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Abstract
The molecular pathogenesis of degenerative parkinsonisms, including Parkinson’s disease (PD), progressive supranuclear 
palsy (PSP), and Multiple system atrophy (MSA), remains largely unknown. To gain novel insight into molecular processes 
associated with these diseases, we conducted a proteome-wide expression study in prefrontal cortex tissue from a cohort 
of 181 individuals, comprising PD (N = 73), PSP (N = 18), MSA (N = 17) and healthy control (N = 73). Using marker gene 
profiles, we first assess the cellular composition of the samples and, subsequently, identify distinct protein signatures for 
each disease, while correcting for cell composition. Our findings indicate that all three diseases are characterized by a struc-
tural and/or functional loss of deep cortical neurons, while PD exhibits an additional decrease in somatostatin-expressing 
interneurons, as well as in endothelial cells. Differential protein expression analysis identified multiple proteins and pathways 
with disease-specific expression, some of which have previously been associated with parkinsonism or neurodegeneration in 
general. Notably, we observed a strong mitochondrial signature which was present in both PD and PSP, albeit of a different 
composition and most pronounced in PSP, but not in MSA where immunological/inflammation-related pathways dominated. 
Additionally, we identified protein signatures associated with the severity of α-synuclein pathology in PD and showed that 
these are highly enriched in an upregulation of mitochondrial processes, specifically related to oxidative phosphorylation 
and in particular respiratory complexes I and IV. We identify multiple novel signatures of protein expression, associated 
with PD, PSP, and MSA, as well as with the severity of α-synuclein pathology in the PD brain.

Keywords  Proteomics · Parkinson’s disease · Multiple system atrophy · Progressive supranuclear palsy · Atypical 
parkinsonism · Prefrontal cortex

Introduction

Neurodegenerative parkinsonisms, including Parkinson’s 
disease (PD), multiple system atrophy (MSA), and progres-
sive supranuclear palsy (PSP), are severe and relentlessly 
progressive neurodegenerative diseases sharing the clinico-
pathological hallmarks of parkinsonism and degeneration 
of the dopaminergic neurons of the substantia nigra pars 
compacta (SNc). Beyond this common core, PD, MSA, and 
PSP are characterized by distinct clinical and pathological 
features [1]. Important pathological hallmarks of these syn-
dromes are that PD is characterized by neuronal α-synuclein 
aggregation in the form of Lewy pathology, MSA exhibits 
oligodendroglial α-synuclein inclusions termed cytoplasmic 
glial inclusions, while PSP shows accumulation of tau in 
neurons and glia [1].
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Despite their well-described pathology, the molecular 
pathogenesis of neurodegenerative parkinsonism is largely 
unknown. Efforts to identify pathways involved in disease 
initiation and progression commonly employ gene expres-
sion studies in brain tissue. However, while it is generally 
assumed that observed differences in mRNA levels reflect 
differences at the protein level, this is not always the case. 
The correlation between transcript and protein levels var-
ies considerably across genes and individuals and becomes 
decoupled in the aging brain [2, 3]. Moreover, we have 
shown that the relationship between transcript and protein 
is further altered in the PD brain, highlighting the impor-
tance of approaching the inference of protein changes from 
gene expression changes with caution [4].

Few studies have assessed proteome-wide expression in 
the PD brain, with the majority conducted in the substan-
tia nigra [5]. One important limitation of studying bulk 
substantia nigra tissue is that it typically exhibits severe 
neurodegeneration, with loss of approximately 80% of the 
dopaminergic neuronal population and extensive gliosis 
[6]. These alterations introduce substantial bias in differ-
ential expression analyses in bulk tissue, making it impos-
sible to distinguish between regulatory disease-related 
changes and differences in underlying cell composition 
[7]. Additionally, any signal from surviving dopaminergic 
neurons is likely derived from terminal or resilient cells, 
thereby providing limited information about early patho-
genic processes. A recent proteomics study in the PSP 
globus pallidus, which is severely degenerated, suffered 
from the same issues of cell composition bias [8].

This limitation can be partially mitigated by studying 
regions with milder disease involvement, such as the neo-
cortex. However, we have shown that cell-type composi-
tion remains problematic, albeit less pronounced, even in 
areas considered mildly affected, such as the prefrontal 
cortex in PD [7, 9]. This may reflect the insufficient char-
acterization of changes in the neocortical cell composition 
in neurodegenerative parkinsonisms. The few proteomics 
studies conducted in the PD cortex failed to address the 
pertinent issue of cell composition [5, 10, 11]. Moreover, 
to the best of our knowledge, no proteome-wide studies 
have been performed on cortical tissue from individuals 
with PSP, and only a single study has been reported in 
MSA [12], which did not account for cell composition.

In this work, we performed proteomics analyses in 
prefrontal cortex samples of a large cohort of individu-
als with PD (N = 73), PSP (N = 18), MSA (N = 17), and 
healthy control (N = 73). We first analyzed our data to 
comprehensively characterize the cellular composition 
of the samples, and subsequently identified distinct pro-
tein signatures for each disease, while correcting for cell 
composition.

Results

Estimating Sample Cell Composition from Brain 
Bulk‑Tissue Proteomics

To estimate cell composition, we employed the marker 
gene profile (MGP) method for proteomics datasets, using 
marker genes from Kelley et. al. [13] and Velmeshev et. 
al. [14]. We have previously employed this approach to 
estimate cell composition in the striatum of PD and PSP 
[8]. As additional proof of concept, we assessed whether 
our method would recapitulate the pathology of advanced 
Alzheimer’s disease (AD), typically characterized by 
widespread cortical neuronal loss and gliosis, accompa-
nied by tau and amyloid-beta deposition [15]. To this end, 
we estimated cell composition on a publicly available pro-
teomics dataset [16] derived from postmortem frontal cor-
tex samples of PD patients (N = 10), Alzheimer’s disease 
patients (N = 10), individuals exhibiting both PD and AD 
pathology (N = 10), and healthy controls (N = 10).

