maximum separation (ρ̈max) and (log ä − ρ̈max).

It turns out that the main-sequence binaries have separations decreasing in the aver-
age from early to late types. The limit expressed by equation (26) is a catalogued
limit, it is provided in order to avoid optical systems.

By examining visual binaries from the Yale Catalog of Bright Stars, Halbwachs
(1983, 1986) found no significant variation in the statistics of the separations bet-
ween the components where different spectral types of the primaries are concerned.

Giannuzzi (1989) used a sample of the solar neighboring visual binaries and
enforced Halbwachs results and showed that the conclusion of Abt (1988a, 1988b)
was probably due to selective constraints. Also, she suggested a formula for the upper
limit as

d(AU ) = 1.2ρ 100.2ma (Ma)
1.54, (27)
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Figure 3. The three limits: limit I of equation (26), limit II of equation (27) and limit III of
equation (28).
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in which ρ is the first observed separation (due to the existence of the correlation
between the semimajor axis and ρ, there is no matter to use ρ at any epoch).

4.2.2 The present study. From the previous subsection, two points are to be noted:
First, Abt (1988b) selected the systems with common motion and take the tabulated
largest value of the separation as the maximum value. Secondly, Giannuzzi (1989)
referred to the separation in equation (27) as the first observed separation. On the
other hand, Kuiper (1935) stated that it is not sufficient, however, to posses a set
of binaries for which the separations at a standard epoch are known. Consequently,
we use unique values for the separation which may be the maximum separation
computed by the algorithm described in §3. The upper limit is thus given by

d(AU ) = 1.2ρmax 100.2ma (Ma)
1.54. (28)

In Fig. 3 the maximum separation for each pair is plotted as a function of the com-
bined absolute magnitude of the systems. The three curves represent the upper limits
(limit I of equation (26), limit II of equation (27) and limit III of equation (28)) to
the physical pairs. The frequency distribution of the maximum separation is plotted
in Fig. 4 against log ρmax and according to the spectral class of the primaries. It is
clear that, there is no difference in the distribution of the maximum separation, which
in turn means that there is no dependence between the maximum separation and the
spectral types.

The frequency distribution of the three upper limits (Equations (26), (27), (28)
respectively) against (d) and according to the spectral class of the primaries is plotted
in Figures 5, 6 and 7. The same behavior can be noticed as the distribution of the
maximum separation, i.e., there is no difference in the distribution for the different
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Figure 4. Frequency distribution of the maximum separation against log ρmax.
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Figure 5. Frequency distribution of the upper limit of equation (26) against log d.

spectral types. The discrepancy appeared in Fig. 6 is probably due to the usage of
the observed separation at a standard epoch in equation (26), which now disappeared
when using the modified equation (28) as shown in Fig. 7.

In concluding the present paper, an efficient algorithm is established for comput-
ing (ρmax, θ |ρmax), (ρmin, θ |ρmin) and the individual masses of visual binary systems.
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Figure 6. Frequency distribution of the upper limit of equation (27) against log d.
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Figure 7. Frequency distribution of the upper limit of equation (28) against log d.

The algorithm uses Reed’s formula for the masses and a technique of one dimen-
sional unconstraint minimization together with the solution of the Kepler’s equation.
Iterative schemes of quadratic up to any positive integer order are used for the solu-
tion of Kepler’s equation. Some important results of numerical applications of the
algorithm are: (1) there is no dependence between ρmax and the spectral type, and
(2) Giannuzzi’s (1989) formula for the upper limits as functions of spectral type of
the primary is modified as

d(AU ) = 1.2ρmax 100.2ma (Ma)
1.54.
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