Molecular Neurobiology
https://doi.org/10.1007/512035-024-04469-x

REVIEW q

Check for
updates

Role of Mitochondrial Dysfunctions in Neurodegenerative
Disorders: Advances in Mitochondrial Biology

Divya Sri Kathiresan' - Rubadevi Balasubramani' - Kamalesh Marudhachalam’ - Piyush Jaiswal' - Nivedha Ramesh' -
Suruthi Gunna Sureshbabu’ - Vinayaga Moorthi Puthamohan’ - Murali Vijayan?

Received: 4 April 2024 / Accepted: 30 August 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract

Mitochondria, essential organelles responsible for cellular energy production, emerge as a key factor in the pathogenesis of
neurodegenerative disorders. This review explores advancements in mitochondrial biology studies that highlight the pivotal
connection between mitochondrial dysfunctions and neurological conditions such as Alzheimer’s, Parkinson’s, Hunting-
ton’s, ischemic stroke, and vascular dementia. Mitochondrial DNA mutations, impaired dynamics, and disruptions in the
ETC contribute to compromised energy production and heightened oxidative stress. These factors, in turn, lead to neuronal
damage and cell death. Recent research has unveiled potential therapeutic strategies targeting mitochondrial dysfunction,
including mitochondria targeted therapies and antioxidants. Furthermore, the identification of reliable biomarkers for assess-
ing mitochondrial dysfunction opens new avenues for early diagnosis and monitoring of disease progression. By delving
into these advancements, this review underscores the significance of understanding mitochondrial biology in unraveling the
mechanisms underlying neurodegenerative disorders. It lays the groundwork for developing targeted treatments to combat
these devastating neurological conditions.
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Introduction

Over 1.5 billion years ago, mitochondria (Mt) came into
existence through the process of endosymbiosis, a process
in which a eukaryotic ancestor cell incorporated a prokary-
ote resembling contemporary a-proteobacteria progenitors
[1-3] that are derived from ocean dwelling clade [4]. Mt
are the double membrane bound cell organelle that produce
chemical energy as adenosine triphosphate (ATP) via oxi-
dative phosphorylation (OXPHOS) and empower the cell
to carry on its functions and reactions [5—7]. Mt contain
their own circular DNA or genomes of maternal origin [8],
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provided majority of mitochondrial proteins are powered by
nuclear genome which are synthesized by cytosolic ribo-
somes and transferred to outer mitochondrial membrane
(OMM), inner mitochondrial membrane (IMM), intermem-
brane space (IMS), and matrix [9]. The mutation in either
mitochondrial DNA (mtDNA) or nuclear DNA (nDNA)
disrupts its functions and causes disorders such as cancer
[10, 11], neurodegenerative diseases [12, 13], ageing [14,
15], and cardiovascular diseases [16]. Numerous mitochon-
drial and nuclear genes play specific roles in maintaining
mitochondrial integrity and behavior, as detailed in Table 1.
Understanding these roles is crucial for devising effective
strategies in mitochondrial research for health and disease,
extending beyond neurological disorders.

Structure and Function of Mitochondria (Mt)

When utilizing electron microscopy, the Mt exhibit a dis-
tinctive double-membrane structure comprised of essential
phospholipids. These lipids play a critical role in various
processes, including the regulation of membrane curvature,
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Table 1 List of genes, its chromosomal location, proteins, size, and their biological functions

Gene Chromosomal location Protein Size Biological function References
OPAl 3929 Optic Atrophy 1 (OPA 1) 120 kDa Mitochondrial fusion at inner mem-  [17]
brane
OMA 1 1p32.2-p32.1 OMA 1 60.1 kDa Drive mitochondrial outer membrane [18]
BAK 6p21.3 Bak 23.4 kDa Apoptosis [19-21]
BAX 19q13.3—q13.4 Bax 21 kDa Apoptosis [19-21]
BCL- 2 18q21.33 Bcl-2 26.2 kDa Anti-apoptosis [19-21]
BCL—XL 20q11.21 Bcel-XL 83.55kDa  Anti-apoptosis [19-21]
LL-37 3q21 LL-37 ~4.5kDa  Anti-microbial peptide [22]
VDAC 1 5q31 VDAC 1 32 kDa Gatekeeper for entry and exit of mito- [23-25]
chondrial metabolite
VDAC 2 10q22.2 VDAC 2 ~30 kDa Anti-apoptosis [26]
FIS 1 7q22.1 Fis 1 16 kDa Mitochondrial fission protein [27, 28]
DRP ] 12p11.21 DRP 1 ~80 kDa Mitochondrial fission protein [27, 28]
MFN 1 3q26.33 Mitofusin 1 ~84.1 kDa Mitochondrial fusion protein [27, 28]
MEFN 2 1q36.2 Mitofusin 2 ~86.4kDa Mitochondrial fusion protein [27, 28]
MFF 2q36.3 mitochondrial fission factor Protein ~38.4kDa Mitochondrial division control [29]
MIEF?2 17p11.2 MiD49 ~49 kDa Assist mitochondrial binary fission [29]
MIEF1 22ql3.1 MiD51 ~51 kDa Negative regulator of mitochondrial ~ [29]
fission
PINK—1 1p36.12 PTEN-induced kinase 1 (PINK 1) 63 kDa Protection from stress [30]
BNIP3 10q26.3 Bcl-2/adenovirus E1B protein inter- ~ 24-35kDa  Apoptosis [31]
acting with protein 3 (BNIP3)
NIX 8q21 Nip3-like protein X (Nix) ~19 kDa Anti-apoptosis [31]
FUNDCI Xpll.3 FUN14 domain-containing protein 1 17 kDa Mitochondrial quality control [31]
(FUNDC1)
PPARGCIA 4pl5.3 Proliferator-activated receptor y coac- ~91 kDa Regulation of mitochondrial biogen-  [32, 33]
tivator-1 o (PGC-1ax) esis and metabolism
NRF 1 17q21.3 Nuclear respiratory factors 1 67 kDa Activation of mitochondrial transcrip- [32, 33]
tion factor A (Tfam)
NRF 2 2q31.2 Nuclear respiratory factors 2 45 kDa Activation of mitochondrial transcrip- [32, 33]
tion factor A (Tfam)
IMMT 2pl1.2 Mic 60/mitofilin 90 kDa Mitochondrial structural stability [34, 35]
CHCHD3 7933 Mic 19/chchd3 26.1 kDa Mitochondrial structural stability [34, 35]
SAM 50 22q13.31 Sam 50 ~51.9kDa Mitochondrial structural stability [34, 35]
TOMMG6 6p21.1 Tom6 8 kDa Outer membrane complex subunit [36]
TOMMS 9p13.2 Tom5 ~6 kDa Outer membrane complex subunit [36]
TOMM7 Tpl5 Tom7 ~6.2kDa  Outer membrane complex subunit [36]
TOMM?22 22q12—q13 Tom?22 ~15.5kDa  Outer membrane complex subunit [36]
TOMM?20 1q42.3 Tom?20 ~16.2kDa  Outer membrane complex subunit [36]
TOMM40 19q13.32 Tom40 ~37.8kDa  Outer membrane complex subunit [36]
TOMM70 13q12.2 Tom70 ~67.4kDa Outer membrane complex subunit [36]
NGB 14q24.3 Neuroglobin ~16.9kDa Regulation of endogenous protective  [37]
mechanisms
INF2 14q32.33 Inverted formin 2 ~135.6 kDa Involvement in mitochondrial fission  [38]
mediated by Drp 1
AKAPI 17q22 A kinase anchor protein 1 ~9.7kDa  Protects neurons from I/R injury [39-41]
PRKAAI 5pl3.1 AMP (activated protein kinase) ~62.3kDa Regulation of cellular metabolism [42]
GBAI 1q22 LLRK 2 286 kDa Regulation of mitochondrial dynamics [43]
PARK7 1p36.23 Protein deglycase (DJ-1) ~20 kDa Regulation of mitochondrial dynamics [43]
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Table 1 (continued)

