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Abstract
Psychiatric disorders are among the leading causes of disease burden worldwide. Despite their significant impact, their diag-
nosis remains challenging due to symptom heterogeneity, psychiatric comorbidity, and the lack of objective diagnostic tests 
and well-defined biomarkers. Leveraging genomic, epigenomic, and fragmentomic technologies, circulating cell-free DNA 
(ccfDNA)–based liquid biopsies have emerged as a potential non-invasive diagnosis and disease-monitoring tool. ccfDNA 
is a DNA species released into circulation from all types of cells through passive and active mechanisms and can serve as 
a biomarker for various diseases, namely, cancer. Despite their potential, the application of ccfDNA in neuropsychiatry 
remains underdeveloped. In this review, we provide an overview of liquid biopsies and their components, with a particular 
focus on ccfDNA. With a summary of pre-analytical practices and current ccfDNA technologies, we highlight the current 
state of research regarding the use of ccfDNA as a biomarker for neuropsychiatric disorders. Finally, we discuss future steps 
to unlock ccfDNA’s potential in clinical practice.
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Neuropsychiatric disorders affect more than one billion peo-
ple worldwide [1]. They are among the leading causes of 
disability, contributing to a large global burden of disease 
[2]. They account for approximately 20% of all years lived 
with disability, which measures the impact of an illness on 
quality of life, and they represent over 400 million disability-
adjusted life years globally [1, 3]. Neuropsychiatric disor-
ders are associated with excess mortality, with individuals 
experiencing these conditions facing a considerably higher 
risk of premature death compared to the general population 
[1, 3]. Their economic burden is also substantial, estimated 
at 5 trillion USD, due to direct medical costs and indirect 
healthcare costs such as unemployment, absenteeism, and 

presenteeism [3]. Despite their impact, the diagnosis and 
treatment of neuropsychiatric disorders remain challenging 
for several reasons. Their clinical presentations are highly 
heterogeneous, and the same disorder can present a range 
of symptoms in different individuals. There is a large symp-
tomatology overlap across different disorders, and comorbid-
ity is the rule rather than the exception [4]. In light of these 
challenges, there is a pressing need for objective, reliable, 
and non-invasive measures for diagnosis. Liquid biopsy has 
emerged as a promising method.

Liquid biopsy, well-known for its non-invasiveness or 
minimal invasiveness, is a method of analyzing biomol-
ecules in biological fluids. These biomolecules include cir-
culating tumor cells, circulating cell-free DNA (ccfDNA), 
circulating cell-free RNA, extracellular vesicles and their 
content (e.g., proteins, DNA, RNA, and lipids), proteins, 
and metabolites [5]. With the wide availability and acces-
sibility of various genomic, epigenomic, and fragmentomic 
techniques, ccfDNA-based liquid biopsies have emerged as a 
promising tool for detection and diagnosis, as well as moni-
toring of disease progression and treatment response [6].

This review provides an overview of liquid biopsies, with 
a particular focus on ccfDNA measurement technologies in 
plasma, serum, and cerebrospinal fluid (CSF). We will also 
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summarize the current state of research regarding the use of 
ccfDNA as a biomarker for neuropsychiatric disorders. Our 
aim is to offer a perspective on the potential role of ccfDNA 
in advancing the diagnosis, prognosis, monitoring, and treat-
ment selection for these disorders. Additionally, this paper 
offers a comprehensive overview of pre-analytical consid-
erations and the broad spectrum of analyses possible with 
ccfDNA, including its utility in tissue of origin analysis and 
detection of methylation changes.

Liquid Biopsy

Liquid biopsies have emerged as an alternative to tissue 
biopsies in cancer. Unlike conventional biopsies, which 
require invasive procedures (e.g., surgical extractions of a 
tumor) and are costly and carry the risk of complications, 
liquid biopsies are minimally invasive, are more cost-effec-
tive, and have a faster turnaround time. This allows for serial 
and real-time monitoring of disease progression and treat-
ment response [7]. This approach involves analyzing various 
biomarkers present in bodily fluids, most commonly plasma, 
but also serum, CSF, urine, and saliva.

Circulating Tumor Cells

The concept of liquid biopsy began with the identification 
of circulating tumor cells, which are cells that detach from 
the primary tumor or metastatic lesions and enter the blood-
stream [8]. These cells are rare in the blood, with 1–10 cir-
culating tumor cells per milliliter of blood, and have a short 
half-life of up to 2.4 h [9, 10]. The emergence of single-cell 
omics has enabled the identification of subpopulations of 
circulating tumor cells, providing a clearer understanding of 
cancer heterogeneity, progression, and response to treatment 
[11, 12]. Alongside circulating tumor cells, liquid biopsies 
encompass a diverse array of components, namely, tumor-
educated platelets, extracellular vesicles, and circulating 
nucleic acids.

