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Abstract
Mitochondria, essential organelles responsible for cellular energy production, emerge as a key factor in the pathogenesis of 
neurodegenerative disorders. This review explores advancements in mitochondrial biology studies that highlight the pivotal 
connection between mitochondrial dysfunctions and neurological conditions such as Alzheimer’s, Parkinson’s, Hunting-
ton’s, ischemic stroke, and vascular dementia. Mitochondrial DNA mutations, impaired dynamics, and disruptions in the 
ETC contribute to compromised energy production and heightened oxidative stress. These factors, in turn, lead to neuronal 
damage and cell death. Recent research has unveiled potential therapeutic strategies targeting mitochondrial dysfunction, 
including mitochondria targeted therapies and antioxidants. Furthermore, the identification of reliable biomarkers for assess-
ing mitochondrial dysfunction opens new avenues for early diagnosis and monitoring of disease progression. By delving 
into these advancements, this review underscores the significance of understanding mitochondrial biology in unraveling the 
mechanisms underlying neurodegenerative disorders. It lays the groundwork for developing targeted treatments to combat 
these devastating neurological conditions.
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Introduction

Over 1.5 billion years ago, mitochondria (Mt) came into 
existence through the process of endosymbiosis, a process 
in which a eukaryotic ancestor cell incorporated a prokary-
ote resembling contemporary α-proteobacteria progenitors 
[1–3] that are derived from ocean dwelling clade [4]. Mt 
are the double membrane bound cell organelle that produce 
chemical energy as adenosine triphosphate (ATP) via oxi-
dative phosphorylation (OXPHOS) and empower the cell 
to carry on its functions and reactions [5–7]. Mt contain 
their own circular DNA or genomes of maternal origin [8], 

provided majority of mitochondrial proteins are powered by 
nuclear genome which are synthesized by cytosolic ribo-
somes and transferred to outer mitochondrial membrane 
(OMM), inner mitochondrial membrane (IMM), intermem-
brane space (IMS), and matrix [9]. The mutation in either 
mitochondrial DNA (mtDNA) or nuclear DNA (nDNA) 
disrupts its functions and causes disorders such as cancer 
[10, 11], neurodegenerative diseases [12, 13], ageing [14, 
15], and cardiovascular diseases [16]. Numerous mitochon-
drial and nuclear genes play specific roles in maintaining 
mitochondrial integrity and behavior, as detailed in Table 1. 
Understanding these roles is crucial for devising effective 
strategies in mitochondrial research for health and disease, 
extending beyond neurological disorders.

Structure and Function of Mitochondria (Mt)

When utilizing electron microscopy, the Mt exhibit a dis-
tinctive double-membrane structure comprised of essential 
phospholipids. These lipids play a critical role in various 
processes, including the regulation of membrane curvature, 
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Table 1  List of genes, its chromosomal location, proteins, size, and their biological functions

Gene Chromosomal location Protein Size Biological function References

OPA1 3q29 Optic Atrophy 1 (OPA 1) 120 kDa Mitochondrial fusion at inner mem-
brane

[17]

OMA 1 1p32.2–p32.1 OMA 1 60.1 kDa Drive mitochondrial outer membrane [18]
BAK 6p21.3 Bak 23.4 kDa Apoptosis [19–21]
BAX 19q13.3–q13.4 Bax 21 kDa Apoptosis [19–21]
BCL- 2 18q21.33 Bcl–2 26.2 kDa Anti-apoptosis [19–21]
BCL—XL 20q11.21 Bcl–XL 83.55 kDa Anti-apoptosis [19–21]
LL-37 3q21 LL-37  ~ 4.5 kDa Anti-microbial peptide [22]
VDAC 1 5q31 VDAC 1 32 kDa Gatekeeper for entry and exit of mito-

chondrial metabolite
[23–25]

VDAC 2 10q22.2 VDAC 2  ~ 30 kDa Anti-apoptosis [26]
FIS 1 7q22.1 Fis 1 16 kDa Mitochondrial fission protein [27, 28]
DRP 1 12p11.21 DRP 1  ~ 80 kDa Mitochondrial fission protein [27, 28]
MFN 1 3q26.33 Mitofusin 1  ~ 84.1 kDa Mitochondrial fusion protein [27, 28]
MFN 2 1q36.2 Mitofusin 2  ~ 86.4 kDa Mitochondrial fusion protein [27, 28]
MFF 2q36.3 mitochondrial fission factor Protein  ~ 38.4 kDa Mitochondrial division control [29]
MIEF2 17p11.2 MiD49  ~ 49 kDa Assist mitochondrial binary fission [29]
MIEF1 22q13.1 MiD51  ~ 51 kDa Negative regulator of mitochondrial 

fission
[29]

PINK—1 1p36.12 PTEN-induced kinase 1 (PINK 1) 63 kDa Protection from stress [30]
BNIP3 10q26.3 Bcl-2/adenovirus E1B protein inter-

acting with protein 3 (BNIP3)
24–35 kDa Apoptosis [31]

NIX 8q21 Nip3-like protein X (Nix)  ~ 19 kDa Anti-apoptosis [31]
FUNDC1 Xp11.3 FUN14 domain-containing protein 1 

(FUNDC1)
17 kDa Mitochondrial quality control [31]

PPARGC1A 4p15.3 Proliferator-activated receptor γ coac-
tivator-1 α (PGC-1α)

 ~ 91 kDa Regulation of mitochondrial biogen-
esis and metabolism

[32, 33]

NRF 1 17q21.3 Nuclear respiratory factors 1 67 kDa Activation of mitochondrial transcrip-
tion factor A (Tfam)

[32, 33]

NRF 2 2q31.2 Nuclear respiratory factors 2 45 kDa Activation of mitochondrial transcrip-
tion factor A (Tfam)

[32, 33]

IMMT 2p11.2 Mic 60/mitofilin 90 kDa Mitochondrial structural stability [34, 35]
CHCHD3 7q33 Mic 19/chchd3 26.1 kDa Mitochondrial structural stability [34, 35]
SAM 50 22q13.31 Sam 50  ~ 51.9 kDa Mitochondrial structural stability [34, 35]
TOMM6 6p21.1 Tom6 8 kDa Outer membrane complex subunit [36]
TOMM5 9p13.2 Tom5  ~ 6 kDa Outer membrane complex subunit [36]
TOMM7 7p15 Tom7  ~ 6.2 kDa Outer membrane complex subunit [36]
TOMM22 22q12–q13 Tom22  ~ 15.5 kDa Outer membrane complex subunit [36]
TOMM20 1q42.3 Tom20  ~ 16.2 kDa Outer membrane complex subunit [36]
TOMM40 19q13.32 Tom40  ~ 37.8 kDa Outer membrane complex subunit [36]
TOMM70 13q12.2 Tom70  ~ 67.4 kDa Outer membrane complex subunit [36]
NGB 14q24.3 Neuroglobin  ~ 16.9 kDa Regulation of endogenous protective 

mechanisms
[37]

INF2 14q32.33 Inverted formin 2  ~ 135.6 kDa Involvement in mitochondrial fission 
mediated by Drp 1

[38]

AKAP1 17q22 A kinase anchor protein 1  ~ 9.7 kDa Protects neurons from I/R injury [39–41]
PRKAA1 5p13.1 AMP (activated protein kinase)  ~ 62.3 kDa Regulation of cellular metabolism [42]
GBA1 1q22 LLRK 2 286 kDa Regulation of mitochondrial dynamics [43]
PARK7 1p36.23 Protein deglycase (DJ-1)  ~ 20 kDa Regulation of mitochondrial dynamics [43]
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remodeling, and mitochondrial dynamics. Mt is integral 
to a multitude of cellular functions, such as phospholipid 
synthesis, hemoglobin biosynthesis, lipid synthesis, stem 
cell reprogramming, cell cycle progression, cellular prolif-
eration, cell differentiation, ATP production, the citric acid 
cycle, fatty acid oxidation, innate immunity, iron-sulfur 
(Fe-S) cluster production, generation and maintenance of 
reactive oxygen species (ROS), redox signaling, calcium 
homeostasis, apoptosis, and autophagy [50, 70–77]. These 
vital cellular processes involve proteins distributed across 
four distinct mitochondrial compartments: the matrix, IMS, 

OMM, and IMM [78]. The OMM connects to the cyto-
sol, while the IMM extends into the mitochondrial matrix, 
housing mtDNA [79]. MtDNA, consisting of approxi-
mately 1000–10,000 copies per cell, includes transfer RNAs 
(tRNAs) [74], two ribosomal RNAs (rRNAs) [13], and com-
plex protein subunits (C1, C2, C3, C4, and C5) [80–82]. 
Over 1500 different proteins [83, 84], including 13 trans-
ported from the matrix to the oxidase assembly translocase 
(TOM complex), contribute to these processes.