Gene Chromosomal location Protein Size Biological function References
SNCA 4q22.1 a-Synuclein ~15kDa Mitochondrial membrane permeabi-  [44]
lization
PARPI 1q42.12 Parp 1 116 kDa DNA repair enzyme [45, 46]
TARDBP 1p36.22 TDP-43 43 kDa Disruption of mitochondrial complex [47-49]
1 activity
STING 1 5q31.2 Stimulator of interferon genes ~42.1kDa  Activates other signaling pathways [50]
like NF-kB, IFN 1
GSK3B 3ql13.33 Glycogen synthase kinase 30 ~46.7kDa  Apoptosis [51]
MAP3KS5 6q22.33 Apoptosis signal-regulating kinase 1 ~ ~154.5 kDa Apoptosis [52]
BBC3 19q13.32 Apoptotic p5S3/Bcl-2-binding compo- ~26.4kDa  Apoptosis [52]
nent 3 (BBC3)
JUN 1p32.1 c-Jun NH2-terminal kinase ~35.6kDa  Apoptosis [52]
DIABLO 12q24.31 Direct IAP-binding protein with low ~ ~27.1 kDa  Apoptosis [53]
PI (DIABLO)
HTRA2 2p13.1 High-temperature requirement protein 49 kDa Apoptosis regulator [53]
A2 (HTRA2)
XIAP Xq25 X-linked inhibitor of apoptosis (XIP1) ~9 kDa Apoptosis inhibition [54]
APAF1 12g23.1 Apoptotic protease activating factor | ~141.8 kDa Apoptosis [55]
(APAF1)
MTOR 1p36.22 Mammalian target of rapamycin ~250kDa  Cell growth regulator [56]
(mTOR)
NLRP3 1q44 NLR family pyrin domain containing 118 kDa Membrane pore opening [57]
3 (NLRP3
ATFI 12q13.12 Activating transcription factor associ- ~29.2kDa  Trigger mitochondrial turn over [58]
ated with stress 1 (ATFS-1)
VAPB 20q13.32 Vesicle-associated membrane protein- ~27.2kDa  Regulate the ER-mitochondria asso-  [59, 60]
associated protein-B (VAPB) ciations and calcium homeostasis in
neurons
RMDN3 15q15.1 Protein tyrosine phosphatase-interact- ~52.1 kDa  Regulate the ER-mitochondria asso-  [59, 60]
ing protein-51 (PTPIP51) ciations and calcium homeostasis in
neurons
RHOTI 17q11.2 Miro 1 ~70.7kDa  Adaptor protein [61]
ULK]I 12q24.33 Unc-51 like autophagy activating ~112kDa initiator of autophagy/mitophagy [62]
kinase 1 (ULK1)
CALCOCO2 17q21.32 Nuclear dot protein 52 kDa (NDP52)  ~52 kDa Cargo adaptors [63, 64]
TBK1 12q14.2 Tank-binding kinase 1 (TBK1) ~89.6 kDa Mitophagy enhancer [65]
AMBRAI 11p11.2 Activating molecule in BECN1- ~142.5kDa Induce mitophagy [66]
regulated autophagy protein 1
(AMBRA1)
PHB2 12p13.31 Prohibitin 2 (PHB2) 34 kDa Mitophagy [67]
PHBI 17q21.33 Prohibitin 1 (PHB1) 32 kDa Mitophagy [68, 69]

remodeling, and mitochondrial dynamics. Mt is integral
to a multitude of cellular functions, such as phospholipid
synthesis, hemoglobin biosynthesis, lipid synthesis, stem
cell reprogramming, cell cycle progression, cellular prolif-
eration, cell differentiation, ATP production, the citric acid
cycle, fatty acid oxidation, innate immunity, iron-sulfur
(Fe-S) cluster production, generation and maintenance of
reactive oxygen species (ROS), redox signaling, calcium
homeostasis, apoptosis, and autophagy [50, 70-77]. These
vital cellular processes involve proteins distributed across
four distinct mitochondrial compartments: the matrix, IMS,

OMM, and IMM [78]. The OMM connects to the cyto-
sol, while the IMM extends into the mitochondrial matrix,
housing mtDNA [79]. MtDNA, consisting of approxi-
mately 1000-10,000 copies per cell, includes transfer RNAs
(tRNAs) [74], two ribosomal RNAs (rRNAs) [13], and com-
plex protein subunits (C1, C2, C3, C4, and C5) [80-82].
Over 1500 different proteins [83, 84], including 13 trans-
ported from the matrix to the oxidase assembly translocase
(TOM complex), contribute to these processes.

The mitochondrial matrix hosts the tricarboxylic acid
(TCA) cycle, housing essential enzymes, NADH, and
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FADH, utilized by the electron transport chain (ETC) to gen-
erate a mitochondrial membrane potential (Mtmp) crucial
for OXPHOS [85]. OXPHOS facilitates significant ATP pro-
duction in Mt. Mitochondrial NAD* (MtNAD™), regulated
by enzymes like nicotinamide phosphoribosyltransferase
(NAMPT) and mitochondrial nicotinamide mononucleotide
adenylyltransferase (NMNATS3), contributes to the intracel-
lular NAD™ pool [86]. Mt NAD™ transporters, SLC25A51
and SLC25A52, aid in maintaining normal NAD" levels
in humans [87]. Disruption of NAMPT, for instance, can
interfere with mitochondrial respiration in mammals[88, 89].
The IMM comprises the inner boundary membrane (located
near the OMM) and the cristae membrane (found in the
innermost regions of the IMM) [90]. The cristae membrane
houses pro- and anti-apoptotic proteins, as well as regulators
of mitochondrial fusion and fission.

Outer Membrane and Inner Membrane

Major phospholipids in the mitochondrial membrane include
phosphatidylcholine, phosphoethanolamine, cardiolipin
(CL), and phosphatidic acid (PA). PA, a saturated lipid,
aids in the remodeling of the Mt membrane[91]. The OMM
proteome comprises integral proteins grouped based on
their structure, such as a-helical transmembrane segments
and p-barrel proteins with multiple B-strands [92]. These
proteins act as a physical barrier, restricting large molecule
diffusion into the organelle while allowing the passage of
small molecules through different import mechanisms. Outer
membrane proteins are initially synthesized as precursors by
cytosolic ribosomes, assisted by molecular chaperones in
transit through the hydrophobic cytosol. Dedicated protein
translocases facilitate their insertion into the Mt surface[9,
93-95]. The TOM complex and related membrane proteins
mediate interactions between Mt and other cellular orga-
nelles, such as the endoplasmic reticulum (ER). These inter-
actions facilitate the exchange of lipids and calcium ions,
regulating Mt biogenesis and dynamics [96, 97]. The OMM
appears adapted for storing charge with multi-spanning
proteins like Ugol, Mcp3, Ubx2, Om14, Scm4, mamma-
lian PBR, and mammalian MITOL [98-103]. The 33-kDa
protein Ayrl functions as an ion channel in the OMM, also
found in the ER. With around 200 proteins, the OMM acts
as a specialized transport system with channel-like func-
tions[104, 105]. Anion channels (ACs) on the OMM, clas-
sified as outer membrane AC (OMAC) and inner membrane
AC (IMAC), can be anion selective (ASAC), cation selective
(CSACQ), or non-selective (NSAC).

Voltage-dependent anion channel (VDAC), porins on
the OMM, controls metabolic communication between
Mt and the cell[106, 107]. VDAC, comprising three iso-
forms (VDACI1-3)[23, 32, 108], has a 3D structure with
antiparallel p-strands, a B-barrel transmembrane pore, and
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an N-terminal domain forming an a-helix [109]. VDACI,
positioned between cytosol and Mt, serves as the primary
conduit for ions and metabolites, influencing cell bioener-
getics and the flow of Krebs cycle intermediates[110-113].
Nine distinct channel-forming proteins transport metabo-
lites, inorganic ions, and proteins across the OMM [114].
VDAC transports calcium to Mt [115]. VDACI is crucial
for oxygen consumption and the function of ETC enzymes,
while VDAC?2 regulates cell death and survival through
interactions with Bak and Bax [26]. Similarly, VDAC3 pro-
vides electrophysiological characteristics and undergoes
post-translational modifications[116—-118]. Figure 1 illus-
trates all the inbound and outbound activities of Mt and their
association with neurodegenerative diseases.