Tumor‑Educated Platelets

Tumor-educated platelets are circulating anucleate cells that 
play a role in wound healing, homeostasis, and responses to 
tumor growth [13]. These cells become “tumor-educated” 
through the uptake of tumoral RNA and proteins, which alter 
their transcription, translation, and splicing profiles [14]. 
This distinct phenotype makes tumor-educated platelets an 
important biomarker for cancer diagnosis and prognosis [14, 
15].

Extracellular Vesicles

Extracellular vesicles are membrane-bound vesicles 
secreted by all cells and have gained attention recently 
due to their unique molecular composition, which includes 
nucleic acids, proteins, and lipids. A key characteristic of 
extracellular vesicles is that their surface proteins carry 
the molecular signatures of their parental cells [16, 17]. 
Extracellular vesicles are classified into three types—
exosomes, microvesicles, and apoptotic bodies—based on 
their biogenesis pathway, size, and cargo [18]. These vesi-
cles may serve as biomarkers for various diseases through 
their isolation and the analysis of their contents, including 
the concentration of vesicles in biofluids, sequencing of 
nucleic acids, and proteomic and lipidomic analyses [19].

Circulating Nucleic Acids

Circulating nucleic acids (ccfDNA, circulating cell-free 
mitochondrial DNA, circulating tumor DNA, and circulat-
ing cell-free RNA) play a pivotal role in liquid biopsies. 
These nucleic acids are released from cells through apop-
tosis, necrosis, NETosis, or active secretion [20]. While 
ccfRNA holds valuable information, this review will spe-
cifically focus on ccfDNA.

The advancement of next-generation sequencing tech-
niques allowed for the detection of point mutations, dele-
tions, identification of the fragmentation profile, and 
epigenetic profiling of ccfDNA. These techniques offer 
insights into the cellular sources and the mechanisms of 
cellular release of circulating nucleic acids in multiple 
physiological and pathological conditions [21]. The dis-
tinct characteristics of ccfDNA, such as reflecting genetic 
alterations and molecular signatures of both healthy 
and pathological states, make them valuable targets for 
analysis. To appreciate the significance of ccfDNA as a 
biomarker, we must first examine its origins and unique 
characteristics.

Circulating Cell‑free DNA: Characteristics 
and Origins

DNA circulating in the plasma was first described in 1948 
[22]. However, its potential was not fully appreciated 
until decades later when research showed that individuals 
with systemic lupus erythematosus [23] and cancer [24] 
exhibited higher levels of ccfDNA compared to healthy 
individuals. Subsequent studies demonstrated that ccfDNA 
isolated from cancer patients was in part of tumoral origin 
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[25] and harbored identical mutations to those found in 
tumor DNA [26, 27]; thus, the idea of ccfDNA-based liq-
uid biopsy was born.

The ccfDNA is a highly fragmented DNA species present 
in low concentrations in healthy individuals, usually between 1 
and 20 ng/mL [28]. These levels are influenced by factors such 
as sex, age, exercise, inflammation, pregnancy, and disease 
states like cancer, systemic inflammatory diseases, and stroke 
[28–33]. Distinct levels of ccfDNA have also been reported 
for neuropsychiatric disorders which can vary from the typical 
concentrations found in healthy individuals [34–37]. While 
ccfDNA is predominantly of hematopoietic origin, all cell 
types contribute to the ccfDNA population, including hepat-
ocytes, endothelial cells, and neurons [38]. ccfDNA is also 
released from tumor cells, fetal cells, and mitochondria (ccf-
mtDNA). The mechanisms through which these cells release 
DNA into circulation remain poorly understood, but it is sug-
gested that release can occur through both passive (apoptosis, 
necrosis, pyroptosis) and active mechanisms (active secretion, 
NETosis) [20, 39, 40].

Apoptosis is generally considered the primary mechanism 
of ccfDNA release, as the fragment size and pattern of ccfDNA 
suggest DNA degradation by caspase-activated DNase during 
apoptosis [20]. Massive parallel sequencing and gel electro-
phoresis show that ccfDNA displays a pattern known as the 
“apoptotic ladder” with a major peak at ~ 166 bp, representing 
DNA wrapped around the nucleosomal unit (~ 146 bp) and 
the linker regions (~ 20 bp), followed by peaks at the dinu-
cleosome (~ 332 bp), and trinucleosome (~ 500 bp) units [41, 
42]. The peak at ~ 166 bp is also preceded by smaller peaks 
at 10-bp periodicities, indicative of enzymatic cleavage [42]. 
Fragments > 10 Kbp have also been observed in the plasma, 
suggesting necrotic origins [42, 43].