The mitochondrial matrix hosts the tricarboxylic acid 
(TCA) cycle, housing essential enzymes, NADH, and 

Table 1  (continued)

Gene Chromosomal location Protein Size Biological function References

SNCA 4q22.1 α-Synuclein  ~ 15 kDa Mitochondrial membrane permeabi-
lization

[44]

PARP1 1q42.12 Parp 1 116 kDa DNA repair enzyme [45, 46]
TARDBP 1p36.22 TDP–43 43 kDa Disruption of mitochondrial complex 

1 activity
[47–49]

STING 1 5q31.2 Stimulator of interferon genes  ~ 42.1 kDa Activates other signaling pathways 
like NF–kB, IFN 1

[50]

GSK3B 3q13.33 Glycogen synthase kinase 3◽  ~ 46.7 kDa Apoptosis [51]
MAP3K5 6q22.33 Apoptosis signal-regulating kinase 1  ~ 154.5 kDa Apoptosis [52]
BBC3 19q13.32 Apoptotic p53/Bcl-2-binding compo-

nent 3 (BBC3)
 ~ 26.4 kDa Apoptosis [52]

JUN 1p32.1 c-Jun NH2-terminal kinase  ~ 35.6 kDa Apoptosis [52]
DIABLO 12q24.31 Direct IAP-binding protein with low 

PI (DIABLO)
 ~ 27.1 kDa Apoptosis [53]

HTRA2 2p13.1 High-temperature requirement protein 
A2 (HTRA2)

49 kDa Apoptosis regulator [53]

XIAP Xq25 X-linked inhibitor of apoptosis (XIP1)  ~ 9 kDa Apoptosis inhibition [54]
APAF1 12q23.1 Apoptotic protease activating factor 1 

(APAF1)
 ~ 141.8 kDa Apoptosis [55]

MTOR 1p36.22 Mammalian target of rapamycin 
(mTOR)

 ~ 250 kDa Cell growth regulator [56]

NLRP3 1q44 NLR family pyrin domain containing 
3 (NLRP3

118 kDa Membrane pore opening [57]

ATF1 12q13.12 Activating transcription factor associ-
ated with stress 1 (ATFS-1)

 ~ 29.2 kDa Trigger mitochondrial turn over [58]

VAPB 20q13.32 Vesicle-associated membrane protein-
associated protein-B (VAPB)

 ~ 27.2 kDa Regulate the ER-mitochondria asso-
ciations and calcium homeostasis in 
neurons

[59, 60]

RMDN3 15q15.1 Protein tyrosine phosphatase-interact-
ing protein-51 (PTPIP51)

 ~ 52.1 kDa Regulate the ER-mitochondria asso-
ciations and calcium homeostasis in 
neurons

[59, 60]

RHOT1 17q11.2 Miro 1  ~ 70.7 kDa Adaptor protein [61]
ULK1 12q24.33 Unc-51 like autophagy activating 

kinase 1 (ULK1)
 ~ 112 kDa initiator of autophagy/mitophagy [62]

CALCOCO2 17q21.32 Nuclear dot protein 52 kDa (NDP52)  ~ 52 kDa Cargo adaptors [63, 64]
TBK1 12q14.2 Tank-binding kinase 1 (TBK1)  ~ 89.6 kDa Mitophagy enhancer [65]
AMBRA1 11p11.2 Activating molecule in BECN1-

regulated autophagy protein 1 
(AMBRA1)

 ~ 142.5 kDa Induce mitophagy [66]

PHB2 12p13.31 Prohibitin 2 (PHB2) 34 kDa Mitophagy [67]
PHB1 17q21.33 Prohibitin 1 (PHB1) 32 kDa Mitophagy [68, 69]



 Molecular Neurobiology

FADH, utilized by the electron transport chain (ETC) to gen-
erate a mitochondrial membrane potential (Mtmp) crucial 
for OXPHOS [85]. OXPHOS facilitates significant ATP pro-
duction in Mt. Mitochondrial  NAD+  (MtNAD+), regulated 
by enzymes like nicotinamide phosphoribosyltransferase 
(NAMPT) and mitochondrial nicotinamide mononucleotide 
adenylyltransferase (NMNAT3), contributes to the intracel-
lular  NAD+ pool [86]. Mt  NAD+ transporters, SLC25A51 
and SLC25A52, aid in maintaining normal  NAD+ levels 
in humans [87]. Disruption of NAMPT, for instance, can 
interfere with mitochondrial respiration in mammals[88, 89]. 
The IMM comprises the inner boundary membrane (located 
near the OMM) and the cristae membrane (found in the 
innermost regions of the IMM) [90]. The cristae membrane 
houses pro- and anti-apoptotic proteins, as well as regulators 
of mitochondrial fusion and fission.

Outer Membrane and Inner Membrane

Major phospholipids in the mitochondrial membrane include 
phosphatidylcholine, phosphoethanolamine, cardiolipin 
(CL), and phosphatidic acid (PA). PA, a saturated lipid, 
aids in the remodeling of the Mt membrane[91]. The OMM 
proteome comprises integral proteins grouped based on 
their structure, such as α-helical transmembrane segments 
and β-barrel proteins with multiple β-strands [92]. These 
proteins act as a physical barrier, restricting large molecule 
diffusion into the organelle while allowing the passage of 
small molecules through different import mechanisms. Outer 
membrane proteins are initially synthesized as precursors by 
cytosolic ribosomes, assisted by molecular chaperones in 
transit through the hydrophobic cytosol. Dedicated protein 
translocases facilitate their insertion into the Mt surface[9, 
93–95]. The TOM complex and related membrane proteins 
mediate interactions between Mt and other cellular orga-
nelles, such as the endoplasmic reticulum (ER). These inter-
actions facilitate the exchange of lipids and calcium ions, 
regulating Mt biogenesis and dynamics [96, 97]. The OMM 
appears adapted for storing charge with multi-spanning 
proteins like Ugo1, Mcp3, Ubx2, Om14, Scm4, mamma-
lian PBR, and mammalian MITOL [98–103]. The 33-kDa 
protein Ayr1 functions as an ion channel in the OMM, also 
found in the ER. With around 200 proteins, the OMM acts 
as a specialized transport system with channel-like func-
tions[104, 105]. Anion channels (ACs) on the OMM, clas-
sified as outer membrane AC (OMAC) and inner membrane 
AC (IMAC), can be anion selective (ASAC), cation selective 
(CSAC), or non-selective (NSAC).

Voltage-dependent anion channel (VDAC), porins on 
the OMM, controls metabolic communication between 
Mt and the cell[106, 107]. VDAC, comprising three iso-
forms (VDAC1-3)[23, 32, 108], has a 3D structure with 
antiparallel β-strands, a β-barrel transmembrane pore, and 

an N-terminal domain forming an α-helix [109]. VDAC1, 
positioned between cytosol and Mt, serves as the primary 
conduit for ions and metabolites, influencing cell bioener-
getics and the flow of Krebs cycle intermediates[110–113]. 
Nine distinct channel-forming proteins transport metabo-
lites, inorganic ions, and proteins across the OMM [114]. 
VDAC transports calcium to Mt [115]. VDAC1 is crucial 
for oxygen consumption and the function of ETC enzymes, 
while VDAC2 regulates cell death and survival through 
interactions with Bak and Bax [26]. Similarly, VDAC3 pro-
vides electrophysiological characteristics and undergoes 
post-translational modifications[116–118]. Figure 1 illus-
trates all the inbound and outbound activities of Mt and their 
association with neurodegenerative diseases.

Cristae

The organization and morphology of the IMM are intricate 
and can be divided into two compartments. One of these 
compartments is situated opposite to the OMM, while 
the other extends to the IMS through tubular projections 
known as cristae junctions (CJ)[119]. The IMM structure 
is established through the formation of protein-lipid com-
plexes known as MICOS (Mitochondrial Contact Site and 
Cristae Organizing System), which have evolved from 
α-proteobacteria. Cristae, the folds within the IMM, house 
essential components such as ETC complexes,  F0F1-ATP 
synthase, OPA1, and MICOS. Notably, the morphology of 
cristae undergoes changes during mitochondrial respiration 
[120, 121]. In the context of ferroptotic cells, modifications 
occur in the structure of cristae, marked by an increase in 
mitochondrial membrane content and a reduction in cris-
tae structures [122]. OPA1, identified as a dynamin-related 
GTPase, plays a crucial role in maintaining cristae struc-
ture. It exists in two forms, i.e., L-OPA1 (long) and S-OPA1 
(short), both of which act as anchors at CJ, preventing the 
release of cytochrome C (Cyt C) from the intercristae space. 
This information highlights the complexity of the IMM and 
cristae structure, underscoring the role of MICOS and OPA1 
in maintaining mitochondrial integrity and function. The 
morphological changes observed in cristae during mitochon-
drial respiration and in ferroptotic cells further emphasize 
the dynamic nature of these structures.

