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Abstract
Proliferation of specific nucleotide sequences within the coding and non-coding regions of numerous genes has been impli-
cated in approximately 40 neurodegenerative disorders. Cerebellar ataxia, neuropathy and vestibular areflexia syndrome 
(CANVAS), a neurodegenerative disorder, is distinguished by a pathological triad of sensory neuropathy, bilateral vestibular 
areflexia and cerebellar impairments. It manifests in adults gradually and is autosomal recessive and multi-system ataxia. 
Predominantly, CANVAS is associated with biallelic AAGGG repeat expansions in intron 2 of the RFC1 gene. Although 
various motifs have been identified, only a subset induces pathological consequences, by forming stable secondary structures 
that disrupt gene functions both in vitro and in vivo. The pathogenesis of CANVAS remains a subject of intensive research, 
yet its precise mechanisms remain elusive. Herein, we aim to comprehensively review the epidemiology, clinical ramifica-
tions, molecular mechanisms, genetics, and potential therapeutics in light of the current findings, extending an overview of 
the most significant research on CANVAS.
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Introduction

The global prevalence of neurodegenerative disorders pre-
sents a significant and escalating health concern, thereby 
constituting a formidable challenge for contemporary medi-
cine. Characterized by a gradual onset and a progressive 
trajectory, these disorders demonstrate an increasing pro-
pensity with advancing age, leading to a projected rise in 
the observable symptoms of these conditions over time. The 
predominance of neurological conditions remains consistent 
across nations, regardless of the economic stratification. The 
etiopathogenesis of such neurodegenerative diseases can be 
simply attributed to multifarious mechanisms.

A third of the genome (33%) approximately consists of 
repetitive DNA sequences, believed to play important roles 
in the process of species differentiation. Some of these repeat 

expansions could be largely pathogenic in nature. Such patho-
genic repeat expansions (REs) have been identified in associa-
tion with over 30 hereditary human diseases, predominantly 
those affecting the nervous system [1]. These disorders encom-
pass a diverse spectrum, each distinguished by the expansion 
of particular genetic sequences. The approach of long-read 
technologies represents a recent and distinctive avenue for 
methodically probing the role of tandem and expanded repeats 
in shaping the genetic landscape of human disorders [2]. Cer-
ebellar Ataxia, Neuropathy, and Vestibular Areflexia Syn-
drome (CANVAS) are the co-occurrence of cerebellar ataxia 
with neuropathy and vestibular areflexia, which is a late onset, 
gradual, autosomal recessive, multi-system ataxia marked by 
simultaneous dysfunctioning of sensory neurons, the vestibular 
apparatus, and the cerebellum [3]. The emergence of CAN-
VAS, as a distinct disease, has been a gradual phenomenon 
unfolding over the past three decades. Nonetheless, the genesis 
of this disease is posited to date back to around 23,000 B.C. 
in Europe. The etiology of CANVAS encompasses acquired, 
hereditary, and non-hereditary factors [4].

In clinical terms, CANVAS was introduced as a novel 
identity in 2011 [5]. It comprehends a wide range of clinical 
traits such as imbalance, sensory peripheral symptoms, gait 
impairment, oscillopsia, dry cough, autonomic dysfunction, 
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dysarthria and dysphagia [4, 6]. CANVAS may encompass a 
polygenic basis, implying the involvement of multiple caus-
ative genes. This condition also exhibits substantial phe-
notypic heterogeneity and has the potential to present phe-
nocopies, further complicating the diagnosis. Studies have 
found complete CANVAS instances to be those in which 
the vestibular system, cerebellum, and sensory peripheral 
nerves are all involved simultaneously with a mean onset 
age of above 50 years. Recent research has also enhanced 
our understanding of the condition, revealing additional 
associated motor and non-motor symptoms, including oscil-
lopsia, sweat gland denervation, cough and autonomic dys-
functions to be associated with CANVAS [4]. Research into 
unexplained genetic ataxias, including CANVAS, is cur-
rently focused on investigating their phenotypic similarities 
to established conditions associated with repeat expansions 
(REs). For CANVAS particularly, a primary etiological fac-
tor is the presence of a biallelic intronic recessive AAGGG 
repeat expansion, ranging from 250 to over 2000 repeats, in 
the replication factor complex subunit 1 (RFC1) gene. The 
RFC1 gene, serves an integral role in both DNA replication 
and repair, constituting replication factor C (RFC), which 
contributes majorly in DNA replication and repair by load-
ing the PCNA (proliferating cell nuclear antigen) on the 
DNA [4, 6–8]. Predictions suggest the presence of different 
repeat motifs to be associated with the disease, a few non-
pathogenic and a few distinct pathogenic extended repeat 
motifs, where (AAGGG)n•(CCCTT)n is the most prevalent 
pathogenic repeat, whereas (AAAAG)n•(CTTTT)n is the 
most prevalent non-pathogenic repeat [7]. The pathogenic 
allele differs from the non-pathogenic allele repeats in size 
as well as in nucleotide composition, setting it apart from 

the majority of other repeat expansion diseases [6]. So far, 
the precise route to the pathogenicity of CANVAS remains 
elusive, specifically about why only certain expanded motifs 
lead to pathology, while others do not. It is predicted that 
all pathogenic motifs in RFC1 form extremely stable G 
quadruplexes (a secondary DNA structure), which have 
been proven to influence gene transcription in other simi-
lar conditions and appear to have evolved from a single 
haplotype [9]. Recent findings further affirm this idea by 
demonstrating that only pathogenic patterns persist in the 
RFC1 transcript [7]. This review, thus, amalgamates the 
genetic basis with the syndromic clinical features of CAN-
VAS to enable more precise clinical diagnosis and future 
research directions regarding molecular mechanisms behind 
the pathophysiology of the disease.