AD samples were indeed characterized by a significant 
decrease in neuronal estimates (p = 0.0021) and a signifi-
cant increase in astrocytes (p = 1.1 × 10–5) and microglia 
(p = 0.00073), in line with what is expected by the disease 
pathology. Samples with PD/AD overlap pathology also 
exhibited a reduction in neuronal estimates (p = 0.029) 
and an increase in astrocytes (p = 0.00049) and microglia 
(p = 0.023), albeit to a lesser extent than in individuals 
with pure AD pathology (Fig. 1A). Oligodendrocyte esti-
mates showed no significant difference between either 
of the groups. Furthermore, the severity of tau pathol-
ogy, as measured by Braak stage [17], was positively 
correlated with the estimates of astrocytes (Kendall � 
= 0.6 p = 6.2 × 10−7) and microglia (Kendall � = 0.44, 
p = 0.0002), and negatively correlated with neuronal esti-
mates (Kendall � =  − 0.47, p = 9.1 × 10−5), recapitulating 
the known correlation between neuronal loss, gliosis, and 
tau pathology [18] (Fig. 1B). We thus concluded that the 
method as well as the selected marker “genes” were appro-
priate for the use on proteomics data.

Proteomics‑Based Estimation of Cell Composition 
in the Prefrontal Cortex (PFC) of PD, PSP, and MSA

Next, we estimated the MGPs for neurons, oligodendro-
cytes, microglia, astrocytes, and endothelial cells in our 
samples (Fig. 2A). Compared to controls, PD exhibited 
a significant decrease in neuronal estimates (p = 0.017), 
a decrease in astrocyte estimates (p = 0.01), and a 
highly significant decrease for endothelial cell estimates 
(p = 0.0003). No change was observed in estimates of 
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oligodendrocytes and microglia. MSA and PSP exhibited 
no significant difference from controls for any of the cell 
types.

Furthermore, we estimated the MGPs for neuronal sub-
types, for which marker genes have been defined [13, 14]. In 
PD, changes in neuronal estimates followed an anatomical 
gradient, with superficial cortical layers showing mild or 
no significant changes compared to controls (Fig. 2B). No 
change was observed for neuronal subtypes in layers 2 and 
3. In layer 4 excitatory neuronal estimates were significantly 
decreased in PD (L4, p = 0.023), while inhibitory neurons 
(IN-SV2C and IN-VIP) showed no difference. A more sub-
stantial decrease was observed in layers 5 and 6 for both 
corticofugal projection neurons (L5/6, p = 1.5 × 10−5) and 
inhibitory somatostatin interneurons (IN-SST, p = 0.0006). 
The only exception to this trend was inhibitory parvalbumin 
interneurons (IN-PV, layer 6) which did not show a signifi-
cant difference. In PSP, the only significant difference was 
observed for corticofugal projection neurons in layers 5 and 
6 (p = 0.043). MSA samples showed a trend for a decrease in 
excitatory neuronal estimates in layer 4 (L4, p = 0.057) and 
a significant decrease for excitatory neurons in layers 5 and 
6 (L5/6, p = 0.0009). Using pairwise (Pearson) correlation 
between cell type estimates, we found that neuronal esti-
mates positively correlated with those of both astrocytes and 
endothelial cells and negatively correlated with microglia 
and oligodendrocytes (Fig. 2C).

PD, PSP, and MSA Exhibit Partially Overlapping 
Differential Protein Expression Signatures

Prior to differential protein expression (DPE) analysis, we 
performed surrogate variable analysis to identify sources 
of bias in the data. After iteratively adding variables (age, 

sex, cell type estimates, and batch) to the base model and 
correlating surrogate variables with remaining features, 
we concluded with the following model design for the 
DPE analysis: “expression ~ age + sex + batch + endothe-
lials + neurons + diagnosis”. In a final round of surrogate 
variable analysis, we found no high correlation (|r|< 0.2) 
between the first surrogate variable and any other variable. 
This model design is in line with the cell-estimate differ-
ences we reported above, where we found the biggest dif-
ferences in cell composition between cases and controls for 
neurons and endothelial cells.

In PD, we identified N = 714 significantly (False discov-
ery rate (FDR) < 0.05) differentially expressed proteins, 
comprising N = 371 upregulated and N = 343 downregulated 
proteins. The top 20 significantly differentially expressed 
proteins by fold change are shown in Table 1, and a full 
account of all differentially expressed proteins is given in 
Table S2.

Gene-set enrichment analysis revealed 27 significantly 
differentially expressed pathways, most of which were 
related to mitochondrial function and the proteasome. Spe-
cifically, proteasomal subunits (including PSM-A-E), subu-
nits of the mitochondrial respiratory chain (MRC) complex 
V, and proteins of the mitochondrial small ribosomal subu-
nit were together driving the enrichment of about 20 of the 
significant pathways (Fig. S2A). The mitochondrial riboso-
mal pathways were downregulated, while the proteasomal 
pathways and complex V subunits were upregulated. The 
remaining significant pathways included an upregulation 
of calcium signaling, the lysosome, and unfolded protein 
response.

In PSP, we identified N = 187 significantly (FDR < 0.05) 
differentially expressed proteins, comprising N = 112 
upregulated and N = 75 downregulated (Table 1, Table S2). 
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Fig. 1   Marker gene profiles to estimate cell composition from pro-
tein  expression -proof of concept in the Alzheimer’s disease brain. 
A Marker gene profile estimates (y-axis) are displayed per group 
(x-axis) and per cell type (panels). Wilcoxon test was used to calcu-

late p-values. Color indicates groups. B Scatterplot indicating the 
relationship between Braak tau (x-axis) and marker gene profile esti-
mates (y-axis). Color indicates groups. Correlation coefficient R was 
calculated using Pearson’s correlation
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Gene-set enrichment analysis revealed N = 30 significantly 
differentially expressed pathways, which were primar-
ily driven by the downregulation of subunits of the mito-
chondrial ribosome, and of the MRC complexes I and V 
(Fig. S2B). The remaining significant pathways included the 
downregulation of the lysosome and the upregulation of the 
spliceosome (Table S2).