Mt in Cellular Energetics

In the IMM, complex I serves as the exclusive electron 
acceptor from NADH, receiving electrons from the mito-
chondrial matrix. NADH and FADH2, generated in the 
TCA cycle, transport electrons across the IMM to the ETC, 
establishing a high positive potential in the mitochondrial 
matrix (mtmp). The ETC comprises five complexes, i.e., 
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complex I (C1), complex II (C2), complex III (C3), com-
plex IV (C4), and complex V (C5), encoded by both mito-
chondrial and nuclear genomes [123]. A vital subunit of C1, 
known as NADH—ubiquinone oxidoreductase subunit S4 
(NDUFS4)—ensures the stability of C1 [124, 125]. Dur-
ing NADH oxidation, C1 releases four protons into the IMS 
while transferring electrons to ubiquinone (UbQ) through 
flavin, extending to Fe–S centers [124–131].

In C2, redox reactions occur with FAD and succinate 
catalyzed by SDHA, and the subsequent electron transfer 
to UbQ is facilitated by SDHB [132, 133]. C2, along with 
C1 and 3, plays a role in modulating ROS. Dysfunction in 
C2 can result in severe ROS accumulation, a contributing 

factor to neurodegenerative disorders [134–137]. Com-
plex III releases four protons to the IMS and catalyzes the 
transfer of electrons from ubiquinol (CoQH2) to Cyt C 
[138, 139]. Complex IV facilitates electron transfer from 
Cyt C to molecular oxygen. The  F1F0-ATP synthase, also 
known as ATP synthase, resides in the IMM. It consists 
of two domains: the hydrophobic  F0 domain responsible 
for proton translocation and the hydrophilic  F1 domain 
present in the matrix. This complex produces ATP from 
ADP and phosphate using the proton gradient[140–142]. 
Mutations in mitochondrial components can reduce the 
activity of  F1F0-ATP synthase, resulting in diminished 
energy production[143–146].

Fig. 1  Mitochondrial dynamics: Ugo1, Mcp3, and Ubx2 are the outer 
mitochondrial membrane (OMM) multi-spanning proteins for stor-
ing charge and 33-kDa protein Ayr1 act as ion channel. VDAC on 
OMM as a β-barrel transmembrane pore and an N terminal domain 
forming α-helix. In IMM, complex I accept electron from NADH and 
transferred to NADH and  FADH2 and at the mt matrix, NADH and 
 FADH2 carry electrons from TCA cycle to the ETC across the IMM. 
NADH: ubiquinone oxidoreductase subunit S4 (NDUFS4) is a subu-
nit of C1 that releases four protons to IMS during NADH oxidation 
after transmitting two electrons to IMM to ubiquinone (UbQ) through 

flavin extending to centers of iron and sulfur (Fe–S). In C2, FAD 
and succinate undergo redox with SDHA (succinate dehydrogenase 
complex flavoprotein subunit A) and the electron transfer to UbQ is 
achieved by SDHB (succinate dehydrogenase complex flavoprotein 
subunit B). C2 modulates ROS along with C1 and C3, and loss in 
C2 function leads to severe ROS accumulation that is a basis of neu-
rodegenerative disorders. C3 releases four protons to IMS catalyses 
ubiquinol (CoQH2) to Cyt C. C4 catalyzes electron transfer from Cyt 
C to molecular oxygen; the  F1F0 (ATP synthase) produces ATP from 
ADP
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Overview of Mitochondrial Dynamics 
and Biogenesis

Mt exhibit diverse shapes, ranging from tiny round struc-
tures to shorter lengths and larger tubular forms. The 
interplay between these morphologies involves the binding 
and rupturing of both the OMM and IMM, a phenomenon 
known as “Mt dynamics” that regulates the Mt network 
[147]. The dynamic nature of Mt enables them to adapt 
their shapes according to specific cellular functions. For 
instance, during the energy-intensive DNA replication 
phase (S phase), Mt can become hyperfused to enhance 
ATP production [148]. Proteins located on the OMM, 
including fission 1 (FIS1) and mitochondrial fission factor 
(MFF), assemble at specific locations. CL and PA, con-
stituting 2% and 5% of total lipids in mammalian cells, 
respectively, play a role in this process. Although these 
lipids are enriched in Mt, the assembly of Dnm2, a GTPase 
involved in mt fission, occurs at membrane constrictions, 
resulting in individual Mt formation [149, 150].

The precise control of mt morphology is crucial for 
mitochondrial function and homeostasis (Fig. 2). Overex-
pression of Bif-1b/c enhances neuronal survival by pro-
moting mt elongation, maintaining membrane potential, 
and reducing apoptosis [151]. The fusion of Mitofusin 1 

(Mfn1) and Mitofusin 2 (Mfn2) in the OMM forms oli-
gomers that expand the mitochondrial surface both within 
individual Mt and between nearby Mt [152]. Dynamins 
involved in division are thought to oligomerize in a GTP-
dependent manner, forming helices that wrap around Mt 
[153]. Additionally, proteins like MFF, uniquely found in 
humans on the OMM, are essential for mt division [154]. 
These physical contacts persist under dynamic conditions, 
emphasizing the significance of the ER-Mitochondrial 
(ER-Mt) interface for proper functioning [155].

Dynamics

Mitochondrial fusion is a process where two Mt merge to create 
healthier organelles, while mitochondrial fission involves the 
division of a single mitochondrion into several daughter orga-
nelles, facilitating the removal of damaged and fragmented Mt 
[156–158]. The term “mitochondrial dynamics” encompasses 
the interplay of mitochondrial translocation, fusion, and fission. 
This intricate process is regulated by nuclear-encoded enzymes, 
primarily big GTPases, as well as mitochondrial lipids, includ-
ing CL and PA [50, 159]. Throughout the various cellular life 
processes, mitochondrial fusion and fission can occur rapidly, 
especially in response to external stress, leading to transient 
partial fusion events [150, 160].

Fig. 2  Mitochondrial fission and fusion: The intricate processes 
of mitochondrial dynamics, encompassing both fission and fusion 
events. Mitochondrial fission: The division of a mitochondrion into 
two separate entities, facilitated by the recruitment of dynamin-
related protein (Drp1) to the outer mitochondrial membrane (OMM). 
This process ensures the maintenance of mitochondrial quality con-
trol and distribution. Mitochondrial fusion: The merging of two indi-

vidual Mt, orchestrated by mitofusins (Mfn1 and Mfn2) on the OMM 
and optic atrophy 1 (OPA1) on the inner mitochondrial membrane 
(IMM). Fusion is crucial for the exchange of contents, complementa-
tion of damaged Mt, and the preservation of mitochondrial function. 
These dynamic processes collectively contribute to the regulation of 
mitochondrial morphology and function within the cell
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At least five proteins play essential roles in regulat-
ing and maintaining mitochondrial structural dynamics. 
These include optic atrophy 1 (OPA1), Mfn1, and Mfn2, 
which facilitate mitochondrial fusion, FIS1, and dynamin-
related protein 1 (DRP1), crucial for mitochondrial fission 
[161–164]. Mitochondrial dynamics are critical for the regu-
lation of cell death [165]. The mitochondrion, as a dynamic 
network, plays a pivotal role in the cell by generating ROS, 
supplying energy, and controlling programmed cell death 
[166]. Elevated levels of Drp1, Fis1/Mfn1, and PINK1 sug-
gest a shift in mitochondrial dynamics from fission to fusion, 
despite a reduction in ShcA, a protein regulating ROS [167]. 
Depletion of any fission-related proteins alters mitochondrial 
dynamics, leading to elongated mitochondrial morphology 
[149, 168].

To maintain a healthy mitochondrial network, Mt must 
achieve a stable state with balanced communication between 
fission and fusion events. Concurrent fusion and fission pro-
cesses, controlled by proteins like Drp1, regulate the overall 
shape, size, and population of Mt [169]. This coordinated 
control of mitochondrial dynamics, synchronized with the 
cell cycle, ensures equal distribution of Mt to daughter 
cells. Drp1, in particular, plays a primary role in coordinat-
ing mitochondrial dynamics with mitosis [170]. Therefore, 
intricate and well-balanced regulatory mechanisms linking 
mitochondrial dynamics and mitochondrial quality control 
(mtQC) mechanisms are essential for maintaining the fitness 
of mitochondrial pools and networks in biological systems.