Epidemiology of CANVAS

While clinical descriptions of CANVAS are uncommon, it is 
possible that its prevalence could exceed initial expectations. 
Quite a few population-based assessments reported elevated 
carrier frequencies of the pathogenic (AAGGG)n motif cou-
pled with dwindled biallelic rates (Fig. 1). The majority of 
confirmed patients so far, both clinically and genetically, have 
come from communities in Europe [10, 11]. At the outset, 
92% of instances having complete CANVAS, 54% of cases 
with cerebellar ataxia and sensory neuropathy, and 22% 
with late-onset ataxias showed biallelic pathological RFC1 
expansions [11]. Contemporary studies have independently 
revealed the presence of the pathological biallelic RFC1 
expansion in ataxia cohorts; however, the reports indicated 
higher prevalence in full-blown CANVAS cases and lower 

Fig. 1  Percentage prevalence of 
biallelic expanded (AAGGG)n 
repeat. Diverse cohort-based 
studies have revealed the occur-
rence of biallelic (AAGGG)n 
repeat extension in CANVAS 
across different geographical 
regions worldwide
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prevalence in cases involving late-onset ataxia and incom-
plete CANVAS. In line with diverse studies, individuals 
from northern European origin have shown up with carrier 
frequency of RFC1 heterozygous (AAGGG)exp [1] to range 
from 0.7 to 4%, with an approximate prevalence of RFC1-
related diseases of 1/20,000, i.e. 1:625. The Chinese popula-
tion has also shown an analogous allele frequency of 2.24%. 
Whereas, 1.8% of the Japanese population (1/55) have shown 
heterozygous RFC1 (AAGGG)exp [12]. The occurrence of 
harmful RFC1 gene expansions (AAGGG)n has been dem-
onstrated to differ notably among various groups of individu-
als with late-onset ataxia. This ranges from 1.1% in a study 
involving Canadian and Brazilian participants to as high as 
28.9% in a British cohort. In other studies, the prevalence 
was found to be 3.2% in a North American group, 6.5% in a 
Greek cohort, 5.2–10.8% in Japanese cohorts, 14% in a Turk-
ish cohort, 14.5% in an Italian cohort, 15% in a French cohort 
and around 20.2% in a German cohort (Table 1) [13–15]. 

Variations in the criteria used for participant selection can be 
assumed to contribute significantly to the range of prevalence 
rates observed across numerous cohort studies focused on 
late-onset ataxias. Another potential factor could be the pres-
ence of population-specific variables that may exert an influ-
ence on these figures. The AAGGG expansion manifests at 
a comparable allele frequency in Asian populations, though 
the impact of RFC1 on disease within these populations is 
significantly less pronounced in comparison to European 
populations. Cortese et al. reported the non-pathogenic allele 
frequency to be 13% for (AAAAG)exp, 7.9% for (AAAGG)exp 
and 2.1% for (AAGAG)exp [11]. The allelic distribution for 
biallelic (AAGGG)exp in association with CANVAS has 
been reported to be around 0.7–6.8% [16]. These collective 
findings emphasize that late-onset ataxia patients, especially 
those with accompanying sensory neuropathy, frequently 
exhibit genetically confirmed CANVAS. Hence, it is cru-
cial to conduct screenings for biallelic RFC1 expansions 

Table 1  Population-based studies involving cohorts from different regions and the prevalence of RFC1-mediated CANVAS in them

Geographical region of the 
cohort where the study was 
conducted

No. of patient’s studied that showed cerebellar ataxia No. of 
patients 
that showed 
RFC1 repeat 
expansion

Individuals with the sus-
pected presence of the bial-
lelic expanded (AAGGG)n 
repeat

Percentage 
(%) preva-
lence

British [4] Studied patients with putative CANVAS 70 Precise 
figures not 
available

63 90%

Studied patients with adult-onset ataxia 293 Precise 
figures not 
available

42 14%

Japan [12] 1289 15 8 0.62%
North-American [13] 911 Precise 

figures not 
available

29 3.18%

Greek [14] 77 5 4 5.19%
Australia [15] 242 37 30 12.39%
Dutch [25] Studied patients with putative CANVAS 9 Precise 

figures not 
available

5 55%

Studied patients with adult-onset ataxia 617 Precise 
figures not 
available

10 1.6%

Brazilian [62] 23 Precise 
figures not 
available

2 8.6%

German [26] Complete CANVAS patients 17 15 15 88.2%
Incomplete CANVAS patients 9 2 2 22.22%
Patients with late-onset cerebellar ataxia 70 4 4 5.71%

Italian [46] 62 Precise 
figures not 
available

9 14.5%

Turkish [59] 129 Precise 
figures not 
available

18 13.9%
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in individuals presenting with complete CANVAS, partial 
CANVAS, or unexplained sensory ataxia. This proactive 
approach can ensure comprehensive care for these patients.

Clinical Considerations Linked to the Syndrome

In 2011, Szmulewicz et al. introduced the acronym “CAN-
VAS” to describe a condition associated with the late emer-
gence of symptoms including cerebellar ataxia, sensory neu-
ropathy and vestibular areflexia [17]. Concurrently, these 
patients exhibited cerebellar atrophy and persistent chronic 
cough. The chronological course of CANVAS demonstrates 
an escalating profile and amplification of its overall symp-
toms or characteristics (Fig. 2). Migliaccio et al. initially 
documented four cases featuring gradual sporadic cerebel-
lar ataxia, coupled with a decline in vestibulo-ocular reflex 
[18]. In a study involving 80 individuals experiencing late-
onset cerebellar ataxia, the findings revealed that 33% of 
the patients had an expression of multiple system atrophy 
(MSA), another 33% were associated with acquired causes, 
and the remaining cases were diagnosed as idiopathic late-
onset cerebellar ataxia (ILOCA), linked to CANVAS [19]. 
Derived from an examination of 150 cases, where 22 famil-
ial cases were diagnosed with CANVAS alongside ILOCA, 
the study emphasizes that CANVAS contributes to 20% of 
the cases involving ILOCA [11]. But in the most current 
scenario, the central characteristics of the clinically possible 
CANVAS have evolved. There have been significant efforts 
to understand the clinical aspects of the disease and it has 
been observed that the emergence of the last element in the 
diagnostic triad may extend beyond a decade. Therefore, 

a patient initially presenting with cerebellar ataxia and 
bilateral vestibulopathy (CABV), or any other combination 
of two of the three primary features of CANVAS, should 
undergo initial assessments. Consequently, it is recom-
mended that these individuals undergo regular reassessment 
to ascertain whether they have begun to develop a progres-
sive form of CANVAS [20]. According to Cortese et al. the 
disease turns to transition gradually from initial occurrence 
of sensory neuron deficits to later manifestations of vestibu-
lar and cerebellar dysfunctions [4].