In MSA, we identified N = 66 significantly (FDR < 0.05) 
differentially expressed proteins, comprising N = 21 down-
regulated and N = 45 upregulated (Table 1, Table S2). Gene-
set enrichment analyses identified N = 79 significantly differ-
entially expressed pathways, showing substantial biological 
diversity and including an upregulation of the spliceosome, 
and downregulation of chemokine signaling, the melano-
some, and the leukocyte trans-endothelial migration path-
way, as the top pathways (ranked by normalized enrichment 
score). We noted that two proteins, Ras-related C3 botu-
linum toxin substrate 1 (RAC1) and cell division control 
protein 42 (CDC42), were at the leading edge of more than 
16 of the significantly differentially expressed pathways 
(Fig. S2C). These pathways, however, did not relate to one 
specific biological function but were biologically diverse, 
including “chemokine signaling,” “axon guidance,” “regula-
tion of cell shape,” and “phagocytosis.” RAC1 and CDC42 
are both ubiquitously expressed small guanosine triphos-
phate hydrolases (GTPases), involved in a broad spectrum of 
cellular functions. Interestingly, RAC1 has been implicated 
in the regulation of α-synuclein-induced toxicity in a Cae-
norhabditis elegans (C. elegans) model [19], while CDC42 
plays a role in the regulation of senescence [20].

Finally, we investigated the similarities across the dis-
eases by assessing the overlap of differentially expressed 
proteins both at the FDR level, i.e., the intersection of 
proteins with FDR < 0.05 in all disease group analyses 
(Fig.  3A), and the nominal significance level, i.e., the 
intersection of proteins with nominal p-value < 0.05 in all 
disease group analyses (Fig. 3B). We identified N = 5 com-
mon differentially expressed proteins at FDR < 0.05, all of 
which were upregulated: AMPD2, GPT, NEBL, SAFB2, and 
SMARCA2 (Fig. 3C). Due to the lower number of samples 
in the MSA and PSP groups, and thereby a possibly reduced 
power in these analyses, we preferred not to draw any con-
clusions from the observed variance in effect size. At the 
nominal significance level, we identified N = 126 common 
proteins (Table S2) across all three diseases. These did not 
show any significant enrichment in over-representation anal-
ysis. Finally, we investigated the log-fold change correlation 
between the groups among the N = 126 common proteins. 
The highest correlation of fold change was seen between 
PD and MSA, where all overlapping proteins changed in 
the same direction (Fig. 3D). While a strong correlation was 
also seen between PD and PSP, we identified 11 proteins 
(SLC35A4, FTH1, MICOS10, SAR1B, RAB2A, CDC42, 
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Fig. 2   Estimates of cell composition in the prefrontal cortex of PD, 
PSP, and MSA.  Cell estimates (y-axis) based on marker gene pro-
files per group (x-axis, color coding) and cell type (panels). Wilcoxon 
tests were used to compare the control group (yellow) to the disease 
group. A Major cell types B Neuronal subtypes C Heatmaps display 
pairwise correlations of cell estimates between cell types per group. 
Color indicates positive (red) and negative (blue)  correlation. Color 
intensity indicates strength of correlation
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Table 1   Top 20 differentially 
expressed proteins