In the absence of Drp1, Fis1 can collaborate with Mfn2 
and OPA1 to facilitate mitochondrial fission by reduc-
ing GTPase activity, thereby safeguarding against fusion-
induced mitochondrial fragmentation [171]. The depletion 
of MFF results in a substantial decrease in mitochondrial 
fission in HeLa cells or MEFs, preventing the recruitment of 
Drp1 to the OMM. Conversely, an overexpression of MFF 
leads to the recruitment of Drp1 to the Mt, inducing hyper-
fission in these cells [172]. Within mammals, the paralogs 
MiD51 and MiD49 serve as mitochondrial receptors, facili-
tating the cytosolic translocation of Drp1 to Mt [173, 174].

A proposed mechanism for the rapid exchange of metabo-
lites, mtDNA, and membrane components is referred to as 
mitochondrial fusion [175–181]. Conversely, mitochondrial 
fission is believed to facilitate the separation of mtDNA and 
individual Mt from the network, allowing for their subse-
quent degradation [182–186]. These processes, mt fission 
and fusion, play a pivotal role in influencing various aspects 
of mitochondrial function, including respiration, calcium 
buffering, and apoptosis [28, 187–190].

The dynamics of mitochondrial fusion and fission are 
further regulated by specific phosphilipid, PA and CL that 
are promoting fusion and fission respectively [191]. The 
Miro-Milton complex, subject to calcium-dependent regu-
lation, links Mt with kinesin motors, thereby controlling 

mitochondrial motility and the delicate balance between 
fission and fusion [192]. In the context of cellular transport, 
small, spherical Mt resulting from mitochondrial fission 
are crucial for axonal cell transport, whereas mitochondrial 
fusion provides protection against external stimuli [193].

Disruptions in the equilibrium between mitochondrial fis-
sion and fusion can have far-reaching consequences, impact-
ing mitochondrial function and contributing to various dis-
eases [194]. Enhanced expression of mitochondrial fission 
promotes fragmentation of the mitochondrial network, leads 
to the release of Cyt C from Mt, and increases apoptosis [27, 
28]. Additionally, upon fracturing the mitochondrial net-
work, FIS1 has been observed to reduce the abundance and 
survival of mitochondrial fusion proteins, including Mfn1, 
Mfn2, and OPA1 [171, 195].

Biogenesis

The process of mitochondrial biogenesis encompasses sev-
eral vital steps, including the replication of mtDNA, synthe-
sis of both IMM and OMM, production of proteins encoded 
by the Mt, and import as well as synthesis of nuclear-
encoded mitochondrial proteins. Regulatory proteins nuclear 
respiratory factors 1 and 2 (NRF1 and NRF2) engage with 
the transcriptional coactivator peroxisome proliferator-
activated receptor coactivator-1 (PGC-1), forming a crucial 
network that oversees mitochondrial biogenesis and energy 
metabolism [32, 196].

An essential player in this regulatory network is the mito-
chondrial transcription factor A (Tfam), which plays a piv-
otal role in mtDNA transcription and replication. Activation 
of Tfam is orchestrated by the concerted action of NRF1 
and NRF2. These transcription factors not only govern the 
mtDNA processes but also regulate the import of nuclear-
encoded mitochondrial proteins. Furthermore, they exert 
control over the five complexes constituting the mitochon-
drial ETC [33, 197]. In summary, the collaborative action 
of NRF1, NRF2, and PGC-1 orchestrates various aspects 
of mitochondrial biogenesis and function, influencing both 
mtDNA processes and the composition of the mitochondrial 
ETC.

Significance of Mt Dysfunction and mtDNA 
Alterations in Neurological Conditions

Mitochondrial dysfunction stands as a critical factor influ-
encing both health and disease across a spectrum of physi-
ological and pathological conditions [198] (Fig. 3). The 
mitochondrion, often referred to as the powerhouse of the 
cell, plays a pivotal role in energy production and serves 
as a hub for various cellular processes. In a state of opti-
mal function, Mt orchestrate essential mechanisms such 



 Molecular Neurobiology

as OXPHOS, contributing to ATP production-the primary 
energy currency of the cell. Mt are also integral to metabolic 
pathways, including the citric acid cycle and fatty acid oxi-
dation, crucial for maintaining cellular homeostasis [199]. 
However, when mitochondrial function falters, it becomes 
a contributing factor to the onset and progression of vari-
ous diseases. Neurological disorders, such as Alzheimer’s 
disease (AD), Parkinson’s disease (PD), and amyotrophic 
lateral sclerosis, are strongly linked to mitochondrial dys-
function. The repercussions extend beyond the nervous sys-
tem, encompassing conditions like cardiovascular diseases, 
diabetes, and age-related degenerative disorders. 

Several key aspects contribute to mitochondrial dys-
function and subsequent health issues. Genetic mutations 
in mitochondrial and nDNA can compromise the integrity 
of proteins involved in mitochondrial function, leading to 
aberrant processes such as impaired OXPHOS and disrupted 
energy production. Environmental factors, including expo-
sure to toxins and oxidative stress, further exacerbate mito-
chondrial damage. Mitochondrial dysfunction also plays a 
role in the aging process [107]. As cells age, mitochondria 
accumulate damage, leading to a decline in their function. 
This aging-associated mitochondrial dysfunction is impli-
cated in a range of age-related diseases. Understanding and 

Fig. 3  Mitochondrial dysfunction leading to different neurological 
disorders: The significance of Mt dysfunction and mtDNA modifi-
cations in various neurological disorders, emphasizing their crucial 
contribution to disease pathogenesis. The comprehensive overview 

underscores the unique insights into the molecular mechanisms 
underlying these conditions, highlighting the imperative need for tar-
geted therapeutic interventions
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addressing mitochondrial dysfunction have become focal 
points in contemporary medical research. Therapeutic ave-
nues include gene therapies targeting mtDNA, small mol-
ecules that enhance mitochondrial function, and strategies to 
promote mitochondrial biogenesis. Additionally, emerging 
technologies like mitochondrial transplantation hold promise 
for mitigating the effects of dysfunctional Mt. In the pursuit 
of overall health and the prevention of diseases linked to 
mitochondrial dysfunction, ongoing research aims to unravel 
the intricate molecular mechanisms governing mitochondrial 
function. As scientists delve deeper into these complexities, 
new diagnostic and therapeutic strategies will likely emerge, 
offering hope for improved treatments and preventive meas-
ures against diseases rooted in mitochondrial dysfunction.

The onset of neurodegeneration is prompted by the accu-
mulation of diverse stressors, coupled with the simultane-
ous disruption of multiple cell-protective systems [47]. In 
neurodegenerative disorders, a shift in mitochondrial activ-
ity significantly contributes to the transition from a normal 
physiological state to a degenerative one. Pathological pro-
tein aggregation, reduced ATP synthesis, and the formation 
of plaques associated with dopaminergic neuronal death 
result from the adverse effects of several genetic abnor-
malities working in concert[200]. Mutations in Parkin and 
PINK1 exert their influence on Mt monitoring and cell biol-
ogy[200]. PINK1 is initially translated into the outer OMM 
and subsequently translocated into Mt for proteolytic degra-
dation in healthy Mt. This underscores the fact that PINK1 
levels are typically low in normal mitochondrial conditions. 
However, when mitochondrial dysfunction occurs, such as 
membrane depolarization, PINK1 persists as a membrane-
anchored component in the OMM. Parkin is activated in 
its new location through PINK1-mediated phosphorylation. 
Upon activation, Parkin-mediated ubiquitination signals trig-
ger mitophagy, which is the selective elimination of Mt via 
the autophagosome [201]. This process leads to functional 
and anatomical transformations in Mt, impacting various 
cellular processes. These include excessive ROS generation, 
a decline in brain energy due to reduced ATP levels, altera-
tions in calcium homeostasis, and the initiation of apopto-
sis[202, 203].

The circular mtDNA exhibits a mutation rate 10–17 
times higher than that of nDNA, playing a crucial role in 
maintaining mitochondrial integrity[204–206]. Circulating 
mtDNA has been identified in human blood and serves as a 
potential biomarker for mitochondrial dysfunctions. Muta-
tions in mtDNA, coupled with synaptic damage, result in 
the inhibition of transcription replication[207], increasing 
the likelihood of AD by 63% [136]. The impairment of 
synapses and mitochondrial dysfunction are key contribu-
tors to the development of AD[208]. Deletions and point 
mutations in mtDNA lead to compromised mitochondrial 
respiration [209–214]. LonPeptidase 1 (LONP1) is integral 

in orchestrating OXPHOS, mtDNA maintenance, and the 
expression of mitochondrial genes, forming a homo-hexam-
eric complex in the mitochondrial matrix [215–217]. Muta-
tions in LONP1 contribute to OXPHOS deficiencies [218], 
indirectly linking to pathophysiological disorders such as 
CODAS syndrome and Perrault syndrome. These disorders 
are associated with disruptions in CLPXP or ERAL1, some-
times manifesting as progressive cerebellar ataxia and intel-
lectual deficit [219, 220].