The ccfDNA can also be actively released by cells. Gahan 
and Stroun [44] suggested that DNA and RNA fragments are 
synthesized and complexed with lipoproteins, known as virto-
somes, and then actively secreted by cells. NETosis is another 
active source of ccfDNA and involves the release of neutro-
phil extracellular traps (NETs), which consist of chromatin and 
proteins with antimicrobial properties to trap and eliminate 
microorganisms in the blood [45].

Following its release, the ccfDNA has a short half-life rang-
ing from 4 min up to approximately 2 h [46]. These ccfDNA 
fragments are cleared from circulation through the action of 
nucleases in the plasma, with organs such as the liver, spleen, 
and kidneys also involved in this process [40] (see Fig. 1).

ccfDNA Collection and Processing

There are several challenges in using ccfDNA as a clini-
cal biomarker, including its low concentration and short 
half-life, contamination with genomic DNA, and the lack of 

standardization in pre-analytical steps. The National Can-
cer Institute’s Biorepositories and Biospecimen Research 
Branch [47] has released evidence-based guidelines to 
standardize the collection and processing of ccfDNA. These 
standards cover every step of the process, from the choice 
of biofluid and collection tubes to ccfDNA extraction and 
quantification. Regarding preferred biofluid choice, serum 
often contains higher concentrations of ccfDNA than plasma 
due to clotting during collection, making plasma the pre-
ferred choice for accurate ccfDNA composition assessment 
[48]. The Biorepositories and Biospecimen Research Branch 
recommends using anticoagulant-coated (EDTA, heparin, 
citrate) blood collection tubes, with EDTA being preferred, 
especially when blood processing is delayed (≥ 6 h) and 
the tubes are stored at room temperature [47]. Tubes with 
other cell stabilizers may also be used to reduce genomic 
DNA contamination, particularly when blood processing 
is delayed for several days [49, 50]. However, for optimal 
processing, it is recommended to isolate plasma within 4 h 
of blood draw or up to a day if the blood is stored at 4 °C 
[51]. There is no standard for the volume of blood collection, 
as it varies depending on the intended downstream appli-
cations [47]. Plasma isolation should be performed in two 
steps: an initial centrifugation of 10 min at 1200 g–1900 g 
to isolate the plasma from the blood cells, followed by a 
second centrifugation at 1600 g for 10 min to minimize cel-
lular contamination [52]. The second centrifugation can be 
performed immediately after the first one or after storage at 
– 20 °C or – 80 °C, as no significant changes in the ccfDNA 
content were observed when the second centrifugation was 
carried out following storage at these temperatures [53]. It is 
recommended to store plasma in aliquots of smaller volumes 
to reduce the number of freeze–thaw cycles and at – 80 °C 
for long-term storage (up to 10 years) [53]. Several ccfDNA 
extraction kits are commercially available, including the 
QIAamp circulating nucleic acid kit and the Maxwell RSC 
ccfDNA Plasma Kit [54]. The use of these kits is crucial to 
standardize ccfDNA extraction procedures across labs and 
ensure reproducibility among research findings. Finally, 
ccfDNA should be stored at – 20 °C or – 80 °C after extrac-
tion, with no more than three freeze–thaw cycles to preserve 
ccfDNA integrity for downstream analyses [53].

ccfDNA Analysis

The technologies for ccfDNA analyses are versatile, pro-
viding extensive information that aids in disease diagnosis, 
monitoring, and prognosis. Early studies focused on quan-
titative analysis of ccfDNA by comparing its concentra-
tion in individuals with diseases versus healthy controls. 
Real-time PCR is considered the gold standard for ccfDNA 
quantification. However, spectrophotometry (NanoDrop) 
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or fluorometry (PicoGreen, Qubit) methods have also been 
used to quantify ccfDNA, with results that correlate with 
qPCR quantification [55, 56].

Detection of mutant ccfDNA is also common in can-
cer and non-invasive prenatal testing. Using PCR tech-
nologies, including real-time PCR, droplet digital PCR, 
and BEAming, specific known mutations (EGFR, KRAS, 
BRAF mutations, etc.) can be detected with high sensi-
tivity in plasma [57–59]. Other approaches include next-
generation sequencing (NGS)–based techniques, such as 
whole-genome sequencing or whole-exome sequencing 
of ccfDNA, which can detect a larger number of muta-
tions [60, 61]. Copy number variations and additional 
genetic aberrations (insertions, inversions, indels) are 
also detected using NGS techniques [58]. These methods 
are more accurate for detecting different types of cancers 
where mutations directly contribute to the disease but 
are less useful for studying multifactorial diseases, such 
as neuropsychiatric disorders, which often lack causal 

mutations or genomic alterations that can be identified 
through genetic profiling. This is where fragmentomic 
and epigenomic techniques have the potential to be more 
useful.