Research involving five Turkish families with a high inci-
dence of consanguineous marriages revealed the presence 
of gait ataxia accompanied by sensory and autonomic dis-
turbances. The study further detailed lightheadedness and 
cold feet as prevalent autonomic symptoms associated with 
CANVAS [21]. Thus, as per observations, patients exhibit 
a vast range of behavioural signs, from pure cerebellar 
ataxia to more complex clinical characteristics, contribut-
ing to the continuously fostering clinical spectrum. These 
may also appear in conjunction with additional features like 
pyramidal tract disorder, muscle fasciculation, autonomic 
and cognitive impairments, chronic cough, parkinsonism, 
involuntary movement and elevated creatine kinase levels 
(hyperCKemia). Individuals may also have noise-induced 
hearing loss or presbycusis, two unrelated instances of hear-
ing loss [22]. Noteworthy is the revelation that a signifi-
cant majority, exceeding 60%, of patients may experience 
an unexplained dry cough [3]. In CANVAS, the ongoing 
neurodegenerative process leads to a gradual disruption of 
cerebellar neurons that are likely implicated in the regula-
tion of the cough reflex. This implies that as the condition 

Fig. 2  An illustration portray-
ing the developing profile of 
CANVAS symptoms. This 
figure provides a comprehensive 
depiction of the advancing tra-
jectory of symptoms associated 
with CANVAS
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advances, the neurological deterioration specifically affects 
the neurons in the cerebellum responsible for controlling 
the cough response [23]. Chronic cough thus has now been 
recognized as a fundamental characteristic of genetically 
confirmed CANVAS. Marked by hypersensitivity, chronic 
cough is known to precede the fundamental symptoms 
by a span of 30 years or more. This finding highlights the 
evolving understanding of the condition, emphasizing that 
it encompasses not only the previously established symp-
toms but also the presence of persistent coughing. Ninety-
two percent of the patients with CANVAS-endorsed history 
of chronic cough that predated gait instability by a median 
duration of 16 years had their history genetically validated 
[24]. This discovery emphasizes the significance of recog-
nizing this symptom in the evaluation of individuals with 
RFC1 REs. Recent research thus has illuminated a wider 
clinical spectrum associated with RFC1 REs, surpassing 
prior understanding [25]. This newfound depth of insight 
promises more precise diagnoses and potentially transforma-
tive treatment approaches for affected individuals.

Furthermore, sensory neuropathy, coupled with both cen-
tral and peripheral axonopathy, notably in cutaneous sensory 
nerve action potentials (SNAP), frequently showcase as the 
primary symptom in genetically confirmed cases. Sensory 
impairment in CANVAS is caused by a prominent dorsal 
root ganglionopathy, which results in compromised proprio-
ception. It is also characterized by reduced sensitivity to 
pinprick, referred to as pinprick hypoesthesia, as well as 
diminished sensations in joint position and vibration. These 
sensory impairments follow a length-dependent distribu-
tion. Rather than being a “neuropathy”, the somatic sensory 
impairment identified in CANVAS is a “neuronopathy” [22]. 
The cerebellar symptoms are most likely linked to a loss of 
Purkinje cells [26, 27].

In a 2018 study that involved the analysis of five patients 
exhibiting gait imbalance and cough, intact motor reflexes, 
as indicated by tendon jerks, were observed, and no discern-
ible hearing loss was detected [28]. The research further 
indicated well-functioning peripheral motor fibres and mus-
cle afferent fibres. Nonetheless, a pronounced loss in sensory 
nerve action potential was documented. This observation 
aligns with the understanding that, during ganglionopathy 
and axonopathy, the corticospinal tracts remain unaffected, 
as seen in the H reflex where A alpha fibres remain intact. 
In another case, as noted in a study on two families from 
the Asia–Pacific region, motor neurons were found to be 
affected, showcasing key CANVAS symptoms, muscle 
weakness in extremities, and signs of motor neuron den-
ervation in areas such as the hypoglossal nuclei and spinal 
cord [29]. Unsteadiness, therefore, is a prevalent clinical 
characteristic of CANVAS, attributed to bilateral vestibular 
dysfunction. This results in somatosensory deficits, yet hear-
ing remains unaffected. The bilateral vestibular dysfunction 

is also associated with oscillopsia, where objects seem to 
oscillate during head movements. Additionally, a study 
involving two siblings linked sweat gland denervation to 
CANVAS [30].

Therefore, in cases of late-onset ataxia, especially when 
coinciding with sensory neuropathy, it is advisable to con-
duct screening for biallelic RFC1 expansions [14]. Cere-
bellar atrophy, which is defined clearly as a diminution of 
vermian Purkinje cells, is the most prevalent MRI result; 
however, there may be other, less frequent, related abnormal-
ities as well [17, 31, 32]. In addition to the cerebellum and 
its connections, the basal ganglia dopaminergic circuitry is 
also affected by neurodegeneration in RFC1/CANVAS. It is 
recently discovered that RFC1/CANVAS frequently exhib-
its nigrostriatal dysfunction [33, 34]. Subsequent symptoms 
may also include the development of orthostatic hypoten-
sion, neuropathic pain, dysphasia, dysarthria, challenges 
with urinary erectile, retention functions and dryness in eyes 
and mouth [22, 32, 35]. A recent study by El Houjeiry et al. 
described the first case of CANVAS syndrome which was 
initially presented with isolated spinal cord lesion which 
mimicked dysimmune myelitis [36]. Very recently, another 
study reported two cases of RFC1-associated CANVAS 
with the brain MRI illustrating the (pseudo-)eye-of-the-tiger 
sign [31]. In fact, this study highlights that RFC1-associated 
CANVAS should be considered as an alternative imaging 
diagnosis in cases exhibiting the (pseudo-) eye-of-the-tiger 
sign. This finding expands our understanding of potential 
differential diagnoses in imaging studies. Thus, the prevail-
ing features now indulge more than just the classical triad of 
symptoms; they also encompass an enduring chronic cough, 
along with discernible signs of dysautonomia and neuro-
genic pain. These revelations contribute to a more profound 
comprehension of this condition and its diverse expressions, 
offering a path towards more focused and efficacious medi-
cal interventions.