Mutations in the YME1L gene lead to optic atrophy, 
developmental delay, and hearing loss, while DRP1 muta-
tions can result in abnormal brain development, microceph-
aly, and optic atrophy. GDAP1 is implicated in Charcot 
Marie Tooth disease (CMT). Furthermore, mitochondrial 
proteins, including ATP5A, NDUFS3, SDHB, and other 
members such as tetraspanins CD9 and CD63, are found in 
decreased concentrations in small vesicles of PD patients. In 
summary, the heightened mutation rate of circular mtDNA, 
coupled with its interplay with nDNA, underscores its sig-
nificance in mitochondrial integrity. Dysregulation of these 
processes contributes to various disorders, emphasizing the 
intricate connections within the mitochondrial network and 
their implications for neurodegenerative diseases.

Alzheimer’s Disease

The root cause of AD pathology is attributed to Mt cas-
cade dysfunction [221, 222]. Two critical components in 
the course of AD are tangles and plaques [223, 224]. This 
involves the accumulation of β-amyloid in brain vessels 
[225, 226] and intracellular neurofibrillary tangles result-
ing from tau protein aggregation [198, 233]. The interaction 
between amyloid precursor protein (APP) and Aβ with Mt 
proteins leads to processes responsible for neurodegenera-
tion [227, 228], induced by enhanced mitophagy and Mt 
defects. In AD patients, a reduction in the activity of Mt C4 
has been observed in the hippocampus and platelets [229]. 
Suppression of communication between Aβ and Aβ-binding 
alcohol dehydrogenase (ABAD) has been shown to reduce 
Aβ-induced neuronal death and free radical production. Aβ 
inhibits two crucial Mt enzymes, α-ketoglutarate dehydro-
genase and cytochrome oxidase, both found at low levels 
in the brains of AD patients. Aβ attaches to the Mt matrix 
protein, ABAD, following overwhelming complex IV and 
α-ketoglutarate dehydrogenase [230].

Overexpression of APP, including Nrf2, downregulates 
Mt fusion, biogenesis, and mitophagy [231]. Inactivated 
Nrf2 reduces ETC complexes’ activity and lowers NADH 
and FADH2 expression [232], contributing to the advance-
ment of tau and amyloid in AD patients [233]. The tau pro-
tein, losing its physiological activities as AD progresses, 
reaches the dendrite soma, interacting with β-oligomers and 
enhancing excitotoxicity, forming neurofibrillary tangles 
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[199, 234]. Aβ plaques, precipitated with high iron amounts, 
contribute to the development of hazardous Aβ oligomers 
and ROS, causing Mt malfunction and cell death [235–237]. 
Aberrant metal ion distribution or metabolism leads to syn-
aptic dysfunction directly tied to Mt in the synapses [238]. 
Excess zinc, generated by increased metalloprotein release, 
stimulates Aβ synthesis and deposition, initiating a cascade 
reaction. Inhibition of protein phosphatase and tau hyper-
phosphorylation, linked with toxicity related to N-methyl-
d-aspartate channel activation and Aβ, is due to increased 
ROS production from soluble oligomers in the brain and 
cerebrospinal fluid of AD patients [226, 237, 239].

Chronic hypoxia reduces α-secretase expression, increas-
ing Aβ formation and stimulating mt ROS development 
[240]. AD brains exhibit decreased fusion protein expression 
but increased fission protein expression or activity [241]. 
The increase in S-nitrosylation of dynamin-related protein 
1 (Drp1) mediates Mt fission, contributing to AD pathogen-
esis [242, 243]. In AD brains, ryanodine receptor 2 (RyR2) 
expression levels are elevated [244], leading to excessive 
 Ca2+ release affecting synaptic plasticity [243, 245, 246]. 
This induces iron-induced mt fission and stimulates mt  Ca2+ 
uptake, indicating RyR malfunction and neurodegeneration 
[17, 247, 248].

Parkinson’s Disease

Parkinson’s disease (PD) is characterized by the loss of 
dopaminergic neurons in the substantia nigra and the accu-
mulation of α-synuclein (ASN) oligomers [223, 249], often 
referred to as Lewy bodies, making it the second most preva-
lent neurodegenerative condition after AD. The aggrega-
tion of ASN oligomers, coupled with disruptions in  Ca2+ 
homeostasis, leads to Mt membrane permeabilization and 
the opening of the mitochondrial permeability transition 
pore (MPTP). This cascade results in the generation of ROS 
[250], release of Cyt C, and induction of apoptosis.

The manifestation of PD includes progressive muscle 
rigidity and tremors, attributed to a diminished dopaminer-
gic modulation of striatal neurons, thereby modifying motor 
systems [251–253]. Several genetic mutations, including 
Parkin, PINK-1, LRRK2, DJ-1, and ASN, have been asso-
ciated with familial PD. These gene products not only par-
ticipate in mitophagy but also influence ER-Mt connections 
and signaling in PD [44, 254–256]. ASN and the PRKN 
gene, coding for the E3 ubiquitin-protein ligase parkin, are 
known to be mutated in early-onset PD, affecting around 
10% of patients [257–259]. Autosomal recessive PD is 
linked to mutations in PINK1 and Parkin, resulting in stri-
atal mitochondrial respiration deficiency, neuronal vulner-
ability, oxidative stress, and impaired mitophagy activation 
[221, 260–265].

Autosomal recessive PD is associated with mutations in 
PINK1 and Parkin, disrupting the degradation of damaged 
Mt through the activation of mitophagy [221, 263–265]. 
Both PINK1 and Parkin contribute to the degradation of 
the mitochondrial fusion proteins Mfn1/2 and induce fis-
sion by enhancing fission protein activity while reducing 
the trafficking proteins Miro 1/2. However, the inactivation 
of the PINK1-Parkin pathway halts the removal of damaged 
Mt, leading to a slowdown in mitochondrial protein turnover 
[266]. Genetic degradation of PINK1 results in deficiencies 
in striatal mitochondrial respiration and increased vulner-
ability of neuronal cells, ultimately causing oxidative stress 
[260–262]. The reduction in Mtmp leads to the accumulation 
of PINK1 at the OMM, where Parkin subsequently removes 
damaged Mt [186, 254]. Similarly, the absence of Parkin 
disrupts synaptic plasticity and causes dysfunction in striatal 
Mt [265].

Parkin ablation induces synaptic plasticity and striatal 
mitochondrial dysfunction [265]. Mutations in Parkin cause 
defective mitochondrial morphology in iPSC-derived neu-
rons of PARK2 patients. A prevalent DNA lesion associated 
with oxidative stress is 8-hydroxy-deoxyguanine (8-oxo-
dG), an oxidized form of guanine frequently observed in 
neurological illnesses like AD and PD [267]. PD patients 
exhibit elevated levels of oxidized CoQ-10 and 8-hydroxy-
2-deoxyguanosine in their cerebrospinal fluid (CSF), impli-
cating mitochondrial oxidative stress and DNA damage in 
PD pathogenesis [268]. A53T transgenic mice and the brains 
of PD patients also show mitochondrial degeneration with 
DNA damage [269]. The GBA gene, encoding the enzyme 
glucocerebrosidase (GCase) involved in lysosomal hydroly-
sis, plays a crucial role. GBA mutations cause mitochondrial 
defects and are associated with Gaucher disease (GD) and 
PD [270–272]. Approximately 5–15% of PD patients have 
mutations in the GBA gene, making it the most significant 
genetic risk factor for PD [273].

Huntington's Disease (HD)

Huntington’s disease (HD) is an autosomal dominant neu-
rological disorder characterized by an accumulation of tri-
nucleotide CAG repeats within the huntingtin (HTT) gene, 
leading to polyglutamine repeats in the huntingtin protein 
(mtHtt) [274, 275]. This mutation affects ion channels, 
induces oxidative and metabolic stress, and results in Mt 
malfunction. Mutant HTT inactivates GAPDH, impairing 
Mt protein transport, causing mtDNA degradation, and con-
tributing to deletions in HD brains [276]. Neurodegeneration 
occurs through mutant HTT aggregates, disrupting Mt traf-
ficking and altering neuronal movement [277]. Addition-
ally, there is a reduction in mitophagosomes via mitophagy 
receptors, hindering mt clearance and leading to a buildup 
of damaged Mt [278].
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MtQC dysfunction is evident in HD, with upregulated 
fusion proteins and downregulated fission protein expres-
sions causing excessive mt fission [279]. HD pathophysiol-
ogy includes mt dysfunction, impaired cellular antioxidants, 
and symptoms affecting motor coordination, cognition, and 
mental health [280, 281]. Stress induction in lymphoblast 
cell lines from HD patients reveals increased apoptotic cell 
death mediated by caspase-3, caspase-8, and caspase-9 acti-
vation [282–284]. Notably, exposure to stress induces appar-
ent Mt differences and increased apoptosis in lymphoblasts 
from HD patients [204].