The size and fragmentation pattern of ccfDNA can also 
aid in disease detection. For instance, ccfDNA from indi-
viduals with cancer exhibits a fragmentation pattern dif-
ferent from the apoptotic ladder observed in healthy indi-
viduals; ccfDNA is more fragmented in cancer patients than 
healthy individuals [62, 63]. Investigating “preferred ends” 
is another aspect of fragmentomics. ccfDNA is generated 
by cleavage at selected regions, known as “preferred ends,” 
which can shift in different disease states [64]. For instance, 
fetal and maternal ccfDNA have different preferred ends, 
and ccfDNA from cancer patients has different end motifs 
than healthy individuals [64, 65]. The fragmentation pattern 
of ccfDNA can also reveal the position of nucleosomes and 
transcription factors, which can inform the cellular origin 
of the fragment [66].

Fig. 1  Characteristics and ori-
gin of circulating cell-free DNA 
(ccfDNA). ccfDNA is released 
into circulation predominantly 
by hematopoietic cells as well 
as cells from other tissues and 
organs and their mitochondria. 
These cells release ccfDNA 
through passive mechanisms 
(apoptosis and necrosis) and 
active mechanisms (NETosis 
and active secretion). ccfDNA 
is later cleared from circulation 
through nuclease degradation, 
but organs such as the liver, kid-
neys, and spleen aid in its clear-
ance. ccfDNA displays a pattern 
known as the apoptotic ladder 
with major peak at ~ 166 bp, 
which represents DNA wrapped 
around the nucleosomal unit 
(~ 146 bp) and the linker regions 
(~ 20 bp), preceded by smaller 
peaks at 10-bp periodicities



Molecular Neurobiology 

The identification of the cell or tissue of origin can also 
be achieved through epigenetic analysis of ccfDNA. Differ-
ent tissues exhibit unique DNA methylation patterns that are 
conserved when DNA is released as ccfDNA [67]. Using 
methylation sequencing (e.g., bisulfite sequencing or enzy-
matic methylation sequencing), the methylation signature of 
ccfDNA can be compared to that of tissues to identify the 
cellular origin of the ccfDNA fragment [38] (see Fig. 2). 
For example, Chatterton et al. [68] demonstrated an increase 
in neuronal and glial ccfDNA following mild head trauma 
caused by blast wave exposure. This breakthrough is particu-
larly important for neuropsychiatric disorders where direct 
access to brain tissue in most clinical settings and diseases 
is not feasible or clinically indicated.

The Potential of ccfDNA in Neuropsychiatric 
Disorders

The analysis of ccfDNA as a diagnostic or prognostic bio-
marker remains underdeveloped in neuropsychiatric disor-
ders. Most studies have focused on ccfDNA of mitochon-
drial origin (ccf-mtDNA), with few exploring the genomic, 
epigenomic, and fragmentomic ccfDNA technologies for 
these conditions. While our review emphasizes ccfDNA-
based approaches, ccfRNA-based approaches have also been 
explored elsewhere (see review by Kurtulmuş et al. [69]). A 
comprehensive summary of all the studies incorporated in 
this review is presented in Table 1.

Major Depressive Disorder

The results from studies on major depression and ccf-
mtDNA are inconsistent. Some studies have suggested that 

individuals with major depressive disorder (MDD) have 
lower levels of ccf-mtDNA compared to non-depressed indi-
viduals [35, 70]. Conversely, others have found increased 
levels of ccf-mtDNA, particularly in older adults and those 
with suicidal behaviors and concurrent physical frailty [34, 
37, 71, 72]. Additionally, ccf-mtDNA concentrations were 
lower in individuals who were acutely depressed compared 
to those in remission [35].

Lindqvist and colleagues [71] reported a significant 
increase in ccf-mtDNA in depressed individuals who did not 
respond to 8 weeks of SSRI treatment. On the other hand, 
patients who responded to treatment had ccf-mtDNA levels 
similar to non-depressed individuals. In contrast, Fernström 
et al. [70] suggest that individuals taking mood stabilizers 
(lamotrigine, valproic acid, lithium), but not antidepressants, 
had significantly lower levels of ccf-mtDNA compared to 
those who were not.