Gene symbol Protein accession Log fold-change p-value Adjusted p-value

PD versus control
  KRT9 P35527 0.424 1.57 × 10−03 1.58 × 10−02

  CHRM3 P20309 0.417 8.93 × 10−14 1.85 × 10−10

  KRT5 P13647 0.393 1.84 × 10−03 1.76 × 10−02

  KRT10 P13645 0.385 4.02 × 10−03 2.98 × 10−02

  KRT1 P04264 0.384 3.57 × 10−03 2.75 × 10−02

  KRT2 P35908 0.367 4.09 × 10−03 3.01 × 10−02

  SYT2 Q8N9I0 0.359 8.27 × 10−06 4.14 × 10−04
  SLC17A6 Q9P2U8 0.329 1.09 × 10−09 5.01 × 10−07

  CDIP1 Q9H305  − 0.316 3.09 × 10−06 2.18 × 10−04

  CHGA P10645 0.314 9.82 × 10−13 1.36 × 10−09

  VGF O15240  − 0.31 7.03 × 10−08 1.12 × 10−05

  CLDN11 O75508  − 0.307 4.84 × 10−03 3.41 × 10−02

  RTN1 Q16799-3  − 0.299 5.23 × 10−07 5.72 × 10−05

  GPR37L1 O60883  − 0.29 8.17 × 10−05 2.20 × 10−03

  ARG2 P78540 0.28 3.44 × 10−05 1.18 × 10−03

  SCN4B Q8IWT1 0.277 5.02 × 10−05 1.57 × 10−03

  CLDN10 P78369 0.269 4.13 × 10−05 1.35 × 10−03

  GM2A P17900  − 0.267 9.17 × 10−09 2.38 × 10−06

  S100A12 P80511 0.261 6.69 × 10−03 4.21 × 10−02

  CD9 P21926  − 0.252 1.80 × 10−03 1.72 × 10−02

PSP versus control
  FTL P02792 0.476 1.26 × 10−06 1.74 × 10−03

  CD200 P41217  − 0.456 2.05 × 10−03 4.76 × 10−02

  RLBP1 P12271 0.408 1.25 × 10−03 3.70 × 10−02

  ENTPD2 Q9Y5L3 0.407 2.23 × 10−03 4.95 × 10−02

  CDC42EP4 Q9H3Q1 0.374 6.64 × 10−04 3.00 × 10−02

  DTNA Q9Y4J8-11 0.371 1.24 × 10−03 3.70 × 10−02

  CP P00450  − 0.365 5.17 × 10−04 2.87 × 10−02

  A1BG P04217  − 0.357 7.49 × 10−04 3.12 × 10−02

  LZIC Q8WZA0 0.349 3.29 × 10−04 2.68 × 10−02

  CDIP1 Q9H305  − 0.345 6.94 × 10−04 3.00 × 10−02

  CLDN10 P78369 0.317 1.36 × 10−03 3.88 × 10−02

  NPTX2 P47972  − 0.317 4.52 × 10−04 2.81 × 10−02

  ATP2B4 P23634-6 0.303 1.22 × 10−06 1.74 × 10−03

  VWF P04275  − 0.292 1.18 × 10−03 3.64 × 10−02

  TF P02787  − 0.292 3.57 × 10−05 7.96 × 10−03

  PSAP P07602-3  − 0.27 2.23 × 10−04 2.11 × 10−02

  NECAP2 Q9NVZ3 0.262 1.96 × 10−03 4.70 × 10−02

  GNG5 P63218 0.257 5.08 × 10−04 2.85 × 10−02

  HEPACAM Q14CZ8 0.25 6.75 × 10−04 3.00 × 10−02

  ARF3 P61204 0.231 3.68 × 10−04 2.68 × 10−02

MSA versus control
  AQP4 P55087 0.526 8.84 × 10−05 2.45 × 10−02

  TCEAL5 Q5H9L2 0.399 4.58 × 10−04 3.68 × 10−02

  ATOX1 O00244 0.357 7.90 × 10−04 4.97 × 10−02

  SARNP P82979 0.333 1.45 × 10−04 3.01 × 10−02

  JPT1 Q9UK76 0.309 7.34 × 10−05 2.35 × 10−02

  ADCK1 Q86TW2  − 0.3 3.03 × 10−05 2.35 × 10−02

  CDC5L Q99459 0.298 2.39 × 10−05 2.35 × 10−02

  GM2A P17900  − 0.292 7.25 × 10−05 2.35 × 10−02



	 Molecular Neurobiology

RHOA, GNA13, RAB35, YKT6, VPS13C) upregulated in 
PSP but downregulated in PD (and in MSA). These proteins 
were enriched for processes related to nucleotide binding, 
guanosine diphosphate (GDP) binding, or GTPase activity. 
In the cellular component ontology, the significant pathways 
were all related to the Golgi apparatus.

Top Features Discriminating PD Samples 
from Controls

To further characterize the differentially expressed protein 
signature of the disease, we employed an ensemble learn-
ing methodology and trained a model to predict whether 
a sample belonged to the PD or control group. Through 
this approach, we ranked proteins based on their ability to 
separate PD from controls. Due to the low number of sam-
ples and imbalance between control and disease samples 
in PSP and MSA, we limited this analysis to the PD versus 
control comparison. We were able to retrieve an impor-
tance measure for each protein reflecting the level of its 
contribution to the separation of PD and control samples. 
Using this method, we identified N = 157 proteins with 
non-zero importance values, of which the top 25 (i.e., the 
25 with the highest contribution to the separation of PD 
and control samples) are displayed in Fig. 4A, while a full 
list is provided in Supplementary Table S3. These proteins 
were most important in the prediction of the condition 
variable, i.e., they separated PD from controls in our data. 
Principal component (PC) analysis based on the expres-
sion values of the 157 proteins showed that PD and control 
samples were separated in the first (PC1) and second (PC2) 
principal component space (Fig. 4B and C). Additionally, 
PC1 was significantly associated with the condition vari-
able (i.e., PD or control, p < 2.2 × 10−16). Furthermore, 

we observed a significant association between PC1 and 
Braak α-synuclein stage (p < 2.2 × 10−16), suggesting that 
the expression profile of these protein features is associ-
ated with the severity of α-synuclein pathology.

Interestingly, several of the top 25 proteins (Fig. 4A) 
had a known link to parkinsonism and/or broader neuro-
degeneration and aging. Among the downregulated ones, 
we noted RAB3, a GTPase protein involved in synaptic 
vesicle transport, which has been shown to be protective 
in neuronal models of α-synucleinopathy [21], the neu-
rosecretory protein VGF (nonacronymic), involved in the 
catecholamine secretory pathway [22] and found to be 
decreased in cerebrospinal fluid (CSF) from individuals 
with PD [23], the oligosaccharyltransferase OSTC (also 
known as DC2), which is involved in the processing of 
amyloid precursor protein (APP) [24], and OGA, a glyco-
side hydrolase shown to be protective against α-synuclein 
aggregation in vitro [25]. Notable examples among the 
upregulated proteins included the proteasomal subunits 
PSMA3 and PSMA6, mitochondrial apoptosis-inducing 
factor AIFM3 and PTRHD1, a protein with a possible role 
in the ubiquitin-proteasome system, and loss of function 
mutations that cause juvenile-onset parkinsonism [26].

The Severity of α‑synuclein Pathology is Associated 
with Upregulation of Mitochondrial Pathways

We performed differential expression analysis to identify 
proteins associated with the severity of disease pathology. 
Since pathology staging was not available for our MSA cases 
and was only available for five PSP cases, this analysis was 
limited to PD. We identified differential protein expression 
associated with the severity of α-synuclein pathology, as 
measured by the corresponding Braak staging scores in the 

Differentially expressed proteins (adjusted p-value < 0.05) were sorted by absolute log fold-change to 
select the top 20 from each analysis. p-values were adjusted during differential protein expression analysis 
according to the Benjamin-Hochberg method

Table 1   (continued) Gene symbol Protein accession Log fold-change p-value Adjusted p-value

  SLC6A11 P48066 0.289 1.67 × 10−04 3.03 × 10−02

  PCNP Q8WW12 0.258 2.26 × 10−05 2.35 × 10−02

  DR1 Q01658 0.25 2.96 × 10−04 3.14 × 10−02

  KCTD8 Q6ZWB6 0.244 3.60 × 10−04 3.40 × 10−02

  SERBP1 Q8NC51 0.237 2.23 × 10−04 3.13 × 10−02

  MAP4 P27816-3 0.231 4.56 × 10−04 3.68 × 10−02

  TOM1 O60784-2 0.225 5.56 × 10−05 2.35 × 10−02

  GPT P24298 0.222 4.23 × 10−04 3.68 × 10−02

  CNN3 Q15417 0.221 1.06 × 10−04 2.74 × 10−02

  SYNPO Q8N3V7 0.211 3.02 × 10−04 3.14 × 10−02

  ZFR Q96KR1 0.2 2.91 × 10−04 3.14 × 10−02

  DDT P30046 0.199 5.67 × 10−04 4.21 × 10−02
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N = 69 PD samples for which this data was available. We 
identified N = 35 proteins significantly (FDR < 0.05) asso-
ciated with Braak stage for α-synuclein, of which N = 7 
were downregulated and N = 28 were upregulated. Gene set 
enrichment analysis revealed in N = 45 significant pathways 
(Table S2), most of which were related to mitochondrial 
function. Specifically, the higher Braak stage was associ-
ated with an upregulation of processes related to oxida-
tive phosphorylation, including complexes I and IV of the 
MRC. Examining the frequency of the significant proteins’ 

membership in enriched pathways, we found that nuclear-
encoded complex I subunits were driving the enrichment of 
over 13 significant pathways. Furthermore, the leading edge 
of more than 5 significant pathways was related to mitochon-
drial function (Fig. 5A).