Pathology of the Disease

From a neuroscientific perspective, CANVAS can be char-
acterized as a neuronopathy implicating the dorsal root 
ganglia, multiple cranial nerve pathways and concomitant 
cerebellar atrophy. Figure 3 clearly defines the three primar-
ily associated clinical features along with their distinct char-
acteristics. Dorsal root ganglionopathy is now considered to 
be responsible for sensory impairment in CANVAS, which 
leads to degeneration of neuron cell bodies [32, 37]. The 
sensory dysfunction in CANVAS does not adhere to the typ-
ical length-dependent paradigm often seen in neuropathies. 
Distinctively, CANVAS demonstrates a non-length-depend-
ent sensory deficit, clinically described as sensory gangli-
onopathy or neuronopathy, marking its unique pathophysi-
ological profile [38]. In a study conducted by Szmulewicz 
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et al., which explored the neuropathology of the brain and 
spinal cord in two individuals diagnosed with CANVAS, 
it was observed that the sensory deficit results from dorsal 
root ganglionopathy accompanied by secondary tract degen-
eration [17]. Scarpa ganglion cells also exhibited reduction 
[39]. The sensory deficit’s pathology stems from the neu-
ronal loss in cranial nerve V, VII and VIII ganglia, as well as 
the dorsal root ganglion in the spinal cord. Neuronal loss in 
the dorsal root ganglion leads to axonal degeneration, subse-
quent removal of the myelin sheath, and T2 hyperintensity in 
the posterior columns of the spinal cord [17]. Post-mortem 
temporal bone histology revealed ganglionopathy in facial, 
vestibular and trigeminal nerves [37]. In the investigative 
examination of cerebellar sections, a notable reduction of 
Purkinje cells and vermal atrophy was observed, associated 
with the formation of torpedo bodies. Additionally, glio-
sis of the Bergmann layer was discerned [37]. The research 
team identified neuronal loss in the inferior olivary nuclei of 
the cerebellum, which correlates with the sensory deficits. 
The axonal degeneration coexisted with nerve thinning [40]. 
Consequently, the cross-sectional area of peripheral nerves 
in these subjects was significantly reduced in comparison to 
healthy controls. Further, degenerative changes within the 
nuclei of the pons and evident neuronal loss characterized 
the CANVAS patients [41]. The potential degeneration of 
the mesencephalic nucleus has also been accounted for by 
the observed masseter areflexia. Vermal involvement pat-
tern causes Crus 1 to act functionally analogous to the ocu-
lomotor region of the cerebellum [42]. Vestibular system 
pathology is linked to the loss of vestibular ganglion, termed 
vestibular neuronopathy, observed in all five temporal bones, 
along with atrophy of vestibular nerves in axons and den-
drites [39]. Notably, the vestibular nuclei and receptor cells 
remain unaffected, and there is no evidence of trans-synaptic 

degeneration [42]. The maintenance of the vestibular nuclei, 
despite the degeneration of axons, is due to the varied affer-
ent nerve inputs they receive, including those from the visual 
system and the midbrain [39]. Additionally, sensory nerve 
damage in the geniculate and trigeminal ganglia, as observed 
in two temporal bones, contributes to the profound vestibular 
impairment in CANVAS patients, attributing it to vestibu-
lar ganglionopathy [39]. Auditory functions remain intact, 
given that neither degeneration nor neuronal loss is observed 
in the cochlear ganglia and auditory nerves. The front and 
side sections of the spinal cord, along with the thoracic col-
umns, have known to stay intact or unaffected. Additionally, 
fossa decompression emerges as a potential complication 
associated with bilateral vestibulopathy [22].

In patients diagnosed with CANVAS, oscillopsia is 
often expressed as a persistent symptom primarily linked 
to cerebellar ataxia, a consequence of downbeat nystagmus 
[43]. The pathology of CANVAS also encompasses the 
involvement of unmyelinated C fibres and A (delta) fibres, 
as evidenced by clinical revelations such as pinprick anaes-
thesia and spasmodic coughing episodes. Predominantly, 
the spasmodic cough is attributed to the engagement of 
C fibres, which oversee sensory innervation of the upper 
respiratory and oesophageal pathways. Intriguingly, these 
C fibres are associated with nociceptors situated within the 
larynx. The informational relay by these fibres converges 
at specific regions of the brain stem, controlling involun-
tary cough reflexes through efferent pathways linked to 
associated nucleus governing muscular responses. Thus, 
the pathophysiology of CANVAS involves a complex 
interplay of neuronal degeneration across various cranial 
nerve pathways, dorsal root ganglia and cerebellar struc-
tures, leading to diverse clinical manifestations.

Fig. 3  Defining clinical features 
of the CANVAS syndrome. 
The diagram highlights the key 
characteristics associated with 
cerebellar dysfunctions, vestibu-
lar dysfunctions and sensory 
neuropathy that collectively 
form the cause underlying the 
RFC1-CANVAS disease
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Genetic Foundations

CANVAS was first described in 2004 and further outlined in 
2011, with a suspected hereditary aetiology [17, 44]. Ever 
since, it has been believed to have an extensive genetic basis. 
However, the underlying molecular and genetic basis of 
CANVAS poses a mystifying enigma [14]. Recently CAN-
VAS has been recognised as the consequence of a biallelic 
intronic repeat expansion in the gene encoding the replica-
tion factor C subunit 1 (RFC1) on chromosome 4 [4, 45]. 
RFC1 gene contains the genetic information for the larg-
est subunit of Replication Factor C, a pentameric complex 
which functions as a clamp loader and facilitates the attach-
ment of polymerases, aiding in extension of nucleic acid 
chains. It orchestrates the activities of both DNA replication 
and repair. RFC1-ataxia is known to be triggered by a cata-
strophic extension of the AAGGG pentanucleotide in the 
poly(A) tail of an AluSx3 element in RFC1 intron 2, which 
substitutes the wild-type sequence of 11 AAAAG repeats, 
present 2952 base pairs upstream of exon 3 and 2863 base 
pairs downstream of exon 2. REs, particularly more than 
100 repeat modifications, modify the 3-D structure of the 
RFC1 protein. Whilst the first dissemination described an 
AAGGG pathogenic expansion with 400 to 2000 repeats 
(AAGGG 400-2000), lesser extensions (AAGGG 100-160) have 
also been documented [46]. Although the reference genome 
has (AAAAG)11 pure repetitions, recent studies have 
revealed astounding genetic heterogeneity. It thus, is also 
susceptible to other repeat sequences such as AAA GGG , 
AACGG, AAGGC, AACGG, AAAGG, AAGAG, AGAGG, 
and ACAGG in addition to AAAAG and AAGGG (Table 2) 
[47]. AAGGG can be preceded by non-pathogenic repeats 
of configuration (AAAGG), with repeats up to 51–53. 
Thus, it is very clear that the pentanucleotide expansion 
possesses vibrant character and diverse configurations. In 