Psychological Stress

The first study to investigate the relationship between psy-
chological stress and ccfDNA examined the effect of stress 
reduction techniques on ccfDNA levels. They found that 
cognitive-behavioral intervention and stress reduction tech-
niques reduced cell-free DNA levels in women undergo-
ing in vitro fertilization treatment [73]. Subsequent studies 
investigated the effect of inducing acute psychological stress 
on ccfDNA levels. Hummel et al. [75] and Herhaus et al. 
[74] found that ccfDNA level increased immediately fol-
lowing acute stress induction in the plasma of men, return-
ing to baseline levels 15–30 min later. Additionally, men 
with higher baseline levels of ccfDNA showed a stronger 
increase in plasma ccfDNA following stress induction [74]. 
Acute stress also immediately increased ccf-mtDNA levels 

Fig. 2  Workflow of ccfDNA liquid biopsy. ccfDNA liquid biopsies 
start with biofluid collection then extraction of ccfDNA using com-
mercially available kits. Initial analysis includes ccfDNA quantifica-
tion via fluorometric or spectrophotometric assays. ccfDNA can then 

be analyzed by real-time PCR, droplet digital PCR, or high-through-
put sequencing. Further epigenomic and fragmentomic analysis are 
required for tissue deconvolution to identify the tissue of origin of the 
ccfDNA fragments
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[75]. However, Trumpff et al. [76] observed increased serum 
ccf-mtDNA levels in both men and women 30 min after 
stress induction, but not immediately. This increase was sex 
dependent, with men showing a significantly higher ccf-
mtDNA increase than women. These mixed results could 
be attributed to differences in the population studied and the 
ccfDNA isolation techniques used.

Bipolar Disorder

As with studies of unipolar major depressive disorder, 
research on bipolar disorder has yielded conflicting results. 
Some studies showed no significant differences [79, 81], 
while others found increased ccf-mtDNA in bipolar disorder 
compared to healthy controls [77]. Interestingly, ccf-mtDNA 
levels were positively correlated with the severity of depres-
sive symptoms in patients diagnosed with bipolar disorder 
[79]. Individuals with bipolar disorder also showed higher 
levels of nuclear ccfDNA compared to healthy individuals 
[81] and an increase in ccf-mtDNA compared to individu-
als diagnosed with unipolar major depression [35]. Kagey-
ama et al. [80] reported no changes in ccf-mtDNA levels in 
patients with bipolar disorder in the remitted state compared 
to the depressed state.

Ho et al. [78] investigated the ccfDNA methylome in 
bipolar disorder. They found no significant differences in 
the tissue of origin of ccfDNA between individuals with 
rapid cycling bipolar disorder and non-rapid cycling bipolar 
disorder. However, these two groups had different methyla-
tion profiles, and among the differentially methylated CpG 
sites, there was a significant enrichment in pathways related 
to synaptic and neuron function.

Schizophrenia

Several studies reported an increase in ccfDNA levels in 
individuals with schizophrenia and psychotic disorders com-
pared to healthy controls [36, 82, 83, 85]. However, other 
studies found no significant differences in ccfDNA levels 
between these groups [35, 84]. Individuals with schizophre-
nia also exhibited higher endonuclease activity in plasma 
[83], which is consistent with an increase in shorter ccfDNA 
fragments compared to healthy controls [36]. Ouyang et al. 
[86] observed no differences in ccf-mtDNA levels between 
patients with schizophrenia and healthy controls. How-
ever, after 8 weeks of antipsychotic treatment, there was a 
significant decrease in ccf-mtDNA levels in patients with 
schizophrenia, and the ccf-mtDNA copy number correlated 
with symptom improvement. Lubotzky and colleagues [85] 
performed methylation analysis to identify differences in 
brain-derived ccfDNA levels. They reported a significant 
increase in total ccfDNA levels in individuals following their 
first psychotic episode compared to healthy controls, as well Ta

bl
e 

1 
 (c

on
tin

ue
d)

Re
fe

re
nc

e
cc

fD
N

A
 ty

pe
B

io
flu

id
Sa

m
pl

e
M

et
ho

d
Fi

nd
in

gs

  K
im

 e
t a

l. 
20

21
 [1

12
]

cc
fD

N
A

C
SF

12
 e

pi
le

ps
y

D
ig

ita
l d

ro
pl

et
s P

C
R

K
no

w
n 

so
m

at
ic

 b
ra

in
 m

ut
at

io
ns

 w
er

e 
de

te
ct

ed
 in

 C
SF

-d
er

iv
ed

 c
cf

D
N

A
 o

f 
pa

tie
nt

s w
ith

 re
fr

ac
to

ry
 fo

ca
l e

pi
le

ps
y

  L
iim

at
ai

ne
n 

et
 a

l. 
20

13
 [1

13
]