Cristae

The organization and morphology of the IMM are intricate
and can be divided into two compartments. One of these
compartments is situated opposite to the OMM, while
the other extends to the IMS through tubular projections
known as cristae junctions (CJ)[119]. The IMM structure
is established through the formation of protein-lipid com-
plexes known as MICOS (Mitochondrial Contact Site and
Cristae Organizing System), which have evolved from
a-proteobacteria. Cristae, the folds within the IMM, house
essential components such as ETC complexes, FyF;-ATP
synthase, OPA1, and MICOS. Notably, the morphology of
cristae undergoes changes during mitochondrial respiration
[120, 121]. In the context of ferroptotic cells, modifications
occur in the structure of cristae, marked by an increase in
mitochondrial membrane content and a reduction in cris-
tae structures [122]. OPAL1, identified as a dynamin-related
GTPase, plays a crucial role in maintaining cristae struc-
ture. It exists in two forms, i.e., L-OPA1 (long) and S-OPA1
(short), both of which act as anchors at CJ, preventing the
release of cytochrome C (Cyt C) from the intercristae space.
This information highlights the complexity of the IMM and
cristae structure, underscoring the role of MICOS and OPA1
in maintaining mitochondrial integrity and function. The
morphological changes observed in cristae during mitochon-
drial respiration and in ferroptotic cells further emphasize
the dynamic nature of these structures.

Mt in Cellular Energetics

In the IMM, complex I serves as the exclusive electron
acceptor from NADH, receiving electrons from the mito-
chondrial matrix. NADH and FADH?2, generated in the
TCA cycle, transport electrons across the IMM to the ETC,
establishing a high positive potential in the mitochondrial
matrix (mtmp). The ETC comprises five complexes, i.e.,
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Fig. 1 Mitochondrial dynamics: Ugol, Mcp3, and Ubx2 are the outer
mitochondrial membrane (OMM) multi-spanning proteins for stor-
ing charge and 33-kDa protein Ayrl act as ion channel. VDAC on
OMM as a f-barrel transmembrane pore and an N terminal domain
forming a-helix. In IMM, complex I accept electron from NADH and
transferred to NADH and FADH, and at the mt matrix, NADH and
FADH, carry electrons from TCA cycle to the ETC across the IMM.
NADH: ubiquinone oxidoreductase subunit S4 (NDUFS4) is a subu-
nit of CI that releases four protons to IMS during NADH oxidation
after transmitting two electrons to IMM to ubiquinone (UbQ) through

complex I (C1), complex II (C2), complex III (C3), com-
plex IV (C4), and complex V (C5), encoded by both mito-
chondrial and nuclear genomes [123]. A vital subunit of C1,
known as NADH—ubiquinone oxidoreductase subunit S4
(NDUFS4)—ensures the stability of C1 [124, 125]. Dur-
ing NADH oxidation, C1 releases four protons into the IMS
while transferring electrons to ubiquinone (UbQ) through
flavin, extending to Fe—S centers [124—131].

In C2, redox reactions occur with FAD and succinate
catalyzed by SDHA, and the subsequent electron transfer
to UbQ is facilitated by SDHB [132, 133]. C2, along with
C1 and 3, plays a role in modulating ROS. Dysfunction in
C2 can result in severe ROS accumulation, a contributing

flavin extending to centers of iron and sulfur (Fe-S). In C2, FAD
and succinate undergo redox with SDHA (succinate dehydrogenase
complex flavoprotein subunit A) and the electron transfer to UbQ is
achieved by SDHB (succinate dehydrogenase complex flavoprotein
subunit B). C2 modulates ROS along with C1 and C3, and loss in
C2 function leads to severe ROS accumulation that is a basis of neu-
rodegenerative disorders. C3 releases four protons to IMS catalyses
ubiquinol (CoQH2) to Cyt C. C4 catalyzes electron transfer from Cyt
C to molecular oxygen; the F|F, (ATP synthase) produces ATP from
ADP

factor to neurodegenerative disorders [134—137]. Com-
plex III releases four protons to the IMS and catalyzes the
transfer of electrons from ubiquinol (CoQH2) to Cyt C
[138, 139]. Complex IV facilitates electron transfer from
Cyt C to molecular oxygen. The F,F;-ATP synthase, also
known as ATP synthase, resides in the IMM. It consists
of two domains: the hydrophobic F, domain responsible
for proton translocation and the hydrophilic F; domain
present in the matrix. This complex produces ATP from
ADP and phosphate using the proton gradient[140-142].
Mutations in mitochondrial components can reduce the
activity of F F,-ATP synthase, resulting in diminished
energy production[143-146].
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Overview of Mitochondrial Dynamics
and Biogenesis

Mt exhibit diverse shapes, ranging from tiny round struc-
tures to shorter lengths and larger tubular forms. The
interplay between these morphologies involves the binding
and rupturing of both the OMM and IMM, a phenomenon
known as “Mt dynamics” that regulates the Mt network
[147]. The dynamic nature of Mt enables them to adapt
their shapes according to specific cellular functions. For
instance, during the energy-intensive DNA replication
phase (S phase), Mt can become hyperfused to enhance
ATP production [148]. Proteins located on the OMM,
including fission 1 (FIS1) and mitochondrial fission factor
(MFF), assemble at specific locations. CL and PA, con-
stituting 2% and 5% of total lipids in mammalian cells,
respectively, play a role in this process. Although these
lipids are enriched in Mt, the assembly of Dnm2, a GTPase
involved in mt fission, occurs at membrane constrictions,
resulting in individual Mt formation [149, 150].

The precise control of mt morphology is crucial for
mitochondrial function and homeostasis (Fig. 2). Overex-
pression of Bif-1b/c enhances neuronal survival by pro-
moting mt elongation, maintaining membrane potential,
and reducing apoptosis [151]. The fusion of Mitofusin 1

dynamic network

B phosphatidic

acid

FISSION

Fig.2 Mitochondrial fission and fusion: The intricate processes
of mitochondrial dynamics, encompassing both fission and fusion
events. Mitochondrial fission: The division of a mitochondrion into
two separate entities, facilitated by the recruitment of dynamin-
related protein (Drpl) to the outer mitochondrial membrane (OMM).
This process ensures the maintenance of mitochondrial quality con-
trol and distribution. Mitochondrial fusion: The merging of two indi-
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(Mfn1) and Mitofusin 2 (Mfn2) in the OMM forms oli-
gomers that expand the mitochondrial surface both within
individual Mt and between nearby Mt [152]. Dynamins
involved in division are thought to oligomerize in a GTP-
dependent manner, forming helices that wrap around Mt
[153]. Additionally, proteins like MFF, uniquely found in
humans on the OMM, are essential for mt division [154].
These physical contacts persist under dynamic conditions,
emphasizing the significance of the ER-Mitochondrial
(ER-Mt) interface for proper functioning [155].

Dynamics

Mitochondrial fusion is a process where two Mt merge to create
healthier organelles, while mitochondrial fission involves the
division of a single mitochondrion into several daughter orga-
nelles, facilitating the removal of damaged and fragmented Mt
[156-158]. The term “mitochondrial dynamics” encompasses
the interplay of mitochondrial translocation, fusion, and fission.
This intricate process is regulated by nuclear-encoded enzymes,
primarily big GTPases, as well as mitochondrial lipids, includ-
ing CL and PA [50, 159]. Throughout the various cellular life
processes, mitochondrial fusion and fission can occur rapidly,
especially in response to external stress, leading to transient
partial fusion events [150, 160].

NRE2

NRF1 c

Biogenesis and
energy metabolism

GC-1

Apoptosis

vidual Mt, orchestrated by mitofusins (Mfnl and Mfn2) on the OMM
and optic atrophy 1 (OPA1) on the inner mitochondrial membrane
(IMM). Fusion is crucial for the exchange of contents, complementa-
tion of damaged Mt, and the preservation of mitochondrial function.
These dynamic processes collectively contribute to the regulation of
mitochondrial morphology and function within the cell



Molecular Neurobiology

At least five proteins play essential roles in regulat-
ing and maintaining mitochondrial structural dynamics.
These include optic atrophy 1 (OPA1), Mfnl, and Mfn2,
which facilitate mitochondrial fusion, FIS1, and dynamin-
related protein 1 (DRP1), crucial for mitochondrial fission
[161-164]. Mitochondrial dynamics are critical for the regu-
lation of cell death [165]. The mitochondrion, as a dynamic
network, plays a pivotal role in the cell by generating ROS,
supplying energy, and controlling programmed cell death
[166]. Elevated levels of Drpl, Fis1/Mfn1, and PINK1 sug-
gest a shift in mitochondrial dynamics from fission to fusion,
despite a reduction in ShcA, a protein regulating ROS [167].
Depletion of any fission-related proteins alters mitochondrial
dynamics, leading to elongated mitochondrial morphology
[149, 168].