relation to the increased heterogeneity at the RFC1 locus, a 
total of seven distinct expanded alleles have been laid out, 
three of which have been linked to the disease: AAGGG, 
ACAGG and the Māori allele [(AAAGG)15–25 (AAGGG)exp 
(AAAGG)10] and the rest four are believed to be of benign 
or unclear pathogenicity: AAAAG, AAAGG, AAGAG and 
AGAGG [48]. The expansion of the pathogenic sequence is 
hypothesized to take place via replication slippage, indicat-
ing instability within the A and G-rich motif. The robust 
base stacking interactions associated with the A and G-rich 
motifs (AAGGG and AAAGG) contribute to expansion 
eventually. The occurrence of pseudo-dominance may be a 
result of the high frequency of heterozygotes among carriers 
in various populations. The length of repeats varies between 
15 and 200 for (AAAAG)exp and 40–1000 for (AAAGG)exp, 
both of which belong to non-pathogenic alleles. Whereas, for 
(AAGGG)exp, which is pathogenic in nature, the repeat size 
ranges from 400 to 2000 repeats [11]. According to Dominik 
et al., all the pathogenic variants shared a common region of 
around 66 kb, indicating a recent recombination event [9]. In 
fact, all the pathogenic alleles along with carriers AAGGG 
and AAAGG have also shown a larger shared region indi-
cating the derivation of these expanded variants from an 
ancestral haplotype (dating 56–100 years back).

In an investigation where biallelic expansion was 
detected, the patients exhibited a congruent core haplotype, 
encompassing 27 single nucleotide polymorphisms. This 
suggests a shared origin for the point mutations within the 
RFC1 gene. This core haplotype for RFC1 spans 0.36 Mb 
and comprises four genes: (a) TMEM156, (b) KLHL5, (c) 
WDR19 and (d) RFC1. Utilization of bioinformatics local-
ized the pathogenic repeat expansion to a specific locus on 
chromosome four (chr4:38887351–40463592, hg19), which 
consistently showed association with CANVAS across all 
family samples examined [11, 49].

In a combined analysis, 537 samples were examined, 
leading to the identification of 23 heterozygous and one 
homozygous individual, resulting in an allele frequency 
of 0.023. In two CANVAS-affected individuals, the motif 
AAAAG on chromosome 4 (chr4:39350045–39350095, 
hg19) was substituted by AAAGG [49]. It highlighted 
another investigative insight, that the most recent com-
mon ancestor (MRCA) of CANVAS existed approximately 
25,880 years ago, originating in Europe, and the diver-
gence of this MRCA was attributed to a distinct founder 
effect. From this MRCA, four descendant subgroups 
were discerned. Group “A” has its origins tracing back 
5600 years, while Group “B” bifurcated into “B1” and 
“B2” with a MRCA around 4180 years ago. Group “C” 
showcased an MRCA dating back 1860 years. The final 
Group “N” was characterized only by the shared core 
haplotype. Notably, while CANVAS overexpression is 
predominant in those of European descent, instances in 

Table 2  Different repeat sequences linked with the increased hetero-
geneity at RFC1 locus and their associated pathogenicity

1 n represents multiple repeats

Sr. no Sequences No. of repeats Pathogenicity

1 AAAAG 11 Non-pathogenic
2 AAGAG n1 Non-pathogenic
3 AGAGG n Non-pathogenic
4 AAAGG  < 200 Non-pathogenic
5 AAAGG  > 700 Pathogenic
6 AAGGG  > 400 Pathogenic
7 ACAGG n Pathogenic
8 AACGG n Uncertain
9 AAGGC n Uncertain
10 AAGAC n Uncertain
11 AAA GGG /AAA AGG n Uncertain
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non-European lineages such as Japanese, Lebanese and 
Native American have also been documented. Heterozy-
gous individuals for the RFC1 gene repeat expansion 
remain asymptomatic but are classified as carriers. Carrier 
frequencies across populations were variable, with Europe 
at approximately 0.7%, China ranging from 1 to 2.2%, and 
Canada at 4%. In various studies, this frequency oscillated 
between 0.7 and 6.5% [12]. The motif (AAAAG)12–200 has 
an allele frequency of 0.13, while the regular sequence 
(AAAAG)11 stands at 0.75 [4]. Intriguingly, such expan-
sions in the poly(A) stretch of the Alu element have paral-
lels in other neurodegenerative ailments, including FRDA 
and several types of SCA associated with late-onset ataxia. 
This pattern intimates a potential shared pathogenetic 
mechanism rooted in Alu region polymorphisms across 
these neurodegenerative conditions. The motif sequences 
also suggest the potential existence of intricate nucleic 
acid structures. It is evident that pathogenic motifs may 
exhibit a propensity for forming structures (G-quadru-
plexes and triplexes) not observed in non-pathogenic 
motifs.

There have been a few reports that have pointed towards 
the frameshift or nonsense variants of RFC1 to be linked 
to the condition. Arteche-López et al. reported the pres-
ence of the nonsense c.724C > T p.(Arg242*) mutants 
along with the pathological AAGGG expansion in the 
RFC1 gene in two compound heterozygous patients [50], 
whereas another investigation by Benkirane et al. reported 
p.Arg388* and c.575delA as the RFC1 variants in patients 
with compound heterozygosity of pathogenic AAGGG 

expansion [51]. Nevertheless, the exact etiological basis 
remains yet to be elucidated [7, 9].