Unlike its downregulation in PD compared to controls, 
the mitochondrial ribosome was upregulated with increas-
ing Braak score within the PD group. We investigated this 
further by selecting all mitochondrial ribosomal proteins 
(MRP) with nominal significant p-values (N = 6 with nom. 
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Fig. 3   Overlap of differentially expressed proteins across diseases. 
Intersection sets (x-axis) of differentially expressed proteins (DEP) 
significant at A FDR 0.05 and at B nominal significance level from 
each analysis (PD versus control, PSP versus control, and MSA ver-
sus control) are sorted by set size (y-axis). Orange color indicates the 
intersection set of DEP common to the three analyses. C DEP com-
mon to all three diseases (at FDR < 0.05) are arranged by their rank 
(log-scaled, x-axis) in the respective analysis (y-axis). Rank was cal-

culated by sorting DEP by absolute log fold change. Color indicates 
the protein, and point size indicates log fold change. D Comparison 
of log fold change (x and y axes) of DEP common to all three dis-
eases (at nominal p < 0.05) between analyses. Data points in the first 
and third quadrants represent DEP with agreeing direction of change 
(between disease and control). Color indicates log fold change of the 
analysis not displayed on either x or y axis. Correlation coefficient 
was calculated using Pearson’s correlation
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p < 0.05) and adjusted these using the Bonferroni multiple 
testing correction. Of these, we identified five as significant, 
all upregulated: MRPS26, MRPL17, MRPL15, MRPL20, and 
MRPL12. Thus, the ribosomal upregulation with increasing 
Braak stages involved proteins of both the small and large 
ribosomal subunit.

To further investigate the observed upregulation of 
mitochondrial pathways, we selected a nuclear-encoded 
complex I subunit (NDUFS4) which has been extensively 
studied in the PD brain and shown to be representative 
of changes in all modules of the complex [27]. As sug-
gested by the enrichment analysis, PD samples showed an 
increase in expression of NDUFS4 with increasing Braak 
stage (Fig. 5B), with the exception of a few outlier samples 
which had very low neuronal estimates, likely explain-
ing the low complex I expression. In line with the known 
decline in mitochondrial function which occurs with aging 

[28, 29], NDUFS4 levels declined with increasing age in 
controls. However, this behavior was not present in PD, 
where NDUFS4 levels did not change with age (Fig. 5C), 
likely due to the α-synuclein pathology-associated upregu-
lation. In Supplementary Figs. S3 and S4, we provide a 
detailed overview of the log-fold changes of subunits of 
the mitochondrial ribosome and the MRC from both the 
PD versus controls and the Braak analysis.

Discussion

We characterize proteome-wide expression profiles in the 
prefrontal cortex of three neurodegenerative parkinsonisms: 
PD, MSA, and PSP. Our approach, employing proteomics-
derived estimates of cellularity, suggests that the prefrontal 
cortex harbors altered cell composition in these diseases, 
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which must be accounted for in order to correctly interpret 
bulk-proteomics data. While the prefrontal cortex is gen-
erally reported to exhibit mild neurodegeneration in these 
disorders [1], it is important to consider that this assessment 
is based primarily on the distribution and extent of the pro-
teinopathy (i.e., α-synuclein or tau), rather than measure-
ments of the actual cell composition of the tissue. The latter 
has not been adequately studied, despite the fact that clinical 
signs of frontal lobe dysfunction, such as executive function 
deficits, occur in all three disorders [30–32].

In PD, we find decreased neuronal estimates and 
increased astrocyte estimates, which is in line with previ-
ously reported transcriptome-based estimates [9]. These 
findings may reflect a lower neuronal content and/or cel-
lular dysfunction with decreased neuronal and increased 
astrocytic transcription/translation. Interestingly, the most 
significant neuronal decrease in PD was seen for the esti-
mates of inhibitory somatostatin-expressing neurons. Pre-
vious studies have shown reduced levels of somatostatin 
in the PD frontal cortex and CSF [33, 34]. Seen together 
with those previous reports, our findings suggest that there 
may be a selective dysfunction and/or degeneration of 

somatostatin-expressing neurons in the PD cortex. This 
warrants validation by histological studies.

The most prominent cell composition difference between 
PD samples and controls was a significant decrease in the 
estimates of endothelial cells. This may reflect microvascu-
lar regression/degeneration and/or microvascular dysfunc-
tion. Evidence for microvascular changes, including vascu-
lar regression, blood-brain barrier disruption, and cerebral 
blood flow abnormalities have been described in PD [35], 
but their nature and role remain controversial. Our findings 
strengthen the notion that vascular pathology, specifically in 
the form of vascular regression may occur in PD.

All three diseases, MSA, PSP, and PD, exhibited a 
selective decrease in the estimates of deep cortical neu-
rons located in layers 5–6. Pyramidal neurons from these 
layers are a major source of output from the neocortex to 
other cortical and subcortical areas, including the thala-
mus, striatum, brainstem, and spinal cord [36]. Dysfunc-
tion and degeneration of these neurons could, therefore, 
contribute to both motor and non-motor impairment in 
these diseases. Further research is warranted to elucidate 
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which exact neuronal types are affected in these layers, as 
well as the reasons for this selective vulnerability.

Case-control comparisons revealed numerous signifi-
cant differentially expressed proteins. While some of these 
overlapped across diseases, the vast majority were disease-
specific. Some of the top findings per disease will be dis-
cussed here in light of current knowledge. It should be 
stressed, however, that this is not meant to be an exhaus-
tive discussion of the results, but rather one of unexpected 
findings, as well as findings with a known link to parkin-
sonism and/or broader neurodegeneration.

The top differentially expressed proteins in PD by fold 
change comprised an upregulation of multiple members 
of the keratin gene family (KRT-1, 2, 5, 9, and 10). While 
most keratins are abundantly expressed in the skin, hair, 
nails, and tongue, several are expressed across multiple 
tissues, including the brain. Based on the Genotype-Tissue 
Expression (GTEx) project, all of KRT-1, 2, 5, 9, and 10 
are expressed in the brain, including the frontal cortex, 
with KRT-10 being most highly expressed in this region 
[37]. Interestingly, increased levels of KRT-9 have been 
found in the CSF from patients with Alzheimer’s disease, 
multiple sclerosis, and neuromyelitis optica compared to 
controls, and it has been proposed that this may be due 
to leakiness of the blood-brain barrier [38]. The role of 
altered keratin expression in neurodegeneration is, how-
ever, poorly understood.