Mt failure is a pivotal factor in HD progression, with 
anomalies such as mtDNA errors, oxidative stress, calcium 
imbalance, and increased lipid peroxidation observed in HD 
mouse models [285–288] and human brains [281, 289]. These 
abnormalities are linked to disease progression [286, 288] 
and severity [281]. The antioxidant system’s inefficiency may 
result from the mtHtt protein, which reduces acetylase activity 
through CBP/p300 dimer interaction [290, 291] and affects 
Nrf2 stability and cellular localization [292]. The decrease 
in PGC1α, among other dysregulated proteins, contributes to 
HD pathogenesis by linking with transcriptional dysregulation 
and mt damage processes [293, 294].

Ischemic Stroke

During ischemia, intramitochondrial calcium levels increase, 
triggering the activation of mitochondrial phosphatases and 
subsequent dephosphorylation of the OXPHOS complexes, 
particularly Cyt c and Cyt c oxidase [295–298]. This leads 
to the loss of allosteric regulation by ATP. In the absence 
of oxygen as the final electron acceptor, OXPHOS is highly 
stimulated in a feed-forward manner [297, 299]. Simultane-
ously, due to the lack of cellular energy, the  Na+/K+ ATPase 
pump fails, resulting in neuronal membrane depolarization 
and the release of excess excitatory neurotransmitters, par-
ticularly glutamate [300].

CL, a dimeric phospholipid in the IMM, interacts with 
various OXPHOS complexes and Cyt C, making it suscep-
tible to oxidative damage [298, 301]. Its peroxidation results 
in the redistribution to the OMM, causing a 50% decrease in 
Cyt C oxidase activity. This leads to the release of mitochon-
drial apoptotic proteins, including Cyt C, apoptosis-inducing 
factor (AIF), Smac/DIABLO, and HtrA2/OMI, into the cyto-
sol [53, 302–304]. These proteins contribute to cell death in 
the ischemia penumbra through various mechanisms.

During reperfusion, pro-apoptotic proteins from the 
Bcl-2 family, such as Bid and Bax, increase, with Bid being 
cleaved into truncated tBid by elevated mitochondrial cal-
cium. tBid interacts with other pro-apoptotic proteins in the 
mitochondrial membrane. Activated Bad translocates to 
the OMM, suppressing antiapoptotic proteins [305, 306]. 
Upon opening of the mitochondrial permeability transition 

pore (MPTP), Cyt C is released into the cytosol, forming 
the apoptosome with APAF1 and procaspase-9, initiating 
apoptosis. SMAC/DIABLO and Omi/HtrA2, released from 
the mitochondrial IMS, enhance caspase-independent apop-
tosis by inhibiting inhibitor-of-apoptosis protein (IAP) fam-
ily members, such as XIAP [55, 307].

Activation of autophagy has a protective effect in the 
early stages of ischemia by preventing defective Mt from 
producing harmful chemicals [308–310]. Mt normally 
undergo cellular recycling through autophagy, involving 
signaling pathways like beclin-1/class III PI3K, AMPK/
mTOR, and PI3K/Akt/mTOR [56]. However, prolonged 
autophagy upregulation can lead to increased cell death.

Implications for Neurological Disorders 
and Potential Therapeutic Targets

The advancements in understanding mitochondrial function 
and its intricate involvement in neurological disorders have 
significant implications for the development of therapeutic 
interventions. The multifaceted nature of these disorders, 
ranging from PD and AD to traumatic brain injuries, neces-
sitates a diverse and targeted approach to mitigate their 
impact on neuronal health. The identification of compounds, 
such as Szeto-Schiller peptides, Mt-penetrating peptides, and 
MitoQ, designed to enhance mitochondrial activity, opens up 
new avenues for therapeutic exploration. These compounds 
specifically target mitochondrial membranes, addressing the 
core issues of mitochondrial dysfunction observed in various 
neurological disorders.

Investigations on the present therapeutic approaches for 
AD show that among 30 agents at clinical trials, only one 
(caprylic triglyceride) focuses on their metabolism and its 
bioenergetics [311]. Similarly, in the case of PD, among 74 
and 22 phase 2 and phase 1 clinical trials respectively, only 
2 agents (nicotinamide riboside and terazosin) focus on Mt 
and the energy metabolisms [312]. There lies an inevitable 
need for mitochondrial therapies, and also the exploration 
of molecular targets needs to be expanded through research 
advancement [312].

Among the developing therapeutic approaches for the 
treatment of mitochondrial disorders, optogenetics marks 
its position. This technique is achieved by the ion channels/
electron pumps/enzymes or transcription factors that are 
light-sensitive, allowing precise control of the biochemical 
signaling pathways. It is employed in a more advanced way, 
such that optogenetics controls mitochondrial fission through 
light-induced MLCs in many cell types, including HeLa cells, 
PC12, and  SLC25A46−/− HDFn, where  SLC25A46−/− HDFn 
affords to treat mitochondrial disorders [313].

Deep brain stimulation (DBS) is another technique used 
in the treatment of PD, targeting the subthalamic nucleus 
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for symptomatic PD treatment. The hyperactivity in PD 
rodents was examined in the M1 pyramidal cells through 
DBS, where the study also sheds light on in vivo recording 
of intracellular and juxtacellular network recruiting the 
GABAergic networks. The activation of cortical SST 
interneurons by optogenetics mitigates the major symptoms 
of PD in mice [314]. Though it has promising research 
findings, DBS is still in the initial stages of medical 
application [315].

CRISPR-Cas9 is an intricate process to carry out mito-
chondrial gene editing as there is no guide to deliver the 
RNA and Cas9 enzyme complexes into the Mt. A recent 
study by Hussain et al. made a concept proof that the stem 
loop element sgRNA can be added [316], which will in turn 
help in precise travel to Mt and also interact functionally 
with Cas9, which mediates sequence-specific mtDNA cleav-
age, thus making a great system for targeted mitochondrial 
genome editing.

Another promising study revealed the set of genes impact-
ing the mTORC1 pathway, which identifies mitochondrial 
dysfunction [317]. It targets the known leading genes at 
TORC1 pathway MIOS, RPTOR, WDR24, SEH1L, LAM-
TOR2/4, RHEB, RRAGA, and MTOR, where the ATF4 
KO cells treated with oligomycin showed the induction of 
Sestrin2 and Redd1is essential to inhibit mTORC1 signal-
ing [318].

Szeto‑Schiller (SS) peptides

The Szeto-Schiller (SS) peptides, Mt-penetrating peptides, 
and MitoQ (ubiquinone covalently linked to lipophilic cation 
triphenylphosphonium) represent novel compounds designed 
to target Mt membranes and enhance mitochondrial activity, 
as reported by Jin et al. [319]. The respiratory chain’s com-
plex II reduces MitoQ to active ubiquinol antioxidant, restor-
ing its efficiency against lipid peroxidation in isolated Mt 
[320]. CERE120, a riluzole-containing drug with an adeno-
associated virus, non-steroidal anti-inflammatory drugs, and 
caffeine A2A receptor antagonists, has shown promise in 
reducing the risk of neurodegenerative complications [321].

TIGAR 

TIGAR, interacting with various signaling proteins and 
exhibiting significant mitochondrial functions and cell sur-
vival properties, emerges as a potential therapeutic target for 
conditions like cancer, cardiovascular, and neurological dis-
orders. Despite incomplete understanding of its controls, the 
localization of TIGAR in subcellular organelles other than 
Mt, such as the ER and nucleus, warrants further investiga-
tion into the mechanisms governing its migration in response 
to stress [322].

Ursodeoxycholic Acid

Ursodeoxycholic acid (UDCA), an FDA-approved medica-
tion for biliary cirrhosis, has demonstrated neuroprotective 
effects in preclinical studies on PD models by preventing 
mitochondrial dysfunction [323, 324]. Managing glutathione 
levels with mitochondrial diseases and using mycophenolate 
mofetil (MMF) to activate Nrf2 represent promising thera-
peutic approaches in PD, with limited side effects [325]. 
Tecfidera, an oral formulation of dimethyl fumarate for 
multiple sclerosis, activates Nrf2, stimulating genes that 
promote anti-inflammatory, antioxidant, and mitochondrial 
biogenetic processes, protecting against MPTP-induced 
brain toxicity [326].