Molecular Mechanisms

Presently, the specific pathogenic mechanisms in CANVAS 
remain unidentified. Nonetheless, it is possible to hypoth-
esize potential mechanisms based on observations in CAN-
VAS as well as in other similar disorders involving REs. 
Various associated pathogenic mechanisms include RNA 
loss-of-function, protein gain-of-function, RNA gain-of-
function, repeat-associated non-AUG (RAN) translation, 
interaction with RNA-binding proteins resulting in seques-
tration, formation of R-loops, or a combination of these 
mechanisms (Fig. 4). The mechanisms underlying the selec-
tive sensory neuronopathy and damage to Purkinje cells in 
CANVAS are also currently unknown. However, the follow-
ing molecular mechanisms are known to be largely associ-
ated with the following:

a) DNA repair mechanism: The RFC1 gene encodes a 
DNA-dependent ATPase that plays a crucial role in 
loading the DNA clamp onto DNA. This clamp recruit’s 
polymerase enzymes for replication, and the resulting 
complex catalyses the reaction that opens the PCNA of 
the DNA-clamp protein, allowing it to encircle DNA 
[52]. Additionally, this complex is involved in pathways 
related to DNA repair, participating in processes such 
as mismatch repair and excision repair as responses to 
DNA damage. It is noteworthy that mutations in genes 
associated with DNA damage repair, including PCNA, 

Fig. 4  Possible mechanisms 
associated with the pathogen-
esis of CANVAS. Expanded 
pentanucleotide repeats in the 
AluSx3 element in the intron 2 
of replication factor C subunit 
1 (RFC1) gene lead to the 
formation of toxic RNA, that 
leads to formation of second-
ary structures as well as RNA 
foci that sequesters RBPs (RNA 
binding proteins). This leads to 
the formation of mutant proteins 
either through translation or 
RAN (Non-AUG) translation, 
both of which cause aggregation 
of proteins
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ATM and ATR have been linked to ataxia. This sug-
gests that if the DNA repair system in the cerebellum 
is not working properly due to mutations, it could make 
the cerebellum more prone to damage, possibly lead-
ing to the development of ataxia. Nonetheless, the pre-
cise mechanism by which the RFC1 repeat expansion 
induces ataxia remains to be cleared. One hypothesis 
proposes that alterations in the polymorphic zone may 
modify the gene expression of proteins involved in 
DNA repair, ultimately resulting in damage to the cer-
ebellum and peripheral nerves, particularly the small 
fibres associated with sensation [53]. Furthermore, 
cells with elevated energy demands are susceptible to 
oxidative stress, potentially causing DNA damage and 
impairment. Although the RFC1 complex is a crucial 
isoform known to interact with ligase, various transcrip-
tional factors and ASF1 27 (Anti-silencing factor 1, a 
H3-H4 histone chaperone), there is currently no sup-
porting evidence for this hypothesis [54]. Mutations 
in genes related to DNA repair can also contribute to 
mitochondrial dysfunction. This dysfunction serves as 
a potential final pathway for ataxia due to a combination 
of factors, including the vulnerability of mitochondrial 
DNA to damage by oxidative reactive oxygen species 
(ROS) and the substantial energy demand of Purkinje 
cells, resulting in high ROS production and consequent 
mitochondrial damage and dysfunction. However, the 
specific reasons for this process occurring in particular 
cells remain unknown.

b) Transcriptional silencing: It is induced by hypermeth-
ylation of heterochromatin initiated due to REs. The 
mechanism by which the REs mediates transcriptional 
silencing remains undefined. According to a hypoth-
esis, the transcription of RNA from DNA with repeat 
expansion results in the formation of R-loop that halts 
the transcription process by causing polymerase stall-
ing. This, in turn, triggers the recruitment of the PRC2 
complex, responsible for methylation, leading to stable 
silencing of the expanded DNA. A potential mechanism 
through which R-loop formation may occur is via the 
DNA Damage Response (DDR) system. The amplifica-
tion of the expansion can enhance R-loop formation, 
subsequently triggering the recruitment of the DDR 
system. This can precipitate mitochondrial dysfunction 
and apoptosis, a phenomenon evident in the hexanucleo-
tide expansion disorder associated with ALS. Diseases 
linked to G-rich motifs have been observed to correlate 
with R-loop formation, as evidenced by the in vivo stud-
ies. Supporting evidence for this concept comes from a 
study demonstrating the silencing of FMR1 in the later 
stages of embryo development [55]. A clear example 
of this silencing mechanism can also be seen in C9 
amyotrophic lateral sclerosis (ALS), which results from 

the expansion of GGG GCC  repeats in C9ORF72 [56]. 
However, no evidence was found in a study involving 
CANVAS-derived cell lines, of transcriptional reduction 
of RFC1. Analysis by Rafehi et al. of GTEx RNA-seq 
data showed that pathogenic allele did not inhibit normal 
expression of RFC1 as compared to reference sequence 
[49]. The somatic instability evident in disorders such 
as spinocerebellar ataxia type 10 (ATTCT) and familial 
adult myoclonic epilepsy 1 and 3 (TTTCA) may offer 
additional insights into the molecular foundations of 
CANVAS [57].

c) RNA toxicity: A very recent investigation reported 
formation of toxic RNA foci in two Japanese women 
(83 and 85 years old, respectively) at the time of their 
death. These two CANVAS patients, identified with 
compound heterozygosity (biallelic ACAGG-exp and 
AAGGG-exp), point towards the RFC1 loss of function 
to be associated with CANVAS. Additionally, the same 
two patients also revealed the formation of RNA foci 
as per the analysis by RNA FISH (Fluorescence in situ 
hybridization), indicating the presence of RNA toxicity 
in the neuronal tissues to also have partial association 
in the CANVAS pathogenesis [58]. Another report by 
Benkirane et al. also assisted the loss-of-function of the 
gene hypothesis by showing a considerable reduction 
in the RFC1 mRNA levels in the blood of patients [51]. 
RNA foci (gain of toxic function) and loss of function 
of the gene have also been linked to many similar repeat 
expansion disorders.

d) Altered RNA splicing: RNA splicing, a critical compo-
nent of mRNA processing, was first identified in 1977, 
describing the existence of exons and introns. However, 
aberrance in RNA splicing can result in the retention 
of intronic sequences within the final protein product. 
This misincorporation can alter the protein’s secondary 
and tertiary structures, potentially leading to protein 
aggregation or nuclear sequestration, with downstream 
pathway implications. Nevertheless, post-mortem analy-
ses have not identified such protein aggregates in the 
affected brain regions. Supporting this mechanistic per-
spective, Traschutz et al. observed a modest increase 
in the retention of intron 2 from the RFC1 gene in its 
precursor mRNA from muscle biopsy samples [59]. 
The meaning and broader impact of this finding remain 
under-explored in current literature and necessitate fur-
ther investigation.