In addition, PD exhibited an upregulation of muscarinic 
cholinergic receptor 3 (CHRM3). This may represent den-
ervation hypersensitivity caused by the loss of cholinergic 
input to the prefrontal cortex from the basal forebrain nuclei 
[1]. This finding corroborates a previous positron emission 
tomography (PET) study showing increased ligand binding 
for muscarinic cholinergic receptors in the PD, but not the 
PSP brain [39].

Other notable findings included the upregulation of 
two proteins of the granin neuropeptide family, VGF and 
chromogranin A (CHGA). These proteins are essential 
for catecholaminergic metabolism and transmission [22]. 
Moreover, VGF has been shown to play a role in regulat-
ing synaptogenesis and neurogenesis, learning, and memory 
[40]. In line with our findings, both CHGA and VGF were 
found to be decreased in CSF from individuals with PD [23] 
and AD [40]. It is likely that the loss of CHGA and VGF is 
the result of the widespread catecholaminergic deficit char-
acterizing PD [41].

Of interest was also the downregulation of CD38, a cell 
surface glycoprotein with a key role in nicotinamide adenine 
dinucleotide (NAD) metabolism and immune regulation. 
CD38 consumes intracellular NAD+, lowering its levels, and 
generates cyclic adenosine diphosphate ribose (cADPR), an 
important signaling molecule for calcium homeostasis [42]. 
Aberrant NAD metabolism has been linked to PD [43, 44]. It 

is possible that the CD38 downregulation is a compensatory 
effort to decrease NAD consumption. Alternatively, this may 
contribute to cell dysfunction via dysregulation of calcium 
metabolism.

Notable single protein changes in PSP included down-
regulation of CD200, which plays a key role in protecting 
neurons from microglia-induced neurotoxicity [45], and of 
the synaptic protein neuronal pentraxin-2 (NPTX2), which 
has been found to be decreased in CSF of patients with PD, 
PSP, and MSA, and likely reflects synaptic dysfunction and 
loss in the prefrontal cortex [46]. This protein was also sig-
nificantly decreased in our PD samples, but not in the MSA 
samples. Additionally, we noted altered expression in ceru-
loplasmin, and ferritin light chain (FTL) involved in copper 
and iron metabolism, respectively. Ceruloplasmin mutations 
cause Wilson’s disease, while FTL mutations cause neuro-
ferritinopathy, both of which are characterized by basal gan-
glia degeneration and severe movement disorders, including 
parkinsonism [47, 48].

Top differentially expressed proteins in MSA, included 
a potent upregulation of aquaporin 4 (AQP4), an astrocytic 
protein integral to the glymphatic system, which contributes 
to the clearance of amyloid-β and has been proposed to play 
a role in the clearance of α-synuclein [49]. In addition, we 
noted an upregulation of the cytoplasmic copper chaperone 
ATOX1, which has been found to inhibit α-synuclein aggre-
gation in vitro [50].

At the pathway level, there was a robust mitochondrial 
signal in PD and PSP but not in MSA. PD was character-
ized by downregulation of the mitochondrial ribosome and 
upregulation of nuclear-encoded subunits of complex V, 
while no change was seen for the electron transferring com-
plexes (I–IV). These findings do not align with immunohis-
tochemical studies of the PD prefrontal cortex, which show 
a mosaic distribution of neuronal complex I deficiency [51]. 
However, a direct comparison of results from immunohis-
tochemistry and proteomics is not straightforward, as the 
first commonly assesses individual neuronal bodies, while 
the latter measures differences in homogenized bulk tissue, 
without cell-specific resolution, and including proteins from 
neuronal processes and synapses. Compared to PD, PSP had 
a more pronounced mitochondrial signature with downregu-
lation of both the mitochondrial ribosome and the MRC, 
including complexes I and V. While mitochondrial pathol-
ogy is an established feature of PD [52], this is much less 
studied in PSP. Interestingly, our findings suggest there may 
be a stronger mitochondrial component in PSP than in PD. A 
similar trend was reported in bulk tissue proteomics from the 
globus pallidus [53], although those findings did not survive 
correction for cell-type composition [8].

Within the PD group, the levels of oxidative phosphoryla-
tion (OXPHOS) proteins and the mitochondrial ribosome 
changed congruently and were positively correlated with 
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increased Braak staging. Interestingly, it has been shown 
that late α-synuclein pathology (i.e., formed pale bodies and 
Lewy bodies) preferentially occurs in neurons with quan-
titatively intact respiratory chain, while early α-synuclein 
pathology has a strong predilection for complex I deficient 
neurons [51, 54, 55]. This suggests that the formation of 
mature α-synuclein pathology requires intact mitochondrial 
respiration and that respiratory deficient neurons harboring 
starting α-synuclein pathology are less likely to survive. 
Thus, the observed upregulation of the MRC may represent 
a response to a need for higher bioenergetic efficiency to 
promote neuronal survival in advanced stages of PD and 
widespread α-synuclein pathology.

In conclusion, our findings reveal evidence of altered cell 
composition, as well as multiple novel differential protein 
expression signatures in the prefrontal cortex of individuals 
with PD, PSP, and MSA. Our study has several limitations. 
Bulk tissue proteomics has low sensitivity and is generally 
biased towards abundantly expressed proteins. Therefore, 
despite a large sample size, we cannot exclude changes in 
proteins of low abundance and related pathways. The esti-
mates of cell composition are based on the expression of 
protein markers, not actual cell counts. Therefore, while our 
findings are consistent with altered cell composition in the 
tissue, this must be confirmed with systematic histological 
studies. Finally, while we are adjusting for differences in cell 
composition between the groups, the bias of cell composi-
tion cannot be completely removed from bulk tissue studies. 
Thus, we cannot exclude the possibility that this bias may 
still contribute to some of our findings.

Methods

Data and Code Availability

The datasets supporting the conclusions of this article are 
included within the article and its supplementary files. The 
source code including the description and all data for the 
analyses is available on GitHub: https://​github.​com/​fifdi​
ck/​DPE_​parki​nsoni​sms_​brain. Any additional information 
required to reanalyze the data reported in this paper is avail-
able from the lead contact upon request.