To maintain a healthy mitochondrial network, Mt must
achieve a stable state with balanced communication between
fission and fusion events. Concurrent fusion and fission pro-
cesses, controlled by proteins like Drp1, regulate the overall
shape, size, and population of Mt [169]. This coordinated
control of mitochondrial dynamics, synchronized with the
cell cycle, ensures equal distribution of Mt to daughter
cells. Drpl, in particular, plays a primary role in coordinat-
ing mitochondrial dynamics with mitosis [170]. Therefore,
intricate and well-balanced regulatory mechanisms linking
mitochondrial dynamics and mitochondrial quality control
(mtQC) mechanisms are essential for maintaining the fitness
of mitochondrial pools and networks in biological systems.

In the absence of Drpl, Fisl can collaborate with Mfn2
and OPAL1 to facilitate mitochondrial fission by reduc-
ing GTPase activity, thereby safeguarding against fusion-
induced mitochondrial fragmentation [171]. The depletion
of MFF results in a substantial decrease in mitochondrial
fission in HeLa cells or MEFs, preventing the recruitment of
Drpl to the OMM. Conversely, an overexpression of MFF
leads to the recruitment of Drpl to the Mt, inducing hyper-
fission in these cells [172]. Within mammals, the paralogs
MiD51 and MiD49 serve as mitochondrial receptors, facili-
tating the cytosolic translocation of Drpl to Mt [173, 174].

A proposed mechanism for the rapid exchange of metabo-
lites, mtDNA, and membrane components is referred to as
mitochondrial fusion [175-181]. Conversely, mitochondrial
fission is believed to facilitate the separation of mtDNA and
individual Mt from the network, allowing for their subse-
quent degradation [182-186]. These processes, mt fission
and fusion, play a pivotal role in influencing various aspects
of mitochondrial function, including respiration, calcium
buffering, and apoptosis [28, 187-190].

The dynamics of mitochondrial fusion and fission are
further regulated by specific phosphilipid, PA and CL that
are promoting fusion and fission respectively [191]. The
Miro-Milton complex, subject to calcium-dependent regu-
lation, links Mt with kinesin motors, thereby controlling

mitochondrial motility and the delicate balance between
fission and fusion [192]. In the context of cellular transport,
small, spherical Mt resulting from mitochondrial fission
are crucial for axonal cell transport, whereas mitochondrial
fusion provides protection against external stimuli [193].

Disruptions in the equilibrium between mitochondrial fis-
sion and fusion can have far-reaching consequences, impact-
ing mitochondrial function and contributing to various dis-
eases [194]. Enhanced expression of mitochondrial fission
promotes fragmentation of the mitochondrial network, leads
to the release of Cyt C from Mt, and increases apoptosis [27,
28]. Additionally, upon fracturing the mitochondrial net-
work, FIS1 has been observed to reduce the abundance and
survival of mitochondrial fusion proteins, including Mfnl1,
Mfn2, and OPA1 [171, 195].

Biogenesis

The process of mitochondrial biogenesis encompasses sev-
eral vital steps, including the replication of mtDNA, synthe-
sis of both IMM and OMM, production of proteins encoded
by the Mt, and import as well as synthesis of nuclear-
encoded mitochondrial proteins. Regulatory proteins nuclear
respiratory factors 1 and 2 (NRF1 and NRF2) engage with
the transcriptional coactivator peroxisome proliferator-
activated receptor coactivator-1 (PGC-1), forming a crucial
network that oversees mitochondrial biogenesis and energy
metabolism [32, 196].

An essential player in this regulatory network is the mito-
chondrial transcription factor A (Tfam), which plays a piv-
otal role in mtDNA transcription and replication. Activation
of Tfam is orchestrated by the concerted action of NRF1
and NRF2. These transcription factors not only govern the
mtDNA processes but also regulate the import of nuclear-
encoded mitochondrial proteins. Furthermore, they exert
control over the five complexes constituting the mitochon-
drial ETC [33, 197]. In summary, the collaborative action
of NRF1, NRF2, and PGC-1 orchestrates various aspects
of mitochondrial biogenesis and function, influencing both
mtDNA processes and the composition of the mitochondrial
ETC.

Significance of Mt Dysfunction and mtDNA
Alterations in Neurological Conditions

Mitochondrial dysfunction stands as a critical factor influ-
encing both health and disease across a spectrum of physi-
ological and pathological conditions [198] (Fig. 3). The
mitochondrion, often referred to as the powerhouse of the
cell, plays a pivotal role in energy production and serves
as a hub for various cellular processes. In a state of opti-
mal function, Mt orchestrate essential mechanisms such

@ Springer



Molecular Neurobiology

pitochondrial dysfunction
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Fig.3 Mitochondrial dysfunction leading to different neurological
disorders: The significance of Mt dysfunction and mtDNA modifi-
cations in various neurological disorders, emphasizing their crucial
contribution to disease pathogenesis. The comprehensive overview

as OXPHOS, contributing to ATP production-the primary
energy currency of the cell. Mt are also integral to metabolic
pathways, including the citric acid cycle and fatty acid oxi-
dation, crucial for maintaining cellular homeostasis [199].
However, when mitochondrial function falters, it becomes
a contributing factor to the onset and progression of vari-
ous diseases. Neurological disorders, such as Alzheimer’s
disease (AD), Parkinson’s disease (PD), and amyotrophic
lateral sclerosis, are strongly linked to mitochondrial dys-
function. The repercussions extend beyond the nervous sys-
tem, encompassing conditions like cardiovascular diseases,
diabetes, and age-related degenerative disorders.
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underscores the unique insights into the molecular mechanisms
underlying these conditions, highlighting the imperative need for tar-
geted therapeutic interventions

Several key aspects contribute to mitochondrial dys-
function and subsequent health issues. Genetic mutations
in mitochondrial and nDNA can compromise the integrity
of proteins involved in mitochondrial function, leading to
aberrant processes such as impaired OXPHOS and disrupted
energy production. Environmental factors, including expo-
sure to toxins and oxidative stress, further exacerbate mito-
chondrial damage. Mitochondrial dysfunction also plays a
role in the aging process [107]. As cells age, mitochondria
accumulate damage, leading to a decline in their function.
This aging-associated mitochondrial dysfunction is impli-
cated in a range of age-related diseases. Understanding and
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addressing mitochondrial dysfunction have become focal
points in contemporary medical research. Therapeutic ave-
nues include gene therapies targeting mtDNA, small mol-
ecules that enhance mitochondrial function, and strategies to
promote mitochondrial biogenesis. Additionally, emerging
technologies like mitochondrial transplantation hold promise
for mitigating the effects of dysfunctional Mt. In the pursuit
of overall health and the prevention of diseases linked to
mitochondrial dysfunction, ongoing research aims to unravel
the intricate molecular mechanisms governing mitochondrial
function. As scientists delve deeper into these complexities,
new diagnostic and therapeutic strategies will likely emerge,
offering hope for improved treatments and preventive meas-
ures against diseases rooted in mitochondrial dysfunction.

The onset of neurodegeneration is prompted by the accu-
mulation of diverse stressors, coupled with the simultane-
ous disruption of multiple cell-protective systems [47]. In
neurodegenerative disorders, a shift in mitochondrial activ-
ity significantly contributes to the transition from a normal
physiological state to a degenerative one. Pathological pro-
tein aggregation, reduced ATP synthesis, and the formation
of plaques associated with dopaminergic neuronal death
result from the adverse effects of several genetic abnor-
malities working in concert[200]. Mutations in Parkin and
PINK1 exert their influence on Mt monitoring and cell biol-
ogy[200]. PINK1 is initially translated into the outer OMM
and subsequently translocated into Mt for proteolytic degra-
dation in healthy Mt. This underscores the fact that PINK1
levels are typically low in normal mitochondrial conditions.
However, when mitochondrial dysfunction occurs, such as
membrane depolarization, PINK1 persists as a membrane-
anchored component in the OMM. Parkin is activated in
its new location through PINK1-mediated phosphorylation.
Upon activation, Parkin-mediated ubiquitination signals trig-
ger mitophagy, which is the selective elimination of Mt via
the autophagosome [201]. This process leads to functional
and anatomical transformations in Mt, impacting various
cellular processes. These include excessive ROS generation,
a decline in brain energy due to reduced ATP levels, altera-
tions in calcium homeostasis, and the initiation of apopto-
sis[202, 203].