e) G-quadruplex formation: The pathogenic mechanism 
of CANVAS is unusual in two ways: the repeat expan-
sion of RFC1 falls inside the AluSx3 poly(A) tail, which 
leads to plausible expansion by retrotransposons. Sec-
ondly, repetition also does not affect the expression 
level of RFC1 gene products. Thus, CANVAS is yet 
to be understood and is a unique, intriguing disease. 
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The association of particular repeat motifs to cause the 
condition is contributed by the unusual nucleic acid 
structures that are formed by the pathogenic forms. The 
pathogenic AAGGG in its expanded form facilitates the 
formation of G-quadruplex (non-B-form) structures that 
are more stabilized [60]. The tendency to form non-B 
form structures can be attributed to the self or interas-
sociation of different homopurine or homopyrimidine 
sequences. A recent report suggests that (AAGGG)n in 
both DNA and RNA forms resulted in the formation of 
the four-stranded G-quadruplex structures in the potas-
sium solution [7]. These G-quadruplexes are built of 
subunits called G-quartets that in turn are built through 
the self-association of four guanine residues through 
Hoogsteen hydrogen bonds arranged in a planar form 
around a monovalent cation. The formed G-quadruplex 
is known to regulate transcription by either interrupt-
ing the movement of RNA polymerase or by tethering 
onto duplex-DNA. These pathogenic repeats are also 
observed to attain triplex (triple-stranded) forms. Both 
triplexes and quadruplexes have not been observed with 
non-pathogenic forms. “Dominik et al. also showed the 
G4 scores (a bioinformatics-based analysis) to be high 
for most of the pathogenic repeat configurations com-
pared to the non-pathogenic repeat ones by using the 
G4Hunter and QGRS-Mapper, confirming the expected 
propensity of G-quadruplex formation in CANVAS [9].” 
However, one pathogenic repeat (ACAGG), prevalent in 
the Asian population, seems to diverge from this pattern. 
Very recent research by Kudo et al. reveals that ACAGG 
does not exhibit a propensity to form G-quadruplex 
structures; instead, the ACAGG RNA tend to adopt a 
unique slipped hairpin configuration. These findings 
clearly suggests that while pathogenic repeats gener-
ally develop rigid secondary formations, none of the 
non-pathogenic repeats exhibit identifiable secondary 
structures in nucleic acids, highlighting a clear contrast 
between the secondary structure dynamics of pathogenic 
and non-pathogenic repeats [61].

Prospective Diagnostic and Therapeutic Strategies

Due to the insufficient comprehension of the bilateral ves-
tibular areflexia and sensory disorders as the cues to the 
right diagnosis, the diagnosis of CANVAS may be missing. 
The disorder is highly probable to remain underdiagnosed. 
The possibility of repeat expansion in RFC1 should be taken 
into account when encountering cases involving sensory 
ataxia neuropathy. This consideration is especially relevant, 
though not exclusively limited to, situations where there is 
a concurrent presence of cerebellar dysfunction, vestibular 
involvement, and cough [4]. Patients with genetically inex-
plicable, gradually worsening adult-onset ataxia and sensory 

or sensorimotor axonal neuropathy should be assessed for 
the possibility of (AAGGG)n REs in the RFC1 gene in order 
to strengthen the existing diagnostic practices [25]. When 
compared with individuals only diagnosed with cerebellar 
ataxia, the inclusion of neuropathy as a symptom boosts 
the positive effect of testing by 20.1% (with a confidence 
interval of 9.7% to 30.6%). Furthermore, the combination 
of both neuropathy and vestibulopathy elevates the benefit 
to 70.6% (with a confidence interval of 44.2 to 97.0%) [13]. 
In patients who exhibit a notable delay in the emergence of 
all three cardinal characteristics, diagnosis may be harder to 
arrive at. Thus, identification of the condition poses greater 
challenges when the characteristic features develop over an 
extended time period. Expanded (AAAGG) REs have at 
times appeared to mimic the (AAGGG) expansion in cases 
where the evaluation is purely based on the RP-PCR results. 
In such conditions, the pure characteristic of the expansion is 
largely misapprehended [62]. Therefore, to combat this, the 
diagnostic criteria could be staged according to the pathol-
ogy found in CANVAS [22].

Upon tracking down the genetic anomaly, it may prove 
beneficial to assess these alternative phenotypes for a more 
comprehensive outlining of the phenotype, and potentially 
for understanding the presence of multiple distinct patholo-
gies. Next-generation sequencing (NGS) and other advanced 
genomic technologies are revolutionizing the landscape of 
molecular screening and clinical healthcare. These cutting-
edge tools have ushered in a new era, allowing for more 
precise and comprehensive analysis of genetic material. 
Multimodal RFC1 repeat screening (Southern blot, PCR, 
whole-exome/genome sequencing-based approaches) along 
with longitudinal and cross-sectional deep phenotyping, ves-
tibulo-ocular reflex quantification by the video head impulse 
test and optical genome mapping has been largely useful 
as of now [25, 59, 63]. To screen for the RFC1 expansions 
associated with CANVAS, a systematic process is followed 
that is depicted by a workflow here (Fig. 5). This initially 
includes RFC1-flanking PCR to identify if amplification 
in the RFC1 region is present or not, followed by RP-PCR 
(Repeat Primed PCR) to confirm the presence of biallelic 
(AAGGG)n [13]. This step ensures the specificity of the 
expansion associated with CANVAS. Subsequently, the 
repeat lengths are further assessed using Southern blotting 
[3]. This technique allows for the precise determination of 
the repeat lengths and distinguishes between homozygous, 
heterozygous, and non-expanded alleles associated with 
CANVAS. Thus, accurate screening for timely detection of 
the disease is done following a concrete workflow, that is a 
composite of different reliable techniques.