Niclosamide

Niclosamide’s ability to activate PINK1 and its regulatory 
enzyme suggests its potential as a treatment for PD [327]. 
Photobiomodulation, a low-level laser therapy, has been 
used to induce vascularization in injured muscle tissue with 
minimal side effects [328]. Treating AD with photobio-
modulation aims to directly impact Mt by providing pho-
tons to Complex IV, reducing ROS generation from dam-
aged Mt [328]. DNA methylation and transcription changes 
are explored as tools for reprogramming or differentiating 
induced pluripotent stem cells to treat neurodegenerative 
diseases [74, 329].

Edaravone

Edaravone, a drug scavenging free radicals, is approved 
for post-ischemic stroke and amyotrophic lateral sclerosis, 
but its effectiveness and safety in traumatic brain injury 
patients are still under investigation [330]. Apocynin, a 
NOX inhibitor, and TBHQ, an NRF2 activator, administered 
together show promising effects in rescuing white and gray 
matter in traumatic brain injury [331]. Mitoquinone (MitoQ), 
an antioxidant, leads to downstream effects, increasing 
NRF2 release and antioxidant enzyme gene expression, and 
uncouples mitochondrial respiration and phosphorylation to 
reduce ROS generation and prevent oxidative damage [330, 
332, 333].

Mdivi (Mitochondrial Division Inhibitor‑1)

Mdivi-1 is an inhibition molecule that suppresses the mito-
chondrial division by specifically targeting dynamins. The 
Mdivi-1 not only blocks the Cyt C [334] but also act on 
Drp1 in neurodegenerative diseases helps reducing the 
disease specific phenotypic appearance [182, 335]. The 
Mdivi prevents the Drp1 and GTPasey assembly by binding 
onto the GTPase and thus suppresses the GTPase activity 
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[334]. In seizures, the death of hippocampal neuron was 
greatly saved by Mdivi-1 by preventing the Cyt C release 
and caspase 3 which are already activated [336]. Besides 
that, the enhanced mitochondrial fission and oxidative also 
got reduced drastically by Mdivi-1 in epileptic rat [337]. A 
condition of ischemia/reperfusion, i.e., cerebral damage, was 
sharply decreased by the Mdivi-1, and downregulated Drp1 
and Cyt C was prevailed in ischemia/reperfusion mice [338]. 
In addition to the Cyt C blocking, Mdivi-1 significantly pre-
vented the Bax from entering into the Mt in Rhabdomyoly-
sis-induced rat [339]. In ischemic cases, Mdivi-1 increased 
the life of retinal ganglion cells [340].

Luteolin‑Flavonoid

Luteolin enforces the mitochondrial respiration amd ATP 
production provided it depends on ER  Ca2+ release chan-
nels. It has the hydrogen peroxide inducing property, and 
mitochondrial respiration increasing ability [341, 342]. 
It establishes the availability of nicotinamide adenine 
nucleotide (NADH) and electron carrier by activating the 
pyruvate dehydrogenase [343]. In mouse synaptosomes, 
enhanced ATP production was rendered by luteolin [344]. 
Luteolin facilitated the Nrf2 activation by translocating it 
to nucleus and thereby upregulated the heme oxygenase1 
and NQO1 [345].

Others

Various flavonoids, such as 7,8-dihydroxyflavone, cudrafla-
vone B, liquiritigenin, morachalcones, EGCG, procyanidins, 
huperzine A, geissoschizine methyl ether, sanguinarine, and 
fangchinoline, prevent mitochondrial oxidative injury and 
nerve cell death in HT22 cells induced by glutamate/erastin. 
Puerarin, derived from Pueraria lobata, exhibits protective 
effects against glutamate-induced toxicity in SH-SY5Y cells 
[346–356]. Coenzyme Q10 supplementation, involved in 
ATP formation, improves mitochondrial function, slowing 
motor deficits, atrophy, and improving survival in R6/2 mice 
[357–359]. Research on PMX500FI, a synthetic l-carnitine-
conjugated alpha-lipoic acid (ALA) derivative, suggests its 
effective traversal of both the blood–brain and blood-retinal 
barriers. Additionally, it inhibits histone deacetylase activ-
ity, enhances mitochondrial function, and exhibits superior 
in vivo pharmacokinetics compared to traditional ALA 
[360–364].

The diverse array of compounds and strategies discussed 
here highlights the evolving landscape of potential thera-
peutic targets for neurological disorders. Further research 
and clinical trials are essential to validate these findings and 
translate them into effective treatments, offering hope for 
individuals affected by these challenging conditions.

Biomarkers of Mitochondrial Dysfunction 
in Neurological Conditions

Some of the present mitochondrial disease detection by labo-
ratory tests are through lactate profiling, amino acid, and 
organic acid profiling and testing for species of acylcarnitine 
in mitochondrial diseased patients; and samples like blood, 
urine and CSF are the established means of detection. Many 
of the mitochondrial diseases still lie under the rare genetic 
disorders with approx. more than 350 gene mutations, yet 
do not contain the sensitive testing methods for the same 
[365]. The testing of serum creatine kinase levels, which is 
a muscular isoform, will be normal or only slightly higher in 
patients with mitochondrial disorders [366]. The identifica-
tion of the peripheral vascular function in the mitochondrial 
diseased patients with a confirmed m.3243A > G mutation, 
which acts as a biomarker of mitochondrial function exam-
ined through flow mediated skin fluorescence testing [367]. 
The technique of near infrared spectroscopy (NMR) was 
employed in the examination of oxygenated and deoxygen-
ated hemoglobin in skin and muscles at mitochondrial dis-
eased patients, and it did not show significant changes with 
respect to oxygen consumption and blood flow in muscles 
[367]. The field of nuclear medicine also supports the diag-
nosis of some cases of mitochondrial diseases like PD with 
its single photon emission tomography study, expressing the 
mtDNA deletions at patients with tremor signs [368].

Focusing on the physical features, short stature is a well-
established feature of mitochondrial diseases that are caused 
by both mtDNA and nDNA [369]. The mitochondrial dis-
orders are the disorders that have a multivariant differential 
system diseases containing unique phenotypes which occur 
from changes in genetic makeup of Mt [370]. The most 
precise and direct way of approaching the mitochondrial 
identification is through the gene mutation and deletions 
identification that comprises of MT-TL1, MT-TK, LARS2, 
MTFMT, C12orf65, NDUFA4, SURF1, COX10, LRPPRC, 
OPA1, POLG, RRM2B, TWINK, and ESCH1gene mutations 
and mtDNA deletions [369].

The primary lowering of mitochondrial beta oxidation 
and 12–14 long-chain acylcarnitines (LCACs) serves as 
biomarker for PD. Among many diagnostic biomarkers for 
PD, LCACs serve to be the best tool for diagnosing PD with 
its high specificity for PD at early stage [371]. Mostly the 
neurodegenerative disorders are approached with nutrient 
supplements for treatment which comprises of CoQ10, Sele-
nium, NADH/NAD/nicotinamide, vitamins B and D3, and 
alpha-lipoic acid [372]. CoQ10 is said to have significant 
effect on CSF biomarkers for treating AD [373]; selenium 
partially reversed the damaged dopaminergic neurotrans-
mission in MPTP induced PD mice [374] and high-dose 
selenate showed improvement in mini mental state score 



 Molecular Neurobiology

in AD patients [375]; NADH/NAD administration for AD 
patients did not show any progressive cognitive impairment 
and also showed increased MDRS (Mattis Dementia Rat-
ing Scale) scores [375]; vitamin B supplementation showed 
increased cognitive function at AD patients [376]; vitamin 
D3 supplementation found to decrease the osteopenia risk 
in PD subjects [377] and alpha lipoic acid supplementation 
had good effects on developing cognitive function in AD 
patients [378].

Nanotechnology and its implications at therapeutic field 
makes the promising attempt to make a revolution at tar-
geted drug delivery. This makes the way for delivering the 
CoQ10 by encapsulating inside nanocapsules and targeting 
the brain Mt which helps in oxidative stress reduction and 
enhancing the function of Mt [379]. Another application 
in nanomaterial delivery for treating dysfunction of AD is 
by conjugated liposomes which functions in aiming ligands 
such as transferrin or apolipoprotein E, and a Mt-derived 
cyclosporin A enhances the mitochondrial functioning and 
decreases cell death [380]. With many mitochondrial regula-
tors at research, the direct inducers of mitophagy could be 
the key for its related pathways like PINK1/Parkin pathway 
in AD, which thus help improve the survival and functional 
property of glutamine and cholinergic neurons, amyloid 
beta, and tau pathologies [381].