The circular mtDNA exhibits a mutation rate 10-17
times higher than that of nDNA, playing a crucial role in
maintaining mitochondrial integrity[204—206]. Circulating
mtDNA has been identified in human blood and serves as a
potential biomarker for mitochondrial dysfunctions. Muta-
tions in mtDNA, coupled with synaptic damage, result in
the inhibition of transcription replication[207], increasing
the likelihood of AD by 63% [136]. The impairment of
synapses and mitochondrial dysfunction are key contribu-
tors to the development of AD[208]. Deletions and point
mutations in mtDNA lead to compromised mitochondrial
respiration [209-214]. LonPeptidase 1 (LONP1) is integral

in orchestrating OXPHOS, mtDNA maintenance, and the
expression of mitochondrial genes, forming a homo-hexam-
eric complex in the mitochondrial matrix [215-217]. Muta-
tions in LONP1 contribute to OXPHOS deficiencies [218],
indirectly linking to pathophysiological disorders such as
CODAS syndrome and Perrault syndrome. These disorders
are associated with disruptions in CLPXP or ERAL1, some-
times manifesting as progressive cerebellar ataxia and intel-
lectual deficit [219, 220].

Mutations in the YMEIL gene lead to optic atrophy,
developmental delay, and hearing loss, while DRP1 muta-
tions can result in abnormal brain development, microceph-
aly, and optic atrophy. GDAP1 is implicated in Charcot
Marie Tooth disease (CMT). Furthermore, mitochondrial
proteins, including ATP5A, NDUFS3, SDHB, and other
members such as tetraspanins CD9 and CD63, are found in
decreased concentrations in small vesicles of PD patients. In
summary, the heightened mutation rate of circular mtDNA,
coupled with its interplay with nDNA, underscores its sig-
nificance in mitochondrial integrity. Dysregulation of these
processes contributes to various disorders, emphasizing the
intricate connections within the mitochondrial network and
their implications for neurodegenerative diseases.

Alzheimer’s Disease

The root cause of AD pathology is attributed to Mt cas-
cade dysfunction [221, 222]. Two critical components in
the course of AD are tangles and plaques [223, 224]. This
involves the accumulation of B-amyloid in brain vessels
[225, 226] and intracellular neurofibrillary tangles result-
ing from tau protein aggregation [198, 233]. The interaction
between amyloid precursor protein (APP) and Ap with Mt
proteins leads to processes responsible for neurodegenera-
tion [227, 228], induced by enhanced mitophagy and Mt
defects. In AD patients, a reduction in the activity of Mt C4
has been observed in the hippocampus and platelets [229].
Suppression of communication between Af and AB-binding
alcohol dehydrogenase (ABAD) has been shown to reduce
Ap-induced neuronal death and free radical production. Ap
inhibits two crucial Mt enzymes, a-ketoglutarate dehydro-
genase and cytochrome oxidase, both found at low levels
in the brains of AD patients. AP attaches to the Mt matrix
protein, ABAD, following overwhelming complex IV and
o-ketoglutarate dehydrogenase [230].

Overexpression of APP, including Nrf2, downregulates
Mt fusion, biogenesis, and mitophagy [231]. Inactivated
Nrf2 reduces ETC complexes’ activity and lowers NADH
and FADH?2 expression [232], contributing to the advance-
ment of tau and amyloid in AD patients [233]. The tau pro-
tein, losing its physiological activities as AD progresses,
reaches the dendrite soma, interacting with B-oligomers and
enhancing excitotoxicity, forming neurofibrillary tangles
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[199, 234]. A plaques, precipitated with high iron amounts,
contribute to the development of hazardous Af oligomers
and ROS, causing Mt malfunction and cell death [235-237].
Aberrant metal ion distribution or metabolism leads to syn-
aptic dysfunction directly tied to Mt in the synapses [238].
Excess zinc, generated by increased metalloprotein release,
stimulates AP synthesis and deposition, initiating a cascade
reaction. Inhibition of protein phosphatase and tau hyper-
phosphorylation, linked with toxicity related to N-methyl-
D-aspartate channel activation and A, is due to increased
ROS production from soluble oligomers in the brain and
cerebrospinal fluid of AD patients [226, 237, 239].

Chronic hypoxia reduces a-secretase expression, increas-
ing AP formation and stimulating mt ROS development
[240]. AD brains exhibit decreased fusion protein expression
but increased fission protein expression or activity [241].
The increase in S-nitrosylation of dynamin-related protein
1 (Drpl) mediates Mt fission, contributing to AD pathogen-
esis [242, 243]. In AD brains, ryanodine receptor 2 (RyR2)
expression levels are elevated [244], leading to excessive
Ca2* release affecting synaptic plasticity [243, 245, 246].
This induces iron-induced mt fission and stimulates mt Ca2*
uptake, indicating RyR malfunction and neurodegeneration
[17, 247, 248].

Parkinson’s Disease

Parkinson’s disease (PD) is characterized by the loss of
dopaminergic neurons in the substantia nigra and the accu-
mulation of a-synuclein (ASN) oligomers [223, 249], often
referred to as Lewy bodies, making it the second most preva-
lent neurodegenerative condition after AD. The aggrega-
tion of ASN oligomers, coupled with disruptions in Ca®*
homeostasis, leads to Mt membrane permeabilization and
the opening of the mitochondrial permeability transition
pore (MPTP). This cascade results in the generation of ROS
[250], release of Cyt C, and induction of apoptosis.

The manifestation of PD includes progressive muscle
rigidity and tremors, attributed to a diminished dopaminer-
gic modulation of striatal neurons, thereby modifying motor
systems [251-253]. Several genetic mutations, including
Parkin, PINK-1, LRRK2, DJ-1, and ASN, have been asso-
ciated with familial PD. These gene products not only par-
ticipate in mitophagy but also influence ER-Mt connections
and signaling in PD [44, 254-256]. ASN and the PRKN
gene, coding for the E3 ubiquitin-protein ligase parkin, are
known to be mutated in early-onset PD, affecting around
10% of patients [257-259]. Autosomal recessive PD is
linked to mutations in PINK1 and Parkin, resulting in stri-
atal mitochondrial respiration deficiency, neuronal vulner-
ability, oxidative stress, and impaired mitophagy activation
[221, 260-265].
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Autosomal recessive PD is associated with mutations in
PINK1 and Parkin, disrupting the degradation of damaged
Mt through the activation of mitophagy [221, 263-265].
Both PINK1 and Parkin contribute to the degradation of
the mitochondrial fusion proteins Mfn1/2 and induce fis-
sion by enhancing fission protein activity while reducing
the trafficking proteins Miro 1/2. However, the inactivation
of the PINK1-Parkin pathway halts the removal of damaged
Mt, leading to a slowdown in mitochondrial protein turnover
[266]. Genetic degradation of PINK1 results in deficiencies
in striatal mitochondrial respiration and increased vulner-
ability of neuronal cells, ultimately causing oxidative stress
[260-262]. The reduction in Mtmp leads to the accumulation
of PINK1 at the OMM, where Parkin subsequently removes
damaged Mt [186, 254]. Similarly, the absence of Parkin
disrupts synaptic plasticity and causes dysfunction in striatal
Mt [265].

Parkin ablation induces synaptic plasticity and striatal
mitochondrial dysfunction [265]. Mutations in Parkin cause
defective mitochondrial morphology in iPSC-derived neu-
rons of PARK?2 patients. A prevalent DNA lesion associated
with oxidative stress is 8-hydroxy-deoxyguanine (8-oxo-
dG), an oxidized form of guanine frequently observed in
neurological illnesses like AD and PD [267]. PD patients
exhibit elevated levels of oxidized CoQ-10 and 8-hydroxy-
2-deoxyguanosine in their cerebrospinal fluid (CSF), impli-
cating mitochondrial oxidative stress and DNA damage in
PD pathogenesis [268]. A53T transgenic mice and the brains
of PD patients also show mitochondrial degeneration with
DNA damage [269]. The GBA gene, encoding the enzyme
glucocerebrosidase (GCase) involved in lysosomal hydroly-
sis, plays a crucial role. GBA mutations cause mitochondrial
defects and are associated with Gaucher disease (GD) and
PD [270-272]. Approximately 5-15% of PD patients have
mutations in the GBA gene, making it the most significant
genetic risk factor for PD [273].

Huntington's Disease (HD)

Huntington’s disease (HD) is an autosomal dominant neu-
rological disorder characterized by an accumulation of tri-
nucleotide CAG repeats within the huntingtin (HTT) gene,
leading to polyglutamine repeats in the huntingtin protein
(mtHtt) [274, 275]. This mutation affects ion channels,
induces oxidative and metabolic stress, and results in Mt
malfunction. Mutant HTT inactivates GAPDH, impairing
Mt protein transport, causing mtDNA degradation, and con-
tributing to deletions in HD brains [276]. Neurodegeneration
occurs through mutant HTT aggregates, disrupting Mt traf-
ficking and altering neuronal movement [277]. Addition-
ally, there is a reduction in mitophagosomes via mitophagy
receptors, hindering mt clearance and leading to a buildup
of damaged Mt [278].