cc
fD

N
A

Se
ru

m
16

7 
ep

ile
ps

y
25

0 
H

C
Fl

uo
ro

m
et

ric
 q

ua
nt

ifi
ca

tio
n 

(Q
ub

it)
H

ig
he

r c
cf

D
N

A
 le

ve
ls

 in
 p

at
ie

nt
s w

ith
 

fo
ca

l e
pi

le
ps

y 
co

m
pa

re
d 

to
 c

on
tro

ls
H

ig
he

r c
cf

D
N

A
 le

ve
ls

 in
 p

at
ie

nt
s w

ith
 

sy
m

pt
om

at
ic

 e
pi

le
ps

y 
co

m
pa

re
d 

to
 

pr
ob

ab
ly

 sy
m

pt
om

at
ic

 p
at

ie
nt

s
  M

ar
tin

s-
Fe

rr
ei

ra
 e

t a
l. 

20
22

 [1
14

]
cc

fD
N

A
Se

ru
m

12
 e

pi
le

ps
y

11
 H

C
M

et
hy

la
tio

nE
PI

C
 B

ea
dC

hi
p

N
o 

si
gn

ifi
ca

nt
 d

iff
er

en
ce

 in
 th

e 
le

ve
ls

 
of

 c
cf

dn
a 

of
 n

eu
ro

na
l o

rig
in

 b
et

w
ee

n 
pa

tie
nt

s w
ith

 m
es

ia
l t

em
po

ra
l l

ob
e 

ep
ile

ps
y 

an
d 

co
nt

ro
ls

Si
gn

ifi
ca

nt
ly

 d
iff

er
en

tia
lly

 m
et

hy
la

te
d 

re
gi

on
s i

n 
th

e 
cc

fD
N

A
 o

f p
at

ie
nt

s w
ith

 
m

es
ia

l t
em

po
ra

l l
ob

e 
ep

ile
ps

y 
co

m
pa

re
d 

to
 c

on
tro

ls

C
SF

 c
er

eb
ro

sp
in

al
 fl

ui
d,

 H
C

 h
ea

lth
y 

co
nt

ro
ls

, M
D
D

 m
aj

or
 d

ep
re

ss
io

n 
di

so
rd

er
, L

LD
 la

te
-li

fe
 d

ep
re

ss
io

n,
 B
D

 b
ip

ol
ar

 d
is

or
de

r, 
SZ

 s
ch

iz
op

hr
en

ia
, S

AD
 s

oc
ia

l a
nx

ie
ty

 d
is

or
de

r, 
AS

D
 a

ut
is

m
 s

pe
c-

tru
m

 d
is

or
de

r, 
ED

 e
at

in
g 

di
so

rd
er

s, 
AD

 A
lz

he
im

er
’s

 d
is

ea
se

, M
C
I m

ild
 c

og
ni

tiv
e 

im
pa

irm
en

t, 
PD

 P
ar

ki
ns

on
’s

 d
is

ea
se

, M
S 

m
ul

tip
le

 sc
le

ro
si

s, 
RM

M
S 

re
la

ps
in

g–
re

m
itt

in
g 

m
ul

tip
le

 sc
le

ro
si

s



 Molecular Neurobiology

as a significant increase in total brain-derived ccfDNA and 
ccfDNA of neural, oligodendrocytic, and astrocytic origin 
after a first psychosis episode.

Psychological Trauma

One study has investigated the link between ccf-mtDNA and 
psychological trauma. A group of women were examined for 
lifetime trauma history and post-traumatic stress disorder 
(PTSD) symptoms [87]. Interestingly, women who experi-
enced trauma between the ages 14 and 17 had significantly 
higher ccf-mtDNA levels in plasma compared to women 
with no trauma history and those who experienced trauma 
outside of this age range. Women in this group also exhibited 
a significantly increased startle response to a fear condition-
ing paradigm. However, the ccf-mtDNA levels did not cor-
relate with PTSD symptoms.

Anxiety Disorders

Individuals with social anxiety disorder had significantly 
lower ccf-mtDNA levels compared to healthy individuals 
at two assessments separated by 11 weeks. However, ccf-
mtDNA levels did not correlate with the severity of anxiety 
or depressive symptoms. Interestingly, cognitive behavioral 
therapy improved anxiety symptoms but had no significant 
effect on ccf-mtDNA levels, which remained significantly 
lower in anxious individuals compared to healthy controls 
[88].

Autism Spectrum Disorder (ASD)

Shmarina and colleagues [89] found that individuals with 
ASD had significantly higher concentrations of ccfDNA 
compared to healthy controls, with individuals with severe 
autism showing the highest levels of ccfDNA. They also 
reported no changes in blood endonuclease activity between 
individuals with ASD and healthy controls, suggesting inef-
fective clearance of ccfDNA. Elevated levels of serum ccf-
mtDNA were also reported in young individuals with autism 
[90].