In a recent study, the sFGF21 and sGDF15, the serum 
fibroblast growth factor 21 and serum growth differentia-
tion factor 15, respectively, are employed in detection of 
mitochondrial disorders [382]. In AD, the ratio of L:P and 
hyperlactacidemia is used in the investigation of role of 
mitochondrial dysfunction [383]. In the study on hepatocer-
ebral phenotype children, they were found to have complex 1 
deficiency, depletion of mtDNA, and also POLG1 mutation 
[384]. The indicator of neuronal loss or dysfunction of neu-
rons in mitochondrial encephalopathy is by the observation 
of N-acetylaspartate and choline, which tends to be the spe-
cific metabolic profile specific to mitochondrial dysfunction 
[385]. The lactic acid is neurotoxic, where the reduction of 
their levels is important but the research on the agents act-
ing on lactic acidosis gave disappointing results [386, 387].

Mitochondrial Biology in Precision Medicine 
for Neurological Disorders

Mitochondrial mutations always occur in a heteroplasmy 
state which explains a cell with mitochondrial de novo muta-
tion would also have a normal mtDNA in it [388]. They can 
be either inherited along generations or they can also be 
acquired through modifications by environmental changes 
as well as epigenetic factors, where distinguishing them 
into primary and secondary mitochondrial dysfunction and 
treating them accordingly is inevitable [389]. The need for 

personalized medicine is unavoidable as each mitochondrial 
dysfunction follows a distinct path of pathophysiology. Their 
specialized personalized therapies include the therapeutic 
approach by nucleotide supplementation, replacing the 
oocyte’s defective mtDNA and exogenous mitochondrial 
supplementing [390]. Mt being complex needing the demand 
of precision medicinal approach also shows that their unique 
dynamics allows them to be engineered for next generation 
of targeted therapy development [391].

Mitochondrial gene editing is the novel way of treating 
mitochondrial dysfunctions. Zinc finger deaminases have the 
potential ability of intrinsic cell penetration, which makes it 
suitable for gene editing both in nuclear mtDNA and cellular 
mtDNA paving the way for altering mtDNA mutations that 
are pathogenic [392]. There is a need for more precise mito-
chondrial gene editing and it can be achieved by the bacterial 
toxin DddA derived cytosine base editors (DdCBEs) made 
of cytosine deaminase, specific to dsDNA. The transcription 
activator which is similar to effector that is custom made 
with DNA binding proteins and inhibitor of uracil glyco-
sylase enables the therapeutic modification of mt DNA 
possible in patients [393]. Achieving such a precise gene 
editing is further developed by adding the zinc finger base 
editors (ZnF-DdCBEs) to enhance the precision technology 
architecture as it contains N or C terminals that enable addi-
tional target options [394]. The screening of ZnF-DdCBEs 
are easy and they are cost effective, adding to the point ZnF 
are abundant endogeneous proteins of human cells which 
is much less receptive to factors that translate on reduced 
immunogenecity, making it more compatable [394]. This 
needs more cutting research to en-groove its potentiality, to 
improve methods for counter action for DddAtox deaminase 
enzyme that spontaneously splits during interactions of inde-
pendent DNA binding [393]. Many optimized ZnF-DdCBEs 
have been employed in mtDNA and nDNA mutation spe-
cific diseases. Even this is aimed to efficiently discrtuct the 
mutational diseases at Mt by implication on post antal mice 
study by delivering a AAV9 to its heart, liver, and skeletal 
muscles [394].

Artificial Intelligence in Neurodegenerative 
Disorders

In the developing world, each and every field is empowered 
using artificial intelligence (AI) in different forms, which is 
even employed at the medical field. The computer systems 
using the interdisciplinary science, AI is applied to bring 
out automation at interfaces in recognition of visual, speech, 
decision-making, and also translating languages [395] 
which is applied to health care sector to provide patients, 
physicians, and lab technicians with time-efficient appoint-
ment books, and drug availability detailing, suggesting 
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cost-effective alternative drugs and treatments. The three 
broad classifications of AI systems in the healthcare are 
majorly into patient oriented (AiCure), clinician oriented 
(Aidence, Bot MD), and administrative and operational ori-
ented (Aiva Health, Babylon Health) [396] with the combi-
nations of machine learning (ML) and deep learning (DL) 
algorithms [397]. The imaging techniques often support the 
neurodegenerative disorders for detecting the brain patholo-
gies, with PET, SPECT, fMRI for the molecular imaging, 
fMRI and PET for functional imaging, and CT and MRI for 
structural imaging that are also employed with AI for access-
ing their different clinical data sources [398]. The neurode-
generative disease like AD has speech and language skills 
to be considered the most valuable clinical data as they will 
be reduced in the course of progression of the disease; thus, 
their collection in sources like voice data and implementing 
more of AI powered computational speech processing has 
been the new tool at processing of AD diagnosis and pre-
diction of their disease progression [399]. The neurological 
disease diagnosis is achieved by AI mostly using either the 
ML or DL algorithms and by the elimination of interference 
factors of the data like unnecessary noises, redundancy fac-
tors, and variations which make it more accurate in meas-
uring and analyzing the molecular gene analysis data like 
the major SNP reports obtained from patients and healthy 
controls. There are many ML studies carried out on PD, 
which compared the different biological pathways based on 
the different features of gene expression in PD diagnostic 
models with an accuracy rate of 93.8% [400]. There are also 
similar ML studies in AD with an accuracy of 97.8% which 
had ML employed to analyze the biomarkers at AD diagno-
sis which includes the clinical imaging, responsible genes, 
proteins, and the data of the cognitive tests [401] the ML 
algorithms also apply at the analysis of various gene-related 
variations that are found in many mitochondria-related genes 
[402]. Many generalized studies on neurodegenerative dis-
orders involving ML and DL algorithms find its role in the 
comparing of the patient data from the control data using the 
deep analysis of multiple genes involving genes of neuron 
functioning, cell cycle, and immune responses with an accu-
racy of 95.2%[403] and the distinguishing of 68 different 
disease severity in neurological disorders with an accuracy 
of 88.6%[404]. There are many ways to research on the cog-
nitive monitoring of the neurological disorders, in which AI 
is found to have the best base with the datasets developed by 
Gosh et al.[405] which had over 6400 MRI images where 
each were segregated into different stages (moderate demen-
tia, non-dementia, very mild dementia, and mild dementia) 
of complexity in progression of the AD using the convolu-
tional neural network technique using image data. Though 
there are many advances in the diagnosis techniques of ND 
using AI, as each has its own limitations, AI also has its own 
way of limitations. The limitations include the availability 

of data set which may have discrepancies in versions of the 
data taken, the training data set which has the chances to 
be small and fragmented, the biased model making which 
arises when the research set is focused on a single aspect of 
data, and processing the large datasets may lead to loss in 
accuracy, but can be eventually achieved when the training 
data set achieves the best in data volume. With the develop-
ment of research in neurodegenerative disorders, each aspect 
of the research development needs its role in development 
of the diagnosis, where AI would definitely give its hands 
for future diagnosis of ND with nearing perfect accuracy.

Conclusion

Mt dysfunction is a significant contributor to the pathogenesis 
of many neurological diseases like AD, PD, HD, ischemic 
stroke, sepsis, POAG, ALS, multiple sclerosis, LGS, and 
prion disease. Mt is the essential organelle for neuronal func-
tion and survival, containing about 1500 proteins of which 
mutations in them lead to malfunctioning of the Mt. They 
perform a broad spectrum of functions comprising of fusion, 
fission, mitophagy, biogenesis, maintenance of homeostasis, 
regulation of apoptosis, cell cycle progression, cellular prolif-
eration, and cell differentiation; also comprising of physiologi-
cal functions like innate immunity, autophagy, redox signal-
ling, calcium homeostasis, and stem cell reprogramming; and 
other crucial cellular process like production of ATP through 
OXPHOS, citric acid cycle, fatty acid oxidation, phospholipid 
synthesis, hemoglobin biosynthesis, generation, and mainte-
nance of ROS. The five complexes of ETC are encoded by the 
mt and nuclear genomes, where mutation or chemical inhibi-
tion in them causes Mt-related diseases and also results in low 
energy production. The defects in proteins of mtDNA main-
tenance or repair machinery leads to secondary multiple dele-
tions, duplications or depletion of mtDNA which leads to poor 
mt respiration, and dysfunction linking to broad spectrum of 
mt and age-related diseases. There are various mitochondrial 
and nuclear genes that have its specific role in the maintenance 
of Mt and its behavior that is discussed (Table 1) which will 
be the best approaching strategy for mitochondrial research 
for health and disease, and not only for neurological disorders.
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