Cohorts

All experiments were conducted in fresh-frozen prefrontal 
cortex (Brodmann area 9) tissue from a total of 181 individu-
als comprising PD patients (N = 73, age 78.2 ± 7.21 years), 
MSA patients (N = 17, age 66.6 ± 6.93), PSP patients 
(N = 18, age 75.5 ± 8.16 years), and neurologically healthy 
controls (N = 73, age 77.6 ± 12.8 years). Controls had no 
known neurological disease and were matched for age and 

sex. All cases were confirmed neuropathologically, whereas 
controls had no pathological evidence of neurodegeneration. 
Cohort demographics including sex and age of all individu-
als are listed in Table S1.

Ethical permission for these studies was obtained from 
our regional ethics committee (REK 2017/2082, 2010/1700, 
131/04). Written formal informed consent was obtained 
from all participants or their next of kin.

Mass Spectrometry Sample Preparation

Briefly, brain samples were lysed using between 30 uL of 
lysis buffer (consisting of 6 M Guanidinium Hydrochloride, 
10 mM (tris(2-carboxyethyl)phosphine) TCEP, 40 mM chlo-
roacetamide (CAA), 50 mM 4-(2-hydroxyethyl)-1-pipera-
zineethanesulfonic acid (HEPES) pH8.5). Samples were 
placed in the Barocycler 2320EXT (Pressure BioSciences) 
and lysed by 60 cycles of 50 s 45000 psi and 10 s atmos-
pheric pressure at 33 oC. The samples were spun for 10 min 
at 14000xg and the protein content of the supernatant was 
determined by bicinchoninic acid assay (BCA). Twenty 
micrograms of the sample was diluted to 20 µL with lysis 
buffer and taken forward for digestion. Samples were diluted 
1:3 with digestion buffer (10% acetonitrile, 50 mM HEPES, 
and pH 8.5), endoproteinase LysC (Mass Spec (MS) grade, 
Wako) was added in a 1:50 (enzyme to protein) ratio, and 
samples were incubated at 37 °C for 4 h. Samples were fur-
ther diluted to a final 1:10 with digestion buffer and trypsin 
(MS grade, Sigma) was added in a 1:100 (enzyme to protein) 
ratio after which samples were incubated overnight at 37 ℃. 
Samples were acidified by adding 2% trifluoroacetic acid 
(TFA) to a final concentration of 1%. Prior to tandem mass 
tag (TMT) labeling, the peptides were desalted on a SOLAµ 
solid phase extraction (SPE) plate (horseradish peroxidase 
(HRP), Thermo). Between each application, the solvent 
was spun through by centrifugation at 1500 revolutions per 
minute (RPM). For each sample, the filters were activated 
with 200 ul of 100% methanol, then 200 ul of 80% acetoni-
trile, and 0.1% formic acid. The filters were subsequently 
equilibrated 2 × with 200ul of 1% TFA and 3% acetonitrile, 
after which the sample was loaded. After washing the tips 
twice with 200 ul of 0.1% formic acid, the peptides were 
eluted into clean 0.5 ml Eppendorf tubes using 40% ace-
tonitrile, 0.1% formic acid. The eluted peptides were con-
centrated in an Eppendorf Speedvac and re-constituted in 
50 mM HEPES (pH 8.5) for TMT labeling with 16plex tags 
(Thermo). A reference sample was prepared by mixing equal 
amounts of peptides from each sample and labeling them 
separately. Labeling was done according to the manufac-
turer’s instructions, and subsequently, labeled peptides were 
mixed 1:1:1:1:1:1:1:1:1:1:1, spiking in reference channel to 
each mix. TFA was added to acidify and bring acetonitrile 
concentration down to < 5%. Prior to mass spectrometry 
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analysis, the peptides were desalted and fractionated using 
an offline ThermoFisher Ultimate3000 liquid chromatogra-
phy system using high pH fractionation (5 mM Ammonium 
Bicarbonate, pH 10) at 5ul/min flowrate. 15ug of peptides 
were separated over a 120 min gradient (5% to 35% Acetoni-
trile), while collecting fractions every 130 s. The resulting 
60 fractions were pooled into 30 final fractions, acidified 
to pH < 2 with 1% TFA and loaded onto EvoSep stagetips 
according to the manufacturer’s protocol.

Mass Spectrometry Data Acquisition

For each fraction, peptides were analyzed using the pre-set 
“30 samples per day” method on the EvoSep One instru-
ment. Peptides were eluted over a 44-min gradient and ana-
lyzed with an Orbitrap EclipseTM TribridTM instrument 
(Thermo Fisher Scientific) with FAIMS ProTM Interface 
(ThermoFisher Scientific) switched between CVs of − 50 V 
and − 70  V with cycle times of 1.5  s. Full MS spectra 
were collected at a resolution of 120,000, with a normal-
ized automatic gain control (AGC) target set to “standard” 
or maximum injection time of 50 ms and a scan range of 
375–1500 m/z. MS1 precursors with an intensity of > 5 × 103 
and a charge state of 2–7 were selected for MS2 analysis. 
Dynamic exclusion was set to 60 s, the exclusion list was 
shared between CV values, and Advanced Peak Determi-
nation was set to “off.” The precursor fit threshold was set 
to 70% with a fit window of 0.7 m/z for MS2. Precursors 
selected for MS2 were isolated in the quadrupole with a 
0.7 m/z window. Ions were collected for a maximum injec-
tion time of 50 ms, and the normalized AGC target was set to 
“standard.” Fragmentation was performed with a collision-
induced dissociation (CID) normalized collision energy of 
35%, and MS2 spectra were acquired in the IT at a scan rate 
rapid. The MS2 spectra were subjected to real-time search 
(RTS) using the reviewed Uniprot protein database Homo 
sapiens and trypsin set as an enzyme. Static modifications 
were TMTpro on lysine (K) and N-terminus and carbami-
domethyl on cysteine (C). Oxidation of methionine (M) was 
set as variable modification. Maximum missed cleavages 
were set to 1 and maximum variable modifications to 2. 
FDR filtering was enabled, the maximum search time was 
set to 35 ms, and the scoring threshold was set to 1 Xcorr, 
0 dCn, and 5 ppm precursor tolerance. Use as a trigger only 
was disabled and close-out was enabled with the maximum 
number of peptides per protein set to 4. Precursors were 
subsequently filtered with an isobaric tag loss exclusion of 
TMT and precursor mass exclusion set to 18 m/z low and 
5 m/z high. Precursors identified by RTS were isolated for 
an MS3 scan using the quadrupole with a 2 m/z window, 
and ions were collected for a maximum injection time of 
86 ms and normalized AGC target of 200%. Turbo TMT was 
deactivated, and the number of dependent scans was set to 

5. Isolated precursors were fragmented again with 63% nor-
malized higher-energy collisional dissociation (HCD) colli-
sion energy, and MS3 spectra were acquired in the orbitrap 
at 50000 resolution with a scan range of 100–500 m/z. MS 
performance was verified for consistency by running com-
plex cell lysate quality control standard.