Eating Disorders

One paper has explored the association between ccfDNA 
and eating disorders. Verebi et  al. [91] reported that 
patients with eating disorders, particularly bulimia ner-
vosa, had significantly higher levels of long ccfDNA frag-
ments compared to healthy controls. Notably, this increase 
was observed specifically in long ccfDNA fragments rather 
than total ccfDNA levels. As previously mentioned, long 
ccfDNA fragments are likely released through necrosis 
[42, 43]. This finding is consistent with previous research 

indicating dysregulation of immune function in individuals 
with eating disorders [115, 116].

Alzheimer’s Disease and Dementia

Macías and colleagues [100] reported no significant dif-
ferences in total plasma ccfDNA levels between patients 
with Alzheimer’s disease and healthy individuals. How-
ever, another study showed that, over an 8-year follow-up 
period, elevated levels of total serum ccfDNA were linked 
to worse cognitive performance, faster cognitive decline, 
and increased risk of developing dementia in older adults 
[101]. Individuals with Alzheimer’s disease also had sig-
nificantly elevated levels of ccfDNA of neuronal origin 
compared to healthy individuals [102]. Interestingly, 
patients with mild cognitive impairment who later devel-
oped Alzheimer’s disease had higher levels of neuronal 
ccfDNA when compared to those who did not develop 
Alzheimer’s disease [102].

Previous studies have explored the methylation profile 
of ccfDNA in patients with Alzheimer’s disease, detecting 
significantly differentially methylated CpGs and regions 
[92–94, 98–100]. Some of these differentially methylated 
sites are associated with neural function [99] and include 
genes such as the HOXA3, LHX2, and ADARB2 [92, 98, 99]. 
Combining the methylation data with artificial intelligence 
analysis accurately predicted the diagnosis of Alzheimer’s 
disease [93]. Additionally, ccfDNA from older adults with 
Alzheimer’s disease had significantly different 5-hydroxym-
ethylcytosine (5hmC) profiles compared to healthy controls 
[95, 96].

Parkinson’s Disease

Scalzo et al. [105] found that older adults with Parkinson’s 
disease had significantly lower levels of plasma ccfDNA 
compared to healthy controls. To our knowledge, this is the 
only study evaluating blood ccfDNA in individuals diag-
nosed with Parkinson’s disease. Patients with Parkinson’s 
disease who were on treatment had significantly lower CSF 
ccf-mtDNA levels compared to controls, with treatment 
showing a negative correlation with ccf-mtDNA levels 
[103]. Additionally, Parkinson’s disease patients also diag-
nosed with depression and anxiety initially had significantly 
reduced levels of ccf-mtDNA compared to Parkinson’s dis-
ease patients with no comorbid depression and anxiety; 
however, this trend was reversed after 36 months [103]. 
Meng et al. [104] reported that the patients with early-onset 
Parkinson’s disease have significantly differentially methyl-
ated genes in ccfDNA compared to controls, and these genes 
were associated with both neural and immune function.
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Multiple Sclerosis

Patients with relapsing–remitting multiple sclerosis had 
higher plasma ccfDNA concentrations than age-matched 
controls [109]. The serum ccfDNA of these patients exhib-
ited distinctive representations of repetitive elements and 
genes, particularly those predominantly expressed in the 
central nervous system, compared to controls [106]. They 
also displayed distinct methylation profiles [107, 109], 
including higher levels of unmethylated MOG, WM1, and 
MBP3 genes [108, 110] compared to healthy controls and 
patients with inactive or stable multiple sclerosis.

Epilepsy

Liimatainen et al. [113] showed that patients with focal 
epilepsy had significantly higher ccfDNA concentrations 
compared to healthy controls, and patients with sympto-
matic epilepsy had significantly elevated levels of ccfDNA 
compared to patients diagnosed with cryptogenic epilepsy (a 
form of epilepsy where the cause cannot be identified). How-
ever, Alapirtti et al. [111] found significantly lower levels of 
ccfDNA in patients with temporal lobe epilepsy compared 
to healthy controls. Additionally, patients with epilepsy of 
less than 18 years in duration showed higher ccfDNA con-
centrations than those with epilepsy greater than 18 years in 
duration; likewise, patients with a BMI greater than 25 had 
higher ccfDNA concentrations than those with a BMI of less 
than 25 [111]. Patients with mesial temporal lobe epilepsy 
also had significantly differentially methylated regions in 
promoters, gene bodies, and CpG islands associated with 
central nervous system structure and function, including 
synaptic assembly, neurotransmission, and GABAergic 
pathways [114]. Kim et al. [112] identified somatic brain 
mutation in the CSF-derived ccfDNA of patients with refrac-
tory focal epilepsy, further highlighting ccfDNA’s diagnostic 
potential.