Molecular Neurobiology

MtQC dysfunction is evident in HD, with upregulated
fusion proteins and downregulated fission protein expres-
sions causing excessive mt fission [279]. HD pathophysiol-
ogy includes mt dysfunction, impaired cellular antioxidants,
and symptoms affecting motor coordination, cognition, and
mental health [280, 281]. Stress induction in lymphoblast
cell lines from HD patients reveals increased apoptotic cell
death mediated by caspase-3, caspase-8, and caspase-9 acti-
vation [282-284]. Notably, exposure to stress induces appar-
ent Mt differences and increased apoptosis in lymphoblasts
from HD patients [204].

Mt failure is a pivotal factor in HD progression, with
anomalies such as mtDNA errors, oxidative stress, calcium
imbalance, and increased lipid peroxidation observed in HD
mouse models [285-288] and human brains [281, 289]. These
abnormalities are linked to disease progression [286, 288]
and severity [281]. The antioxidant system’s inefficiency may
result from the mtHtt protein, which reduces acetylase activity
through CBP/p300 dimer interaction [290, 291] and affects
Nrf2 stability and cellular localization [292]. The decrease
in PGCla, among other dysregulated proteins, contributes to
HD pathogenesis by linking with transcriptional dysregulation
and mt damage processes [293, 294].

Ischemic Stroke

During ischemia, intramitochondrial calcium levels increase,
triggering the activation of mitochondrial phosphatases and
subsequent dephosphorylation of the OXPHOS complexes,
particularly Cyt c and Cyt ¢ oxidase [295-298]. This leads
to the loss of allosteric regulation by ATP. In the absence
of oxygen as the final electron acceptor, OXPHOS is highly
stimulated in a feed-forward manner [297, 299]. Simultane-
ously, due to the lack of cellular energy, the Na*/K* ATPase
pump fails, resulting in neuronal membrane depolarization
and the release of excess excitatory neurotransmitters, par-
ticularly glutamate [300].

CL, a dimeric phospholipid in the IMM, interacts with
various OXPHOS complexes and Cyt C, making it suscep-
tible to oxidative damage [298, 301]. Its peroxidation results
in the redistribution to the OMM, causing a 50% decrease in
Cyt C oxidase activity. This leads to the release of mitochon-
drial apoptotic proteins, including Cyt C, apoptosis-inducing
factor (AIF), Smac/DIABLO, and HtrA2/OM]I, into the cyto-
sol [53, 302-304]. These proteins contribute to cell death in
the ischemia penumbra through various mechanisms.

During reperfusion, pro-apoptotic proteins from the
Bcl-2 family, such as Bid and Bax, increase, with Bid being
cleaved into truncated tBid by elevated mitochondrial cal-
cium. tBid interacts with other pro-apoptotic proteins in the
mitochondrial membrane. Activated Bad translocates to
the OMM, suppressing antiapoptotic proteins [305, 306].
Upon opening of the mitochondrial permeability transition

pore (MPTP), Cyt C is released into the cytosol, forming
the apoptosome with APAF1 and procaspase-9, initiating
apoptosis. SMAC/DIABLO and Omi/HtrA2, released from
the mitochondrial IMS, enhance caspase-independent apop-
tosis by inhibiting inhibitor-of-apoptosis protein (IAP) fam-
ily members, such as XIAP [55, 307].

Activation of autophagy has a protective effect in the
early stages of ischemia by preventing defective Mt from
producing harmful chemicals [308-310]. Mt normally
undergo cellular recycling through autophagy, involving
signaling pathways like beclin-1/class III PI3K, AMPK/
mTOR, and PI3K/Akt/mTOR [56]. However, prolonged
autophagy upregulation can lead to increased cell death.

Implications for Neurological Disorders
and Potential Therapeutic Targets

The advancements in understanding mitochondrial function
and its intricate involvement in neurological disorders have
significant implications for the development of therapeutic
interventions. The multifaceted nature of these disorders,
ranging from PD and AD to traumatic brain injuries, neces-
sitates a diverse and targeted approach to mitigate their
impact on neuronal health. The identification of compounds,
such as Szeto-Schiller peptides, Mt-penetrating peptides, and
MitoQ, designed to enhance mitochondrial activity, opens up
new avenues for therapeutic exploration. These compounds
specifically target mitochondrial membranes, addressing the
core issues of mitochondrial dysfunction observed in various
neurological disorders.

Investigations on the present therapeutic approaches for
AD show that among 30 agents at clinical trials, only one
(caprylic triglyceride) focuses on their metabolism and its
bioenergetics [311]. Similarly, in the case of PD, among 74
and 22 phase 2 and phase 1 clinical trials respectively, only
2 agents (nicotinamide riboside and terazosin) focus on Mt
and the energy metabolisms [312]. There lies an inevitable
need for mitochondrial therapies, and also the exploration
of molecular targets needs to be expanded through research
advancement [312].

Among the developing therapeutic approaches for the
treatment of mitochondrial disorders, optogenetics marks
its position. This technique is achieved by the ion channels/
electron pumps/enzymes or transcription factors that are
light-sensitive, allowing precise control of the biochemical
signaling pathways. It is employed in a more advanced way,
such that optogenetics controls mitochondrial fission through
light-induced MLCs in many cell types, including HeLa cells,
PC12, and SLC25A46~"~ HDFn, where SLC25A46~'~ HDFn
affords to treat mitochondrial disorders [313].

Deep brain stimulation (DBS) is another technique used
in the treatment of PD, targeting the subthalamic nucleus
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for symptomatic PD treatment. The hyperactivity in PD
rodents was examined in the M1 pyramidal cells through
DBS, where the study also sheds light on in vivo recording
of intracellular and juxtacellular network recruiting the
GABAergic networks. The activation of cortical SST
interneurons by optogenetics mitigates the major symptoms
of PD in mice [314]. Though it has promising research
findings, DBS is still in the initial stages of medical
application [315].

CRISPR-Cas9 is an intricate process to carry out mito-
chondrial gene editing as there is no guide to deliver the
RNA and Cas9 enzyme complexes into the Mt. A recent
study by Hussain et al. made a concept proof that the stem
loop element sgRNA can be added [316], which will in turn
help in precise travel to Mt and also interact functionally
with Cas9, which mediates sequence-specific mtDNA cleav-
age, thus making a great system for targeted mitochondrial
genome editing.

Another promising study revealed the set of genes impact-
ing the mTORCI1 pathway, which identifies mitochondrial
dysfunction [317]. It targets the known leading genes at
TORC1 pathway MIOS, RPTOR, WDR24, SEH1L, LAM-
TOR2/4, RHEB, RRAGA, and MTOR, where the ATF4
KO cells treated with oligomycin showed the induction of
Sestrin2 and Reddlis essential to inhibit mTORC1 signal-
ing [318].

Szeto-Schiller (SS) peptides

The Szeto-Schiller (SS) peptides, Mt-penetrating peptides,
and MitoQ (ubiquinone covalently linked to lipophilic cation
triphenylphosphonium) represent novel compounds designed
to target Mt membranes and enhance mitochondrial activity,
as reported by Jin et al. [319]. The respiratory chain’s com-
plex II reduces MitoQ to active ubiquinol antioxidant, restor-
ing its efficiency against lipid peroxidation in isolated Mt
[320]. CERE120, a riluzole-containing drug with an adeno-
associated virus, non-steroidal anti-inflammatory drugs, and
caffeine A2A receptor antagonists, has shown promise in
reducing the risk of neurodegenerative complications [321].

TIGAR

TIGAR, interacting with various signaling proteins and
exhibiting significant mitochondrial functions and cell sur-
vival properties, emerges as a potential therapeutic target for
conditions like cancer, cardiovascular, and neurological dis-
orders. Despite incomplete understanding of its controls, the
localization of TIGAR in subcellular organelles other than
Mt, such as the ER and nucleus, warrants further investiga-
tion into the mechanisms governing its migration in response
to stress [322].
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Ursodeoxycholic Acid

Ursodeoxycholic acid (UDCA), an FDA-approved medica-
tion for biliary cirrhosis, has demonstrated neuroprotective
effects in preclinical studies on PD models by preventing
mitochondrial dysfunction [323, 324]. Managing glutathione
levels with mitochondrial diseases and using mycophenolate
mofetil (MMF) to activate Nrf2 represent promising thera-
peutic approaches in PD, with limited side effects [325].
Tecfidera, an oral formulation of dimethyl fumarate for
multiple sclerosis, activates Nrf2, stimulating genes that
promote anti-inflammatory, antioxidant, and mitochondrial
biogenetic processes, protecting against MPTP-induced
brain toxicity [326].