Proteomics Normalization and Filtering

The raw files were analyzed using Proteome Discoverer 2.4 
(Thermo Fisher Scientific). TMT reporter ion quantitation 
was enabled in the processing and consensus steps, and 
spectra were matched against the Homo sapiens database 
obtained from UniProt. Dynamic modifications were set as 
oxidation (M), and acetyl on protein N-termini. Cysteine car-
bamidomethyl (C) and TMT 16-plex (peptide N-termini and 
K) were set as static modifications. All results were filtered 
to a 1% FDR, and protein quantitation was done using the 
built-in Minora Feature Detector with statistical significance 
testing done with the built-in t-test. The peptide abundances 
are normalized based on the total peptide amount. Thereby, 
the total sum of identified peptides in a channel is normal-
ized to the channel with the highest abundance. The protein 
or peptide abundances are then scaled to the NormMix chan-
nel (126) to form the same pool by scaling the NormMix 
channel to 100. All other channels are proportionally scaled 
up or down using the same factor.

Aggregated protein intensities from Proteome Discoverer 
were further processed in a downstream analysis using R. 
First, proteins labeled as “low” or “medium” for the pro-
tein FDR confidence were removed. Additionally, proteins 
for which more than 25% of the samples showed missing 
values were removed. The remaining missing values were 
imputed using a local least squares method implemented in 
the pcaMethods R package [56]. Using principal component 
analysis on the filtered and imputed dataset, we investigated 
batch effects. We observed that despite the batch correction 
described above, batch effects were still visible. In particu-
lar, samples from batch 6 were separated from the remaining 
samples along PC2 (Fig. S1). We thus decided to exclude 
these samples from the analysis.

Cell Composition Estimation

Estimation of MGPs was performed as described [9] using 
cell-type markers from Kelley et al. [13] and Velmeshev 
et al.[14].

Differential Expression Analysis

Before DPE, we performed surrogate variable (SV) analy-
sis (R-package sva [57]) and explored correlations between 
first and second SV with possible covariates such as cell 
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estimates, and age. In an iterative process, we added 
covariates to the base model and observed the remain-
ing correlations. This was an exploratory process which 
is documented in the analysis code and helped us design 
the model.

DPE was performed using functions lmFit and eBayes 
from the limma R-package [58]. For all DPE analy-
ses, we transformed the protein intensities to log scale. 
To test for differences between  the disease groups and 
controls, we designed one model: “ ~ Age + Pool_fac-
tor (batch) + Sex + Neurons + Endothelials + Stratification,” 
where the stratification variable was transformed to 3 binary 
variables (PSP, PD, and MSA) indicating whether a sample 
belonged to the disease group or not. Similarly, the variable 
Pool_factor was transformed to multiple (N = 10) dummy 
variables by the “model.matrix” function, each indicating 
whether a sample came from the pool (batch) or not. In a 
second analysis, we tested for association between protein 
expression and Braak staging scores based on a sub-selec-
tion of samples. For this, we designed a separate model, 
where we did not include each binary pool variable in the 
model design. Due to the lower number of samples in this 
analysis and to reduce model complexity, we did the follow-
ing. We performed a principal component analysis on the 
expression data of the selected samples. We observed a sepa-
ration of samples belonging to different pools along the PC2. 
We tested this association with a linear model (PC2 ~ Pool_
factor) and found they were significantly associated. We 
thus decided to include PC2 instead of multiple binary 
pool variables in the model design. The model was thus: 
“ ~ PC2 + neurons + endothelial + age + sex + Braak_LB.”

To test for geneset enrichment, we used the function mul-
tilevel_fgsea from the R package fgsea, version 1.21.45 [59]. 
Specific parameters are documented in the code for the anal-
ysis (see data access). For each score type, we ran the func-
tion on two genesets: (i) a simplified list of genesets from the 
Gene Ontology (GO) database and (ii) a list of genesets from 
the Kyoto Encyclopedia of Genes and Genomes (KEGG), 
accessed through MSigDB [60, 61]. Both lists are available 
as “.gmt” files in the code repository. To generate a simpli-
fied, non-redundant GO list, pathways from the complete 
GO databases (CC, BP, and MF) were clustered iteratively 
based on their similarity (Cohen’s kappa, κ) until no κ > 0.4. 
Geneset overrepresentation analysis was performed using 
WebGesatltR [62] and the geneset databases the package 
provides: “geneontology_Biological_Process” “geneontol-
ogy_Biological_Process_noRedundant,” “geneontology_
Cellular_Component,” “geneontology_Cellular_Compo-
nent_noRedundant,” “geneontology_Molecular_Function,” 
“geneontology_Molecular_Function_noRedundant,” “path-
way_KEGG” “pathway_Panther,” “pathway_Reactome,” 
“pathway_Wikipathway,” “pathway_Wikipathway_cancer,” 
“disease_Disgenet,” “disease_GLAD4U,” “disease_OMIM,” 

and “phenotype_Human_Phenotype_Ontology”. The pre-
filtered set of proteins was used as a background.

Heatmaps in supplementary Figs. S3 and S4 were gen-
erated using Cytoscape [63]. The layout was manually 
arranged.

Machine Learning Analysis

Differentially expressed proteins from the PD versus 
control analysis were divided into train and test data-
sets by randomly sampling 70% of the proteins into the 
train dataset and using the remaining as test dataset. The 
training dataset was used to tune a xgboost classifier 
using Gridsearch and N = 5 cross-validation. For this, 
we employed the R package “xgboost” [64]. The tuning 
was performed using the functions “trainControl” and 
“train” from the R package “caret” [65]. Xgboost param-
eters “eta,” “max_depth,” “gamma,” “colsample_bytree,” 
and “subsample” were tuned by optimizing the F1 score. 
For this, we employed the R package “MLmetrics” [66]. 
Variable importance was explored using the R package 
“treeshap” [67].

Our results are based on the best model according to this 
workflow. This model is provided as an R object in the code 
repository.
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