A recent investigation has revealed a substantial rise in 
the serum neurofilament levels in individuals with RFC1 dis-
ease. The observed increase in neurofilament levels serves 
as a compelling indicator, pointing towards its potential 
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utility as a biomarker in advancing the accuracy of diagnosis 
and enhancing treatment strategies for RFC1 disease [64]. 
Another imperative approach could be the conduction of 
comprehensive assessment of familial medical background 
and facilitating access to genetic counselling for all indi-
viduals. Taking this into consideration, there is a signifi-
cant prospective for strengthening the diagnostic accuracy 
to a significant degree. Precise diagnosis of CANVAS is a 

crucial therapeutic endeavour that shall influence the man-
agement, prognosis, ease for patients and most importantly, 
the prospect of future therapy. A recent study by Ghorbani 
et al. successfully advocated the incorporation of RFC1 
screening to the genetic assessment workflow by employing 
novel strategies that yields extensive fragments such as the 
use of optical genome mapping over the southern blotting, 
which has been considered a gold standard for determining 

Fig. 5  Comprehensive screening workflow for RFC1 repeats expan-
sion. The screening process involves RFC1 flanking PCR to identify 
the presence of amplification in the RFC1 region, RP-PCR to iden-
tify the presence of biallelic (AAGGG)n, southern blotting to assess 

the repeat length, long-range PCR to confirm the structural integrity, 
sequencing for nucleotide-level resolution and optical genome map-
ping for high-throughput analysis
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the repeat expansion lengths till now, to succumb the labour 
intensiveness and time-consumption [25].

CANVAS-associated pathogenesis can be addressed 
through therapeutic approaches targeting both upstream and 
downstream mechanisms. These are largely aimed at reduc-
ing the toxic effects caused by the expanded repeats. A range 
of potential therapeutic nucleic acid-targeting strategies 
having considerable importance in tackling other similar 
RE neurodegenerative disorders can be of immense impor-
tance in this disease too. Since small molecules have been 
of potential value as a therapeutic approach in other similar 
diseases, the G-quadruplex structures created by extended 
CANVAS repetitions containing transcripts can also be tar-
geted using small molecules to neutralize the toxicity and 
thereby for the treatment of the disorder [65–67]. Targeting 
the repeat expanded DNA/RNA using Antisense oligonu-
cleotides and RNA interference (RNAi strategy) represents 
other attractive therapeutic modalities that can be made to 
target the upstream portion of the genetic cause, as well as 
regulating the downstream effects. Both active and passive 
immunization have been investigated as potential strategies 
for targeting toxic proteins, and this avenue has also shown 
promise in addressing other neurodegenerative conditions. 
CRISPR/Cas9 technology can also be engineered to pre-
cisely cleave the specific REs responsible for CANVAS, 
facilitating gene correction via nonhomologous end join-
ing, suppressing the transcription of repeat-containing RNAs 
and triggering certain downstream modifications, such as 
hindering the export of hazardous repeat-containing RNA 
to the cytosol [68]. These approaches, either individually 
or collectively can largely target the upstream mechanisms 
of the disease progression such as; releasing of sequestered 
RNA Binding proteins (RBPs), repressing RAN (non-AUG 

mediated) translation, altering of splicing defects, reduction 
of toxic foci formation and prevention of DNA/RNA hybrid 
formation, all of which forms the firm basis behind the cause 
of the disease. Additionally, these strategies can also sig-
nificantly intervene in various downstream mechanisms, by 
targeting specific proteins involved, correcting downstream 
cellular pathways, targeting different nuclear export factors 
to reduce the nuclear export and targeting SINE sequences 
from which repeat expansions are derived (Fig. 6). Thus, it 
is crucial to persistently drive forward research endeavors in 
this domain, given that the diverse and multifaceted nature 
of these strategies offers significant potential in effectively 
preventing the advancement of the disease.

Conclusions

CANVAS, a RFC1 mediated autosomal recessive disease, 
has been fully elucidated only in the last decade or so. 
It has a polygenic basis and diverse clinical symptoms. 
Due to the expanded repetitions in the RFC1 gene, CAN-
VAS has emerged as one of the prevailing instances of 
autosomal recessive ataxias. Elucidating the exact patho-
genic mechanism is currently the focus of comprehensive 
scientific research; however, a few studies point towards 
stable G quadruplexes formation by specific motifs in 
RFC1 may influence gene transcription, offering insights 
into its genetic basis. Initially more common in European 
communities, recent studies have identified the pathologi-
cal RFC1 expansion in ataxia cases worldwide, albeit at 
lower rates. The broad clinical spectrum ranges from pure 
ataxia to complex features like pyramidal tract issues and 
cognitive impairment. Additionally, CANVAS presents an 

Fig. 6  Exploring therapeutics 
avenues for CANVAS: target-
ing upstream and downstream 
mechanisms. The diagram 
depicts the possible therapeutic 
strategies with a high potential 
for targeting the upstream and 
downstream mechanisms asso-
ciated with CANVAS. Small 
molecules, ASO (antisense 
oligonucleotides), RNAi and 
CRISPR Cas9 can be used to 
target different upstream and 
downstream regulatory func-
tions
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enduring chronic cough, dysautonomia, and neurogenic 
pain. Sensory neuropathy and chronic cough often pre-
cede gait instability, broadening our understanding and 
paving the way for targeted therapies. The aetiology of 
CANVAS implicates a biallelic intronic repeat expan-
sion within the RFC1 gene on chromosome 4, primarily 
involving the AAGGG pentanucleotide sequence, leading 
to genetic disruption. The genetic heterogeneity observed, 
stemming from variations in repeat sequences, adds com-
plexity to the understanding of this condition. While spe-
cific expanded alleles are linked to disease, the intricate 
molecular mechanisms underlying CANVAS necessitate 
deeper research. The underdiagnosis of CANVAS, attrib-
uted to challenges in recognizing its key clinical indica-
tors, demands a heightened awareness within the medical 
community. Screening for RFC1 REs, particularly in cases 
featuring sensory ataxia neuropathy, holds potential for 
enhancing the diagnostic accuracy. Integrating neuropa-
thy and vestibulopathy as diagnostic criteria shall substan-
tially improve the efficacy of testing by many folds. With 
advanced genomic technologies being pivotal in enabling 
comprehensive genetic analysis, targeting G-quadru-
plex structures through small molecules, RNAi, ASOs, 
CRISPR/Cas9 technology and conducting thorough famil-
ial medical assessments coupled with genetic counselling 
may further refine diagnostic approaches and pave the way 
for more effective therapeutic interventions.
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