Niclosamide

Niclosamide’s ability to activate PINK1 and its regulatory
enzyme suggests its potential as a treatment for PD [327].
Photobiomodulation, a low-level laser therapy, has been
used to induce vascularization in injured muscle tissue with
minimal side effects [328]. Treating AD with photobio-
modulation aims to directly impact Mt by providing pho-
tons to Complex IV, reducing ROS generation from dam-
aged Mt [328]. DNA methylation and transcription changes
are explored as tools for reprogramming or differentiating
induced pluripotent stem cells to treat neurodegenerative
diseases [74, 329].

Edaravone

Edaravone, a drug scavenging free radicals, is approved
for post-ischemic stroke and amyotrophic lateral sclerosis,
but its effectiveness and safety in traumatic brain injury
patients are still under investigation [330]. Apocynin, a
NOX inhibitor, and TBHQ, an NRF2 activator, administered
together show promising effects in rescuing white and gray
matter in traumatic brain injury [331]. Mitoquinone (MitoQ),
an antioxidant, leads to downstream effects, increasing
NRF?2 release and antioxidant enzyme gene expression, and
uncouples mitochondrial respiration and phosphorylation to
reduce ROS generation and prevent oxidative damage [330,
332, 333].

Mdivi (Mitochondrial Division Inhibitor-1)

Mdivi-1 is an inhibition molecule that suppresses the mito-
chondrial division by specifically targeting dynamins. The
Mdivi-1 not only blocks the Cyt C [334] but also act on
Drpl in neurodegenerative diseases helps reducing the
disease specific phenotypic appearance [182, 335]. The
Mdivi prevents the Drpl and GTPasey assembly by binding
onto the GTPase and thus suppresses the GTPase activity
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[334]. In seizures, the death of hippocampal neuron was
greatly saved by Mdivi-1 by preventing the Cyt C release
and caspase 3 which are already activated [336]. Besides
that, the enhanced mitochondrial fission and oxidative also
got reduced drastically by Mdivi-1 in epileptic rat [337]. A
condition of ischemia/reperfusion, i.e., cerebral damage, was
sharply decreased by the Mdivi-1, and downregulated Drpl
and Cyt C was prevailed in ischemia/reperfusion mice [338].
In addition to the Cyt C blocking, Mdivi-1 significantly pre-
vented the Bax from entering into the Mt in Rhabdomyoly-
sis-induced rat [339]. In ischemic cases, Mdivi-1 increased
the life of retinal ganglion cells [340].

Luteolin-Flavonoid

Luteolin enforces the mitochondrial respiration amd ATP
production provided it depends on ER Ca’* release chan-
nels. It has the hydrogen peroxide inducing property, and
mitochondrial respiration increasing ability [341, 342].
It establishes the availability of nicotinamide adenine
nucleotide (NADH) and electron carrier by activating the
pyruvate dehydrogenase [343]. In mouse synaptosomes,
enhanced ATP production was rendered by luteolin [344].
Luteolin facilitated the Nrf2 activation by translocating it
to nucleus and thereby upregulated the heme oxygenasel
and NQOI [345].

Others

Various flavonoids, such as 7,8-dihydroxyflavone, cudrafla-
vone B, liquiritigenin, morachalcones, EGCG, procyanidins,
huperzine A, geissoschizine methyl ether, sanguinarine, and
fangchinoline, prevent mitochondrial oxidative injury and
nerve cell death in HT22 cells induced by glutamate/erastin.
Puerarin, derived from Pueraria lobata, exhibits protective
effects against glutamate-induced toxicity in SH-SYS5Y cells
[346-356]. Coenzyme Q10 supplementation, involved in
ATP formation, improves mitochondrial function, slowing
motor deficits, atrophy, and improving survival in R6/2 mice
[357-359]. Research on PMX500FI, a synthetic L-carnitine-
conjugated alpha-lipoic acid (ALA) derivative, suggests its
effective traversal of both the blood—brain and blood-retinal
barriers. Additionally, it inhibits histone deacetylase activ-
ity, enhances mitochondrial function, and exhibits superior
in vivo pharmacokinetics compared to traditional ALA
[360-364].

The diverse array of compounds and strategies discussed
here highlights the evolving landscape of potential thera-
peutic targets for neurological disorders. Further research
and clinical trials are essential to validate these findings and
translate them into effective treatments, offering hope for
individuals affected by these challenging conditions.

Biomarkers of Mitochondrial Dysfunction
in Neurological Conditions

Some of the present mitochondrial disease detection by labo-
ratory tests are through lactate profiling, amino acid, and
organic acid profiling and testing for species of acylcarnitine
in mitochondrial diseased patients; and samples like blood,
urine and CSF are the established means of detection. Many
of the mitochondrial diseases still lie under the rare genetic
disorders with approx. more than 350 gene mutations, yet
do not contain the sensitive testing methods for the same
[365]. The testing of serum creatine kinase levels, which is
a muscular isoform, will be normal or only slightly higher in
patients with mitochondrial disorders [366]. The identifica-
tion of the peripheral vascular function in the mitochondrial
diseased patients with a confirmed m.3243A > G mutation,
which acts as a biomarker of mitochondrial function exam-
ined through flow mediated skin fluorescence testing [367].
The technique of near infrared spectroscopy (NMR) was
employed in the examination of oxygenated and deoxygen-
ated hemoglobin in skin and muscles at mitochondrial dis-
eased patients, and it did not show significant changes with
respect to oxygen consumption and blood flow in muscles
[367]. The field of nuclear medicine also supports the diag-
nosis of some cases of mitochondrial diseases like PD with
its single photon emission tomography study, expressing the
mtDNA deletions at patients with tremor signs [368].

Focusing on the physical features, short stature is a well-
established feature of mitochondrial diseases that are caused
by both mtDNA and nDNA [369]. The mitochondrial dis-
orders are the disorders that have a multivariant differential
system diseases containing unique phenotypes which occur
from changes in genetic makeup of Mt [370]. The most
precise and direct way of approaching the mitochondrial
identification is through the gene mutation and deletions
identification that comprises of MT-TL1, MT-TK, LARS2,
MTFMT, C120rf65, NDUFA4, SURF1, COX10, LRPPRC,
OPAI, POLG, RRM2B, TWINK, and ESCH I gene mutations
and mtDNA deletions [369].

The primary lowering of mitochondrial beta oxidation
and 12-14 long-chain acylcarnitines (LCACs) serves as
biomarker for PD. Among many diagnostic biomarkers for
PD, LCAC:s serve to be the best tool for diagnosing PD with
its high specificity for PD at early stage [371]. Mostly the
neurodegenerative disorders are approached with nutrient
supplements for treatment which comprises of CoQ10, Sele-
nium, NADH/NAD/nicotinamide, vitamins B and D3, and
alpha-lipoic acid [372]. CoQ10 is said to have significant
effect on CSF biomarkers for treating AD [373]; selenium
partially reversed the damaged dopaminergic neurotrans-
mission in MPTP induced PD mice [374] and high-dose
selenate showed improvement in mini mental state score
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in AD patients [375]; NADH/NAD administration for AD
patients did not show any progressive cognitive impairment
and also showed increased MDRS (Mattis Dementia Rat-
ing Scale) scores [375]; vitamin B supplementation showed
increased cognitive function at AD patients [376]; vitamin
D3 supplementation found to decrease the osteopenia risk
in PD subjects [377] and alpha lipoic acid supplementation
had good effects on developing cognitive function in AD
patients [378].

Nanotechnology and its implications at therapeutic field
makes the promising attempt to make a revolution at tar-
geted drug delivery. This makes the way for delivering the
CoQ10 by encapsulating inside nanocapsules and targeting
the brain Mt which helps in oxidative stress reduction and
enhancing the function of Mt [379]. Another application
in nanomaterial delivery for treating dysfunction of AD is
by conjugated liposomes which functions in aiming ligands
such as transferrin or apolipoprotein E, and a Mt-derived
cyclosporin A enhances the mitochondrial functioning and
decreases cell death [380]. With many mitochondrial regula-
tors at research, the direct inducers of mitophagy could be
the key for its related pathways like PINK1/Parkin pathway
in AD, which thus help improve the survival and functional
property of glutamine and cholinergic neurons, amyloid
beta, and tau pathologies [381].