Conclusion and Future Perspectives

The lack of non-invasive, objective, and reliable diagnostic 
biomarkers has been a major challenge in psychiatry. The 
heterogeneous and comorbid nature of psychiatric disor-
ders, the overlap of symptoms across different disorders, 
and variability in response to treatment further complicate 
diagnosis and long-term prognosis for these conditions. In 
the face of these challenges, ccfDNA-based liquid biop-
sies offer a promising avenue for developing more precise 
diagnostic and prognostic models. This dynamic and non-
invasive approach has the potential to not only support the 
diagnosis of various psychiatric disorders but also monitor 
disease progression and treatment response. In this context, 

our review offers a new and more comprehensive perspective 
on the utility of ccfDNA in a wider range of neuropsychiat-
ric disorders. By examining both mitochondrial and genomic 
ccfDNA, addressing pre-analytical considerations, and 
exploring diverse analyses such as tissue of origin decon-
volution and methylation changes of ccfDNA, our review 
stands out for its unique approach.

Mitochondrial ccfDNA has been extensively studied in 
the context of neuropsychiatric disorders and was the subject 
of a recent meta-analysis [117, 118], which showed a signifi-
cant decrease in CSF, but not peripheral, ccf-mtDNA levels 
between patients with neuropsychiatric disorders and healthy 
controls. While there has been an ongoing discussion about 
the use of ccf-mtDNA as a diagnostic or screening tool for 
different neuropsychiatric disorders, current methodologi-
cal limitations, low specificity of the ccf-mtDNA to specific 
neuropsychiatric disorders, and an insufficient number of 
well-powered studies preclude its routine clinical use for 
diagnosing or screening of these conditions.

Despite the genetic and epigenetic advancements in the 
analysis of ccfDNA, its utility in psychiatry remains largely 
underexplored and far from being integrated into clinical 
workflows due to specific challenges and limitations. Sensi-
tivity is a critical issue, especially considering the low lev-
els of ccfDNA in circulation and the potential variability 
among individuals with different neuropsychiatric condi-
tions, supporting the notion that these conditions are bio-
logically highly heterogeneous. Standardizing pre-analytical 
processing is crucial for exploring ccfDNA’s potential as a 
biomarker in neuropsychiatry. Variability in the choice of 
biofluid, sample handling, ccfDNA extraction, and storage 
can impact the reliability and reproducibility of the results. 
Adhering to the Biorepositories and Biospecimen Research 
Branch’s guidelines for ccfDNA processing ensures repro-
ducibility across studies.

Moving forward, studies in psychiatry should take full 
advantage of ccfDNA technologies. Continued advance-
ments in high-throughput sequencing, epigenetic profiling, 
and fragmentomics will enhance ccfDNA’s power to serve as 
an accurate biomarker for psychiatric disorders. ccfDNA has 
the unique ability to offer a glimpse into the brain. Through 
epigenetic profiling, we can detect ccfDNA of neural and 
glial origin, opening a window into the brain’s molecular 
landscape. This makes ccfDNA a powerful biomarker for 
elucidating the biological processes and mechanisms under-
lying psychiatric disorders. Studies should also investigate 
changes in ccfDNA released from other cells and tissues to 
provide a deeper and more comprehensive understanding of 
these disorders.

ccfDNA holds significant promise in uncovering the intri-
cate biological mechanisms underpinning neuropsychiatric 
disorders. By examining how changes in ccfDNA profiles 
correspond to specific symptoms, treatment responses, and 
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disease progressions, we can gain deeper insights into the 
pathophysiology of these disorders. For instance, the size of 
ccfDNA fragments could reveal the mechanism underlying 
ccfDNA release, thereby providing valuable insights into the 
disease pathophysiology.

In the future, ccfDNA data could be integrated with clini-
cal and neuroimaging biomarkers through machine learning 
algorithms to improve the detection, classification, and diag-
nosis of psychiatric disorders. Additionally, collaboration 
among researchers, clinicians, and stakeholders is impera-
tive for translating ccfDNA research findings into clini-
cally actionable tools and interventions. Such collaboration 
ensures that research is conducted efficiently and effectively, 
with the ultimate goal of improving patient outcomes. This 
accelerates the translation of ccfDNA research into tangible 
benefits for patients, such as improved diagnostic accuracy, 
personalized treatment strategies, and better monitoring 
of disease progression. This will be a step closer to preci-
sion psychiatry, where insights derived from ccfDNA could 
revolutionize diagnosis, treatment approaches, and disease 
monitoring, tailoring interventions based on personalized 
disease profiles.
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