In a recent study, the sFGF21 and sGDF15, the serum
fibroblast growth factor 21 and serum growth differentia-
tion factor 15, respectively, are employed in detection of
mitochondrial disorders [382]. In AD, the ratio of L:P and
hyperlactacidemia is used in the investigation of role of
mitochondrial dysfunction [383]. In the study on hepatocer-
ebral phenotype children, they were found to have complex 1
deficiency, depletion of mtDNA, and also POLG1 mutation
[384]. The indicator of neuronal loss or dysfunction of neu-
rons in mitochondrial encephalopathy is by the observation
of N-acetylaspartate and choline, which tends to be the spe-
cific metabolic profile specific to mitochondrial dysfunction
[385]. The lactic acid is neurotoxic, where the reduction of
their levels is important but the research on the agents act-
ing on lactic acidosis gave disappointing results [386, 387].

Mitochondrial Biology in Precision Medicine
for Neurological Disorders

Mitochondrial mutations always occur in a heteroplasmy
state which explains a cell with mitochondrial de novo muta-
tion would also have a normal mtDNA in it [388]. They can
be either inherited along generations or they can also be
acquired through modifications by environmental changes
as well as epigenetic factors, where distinguishing them
into primary and secondary mitochondrial dysfunction and
treating them accordingly is inevitable [389]. The need for
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personalized medicine is unavoidable as each mitochondrial
dysfunction follows a distinct path of pathophysiology. Their
specialized personalized therapies include the therapeutic
approach by nucleotide supplementation, replacing the
oocyte’s defective mtDNA and exogenous mitochondrial
supplementing [390]. Mt being complex needing the demand
of precision medicinal approach also shows that their unique
dynamics allows them to be engineered for next generation
of targeted therapy development [391].

Mitochondrial gene editing is the novel way of treating
mitochondrial dysfunctions. Zinc finger deaminases have the
potential ability of intrinsic cell penetration, which makes it
suitable for gene editing both in nuclear mtDNA and cellular
mtDNA paving the way for altering mtDNA mutations that
are pathogenic [392]. There is a need for more precise mito-
chondrial gene editing and it can be achieved by the bacterial
toxin DddA derived cytosine base editors (DdCBEs) made
of cytosine deaminase, specific to dsDNA. The transcription
activator which is similar to effector that is custom made
with DNA binding proteins and inhibitor of uracil glyco-
sylase enables the therapeutic modification of mt DNA
possible in patients [393]. Achieving such a precise gene
editing is further developed by adding the zinc finger base
editors (ZnF-DdCBE:s) to enhance the precision technology
architecture as it contains N or C terminals that enable addi-
tional target options [394]. The screening of ZnF-DdCBEs
are easy and they are cost effective, adding to the point ZnF
are abundant endogeneous proteins of human cells which
is much less receptive to factors that translate on reduced
immunogenecity, making it more compatable [394]. This
needs more cutting research to en-groove its potentiality, to
improve methods for counter action for DddAtox deaminase
enzyme that spontaneously splits during interactions of inde-
pendent DNA binding [393]. Many optimized ZnF-DdCBEs
have been employed in mtDNA and nDNA mutation spe-
cific diseases. Even this is aimed to efficiently discrtuct the
mutational diseases at Mt by implication on post antal mice
study by delivering a AAV9 to its heart, liver, and skeletal
muscles [394].

Artificial Intelligence in Neurodegenerative
Disorders

In the developing world, each and every field is empowered
using artificial intelligence (Al) in different forms, which is
even employed at the medical field. The computer systems
using the interdisciplinary science, Al is applied to bring
out automation at interfaces in recognition of visual, speech,
decision-making, and also translating languages [395]
which is applied to health care sector to provide patients,
physicians, and lab technicians with time-efficient appoint-
ment books, and drug availability detailing, suggesting
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cost-effective alternative drugs and treatments. The three
broad classifications of Al systems in the healthcare are
majorly into patient oriented (AiCure), clinician oriented
(Aidence, Bot MD), and administrative and operational ori-
ented (Aiva Health, Babylon Health) [396] with the combi-
nations of machine learning (ML) and deep learning (DL)
algorithms [397]. The imaging techniques often support the
neurodegenerative disorders for detecting the brain patholo-
gies, with PET, SPECT, fMRI for the molecular imaging,
fMRI and PET for functional imaging, and CT and MRI for
structural imaging that are also employed with Al for access-
ing their different clinical data sources [398]. The neurode-
generative disease like AD has speech and language skills
to be considered the most valuable clinical data as they will
be reduced in the course of progression of the disease; thus,
their collection in sources like voice data and implementing
more of Al powered computational speech processing has
been the new tool at processing of AD diagnosis and pre-
diction of their disease progression [399]. The neurological
disease diagnosis is achieved by Al mostly using either the
ML or DL algorithms and by the elimination of interference
factors of the data like unnecessary noises, redundancy fac-
tors, and variations which make it more accurate in meas-
uring and analyzing the molecular gene analysis data like
the major SNP reports obtained from patients and healthy
controls. There are many ML studies carried out on PD,
which compared the different biological pathways based on
the different features of gene expression in PD diagnostic
models with an accuracy rate of 93.8% [400]. There are also
similar ML studies in AD with an accuracy of 97.8% which
had ML employed to analyze the biomarkers at AD diagno-
sis which includes the clinical imaging, responsible genes,
proteins, and the data of the cognitive tests [401] the ML
algorithms also apply at the analysis of various gene-related
variations that are found in many mitochondria-related genes
[402]. Many generalized studies on neurodegenerative dis-
orders involving ML and DL algorithms find its role in the
comparing of the patient data from the control data using the
deep analysis of multiple genes involving genes of neuron
functioning, cell cycle, and immune responses with an accu-
racy of 95.2%[403] and the distinguishing of 68 different
disease severity in neurological disorders with an accuracy
of 88.6%[404]. There are many ways to research on the cog-
nitive monitoring of the neurological disorders, in which Al
is found to have the best base with the datasets developed by
Gosh et al.[405] which had over 6400 MRI images where
each were segregated into different stages (moderate demen-
tia, non-dementia, very mild dementia, and mild dementia)
of complexity in progression of the AD using the convolu-
tional neural network technique using image data. Though
there are many advances in the diagnosis techniques of ND
using Al as each has its own limitations, Al also has its own
way of limitations. The limitations include the availability

of data set which may have discrepancies in versions of the
data taken, the training data set which has the chances to
be small and fragmented, the biased model making which
arises when the research set is focused on a single aspect of
data, and processing the large datasets may lead to loss in
accuracy, but can be eventually achieved when the training
data set achieves the best in data volume. With the develop-
ment of research in neurodegenerative disorders, each aspect
of the research development needs its role in development
of the diagnosis, where Al would definitely give its hands
for future diagnosis of ND with nearing perfect accuracy.

Conclusion

Mt dysfunction is a significant contributor to the pathogenesis
of many neurological diseases like AD, PD, HD, ischemic
stroke, sepsis, POAG, ALS, multiple sclerosis, LGS, and
prion disease. Mt is the essential organelle for neuronal func-
tion and survival, containing about 1500 proteins of which
mutations in them lead to malfunctioning of the Mt. They
perform a broad spectrum of functions comprising of fusion,
fission, mitophagy, biogenesis, maintenance of homeostasis,
regulation of apoptosis, cell cycle progression, cellular prolif-
eration, and cell differentiation; also comprising of physiologi-
cal functions like innate immunity, autophagy, redox signal-
ling, calcium homeostasis, and stem cell reprogramming; and
other crucial cellular process like production of ATP through
OXPHOS, citric acid cycle, fatty acid oxidation, phospholipid
synthesis, hemoglobin biosynthesis, generation, and mainte-
nance of ROS. The five complexes of ETC are encoded by the
mt and nuclear genomes, where mutation or chemical inhibi-
tion in them causes Mt-related diseases and also results in low
energy production. The defects in proteins of mtDNA main-
tenance or repair machinery leads to secondary multiple dele-
tions, duplications or depletion of mtDNA which leads to poor
mt respiration, and dysfunction linking to broad spectrum of
mt and age-related diseases. There are various mitochondrial
and nuclear genes that have its specific role in the maintenance
of Mt and its behavior that is discussed (Table 1) which will
be the best approaching strategy for mitochondrial research
for health and disease, and not only for neurological disorders.
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