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Abstract
Spinal cord injury (SCI) is a severe neurological condition that can lead to paralysis or even death. This study explored the 
potential benefits of bone marrow mesenchymal stem cell (BMSC) transplantation for repairing SCI. BMSCs also differentiate 
into astrocytes within damaged spinal cord tissues hindering the cell transplantation efficacy, therefore it is crucial to enhance 
their neuronal differentiation rate to facilitate spinal cord repair. Wnt5a, an upstream protein in the non-classical Wnt signaling 
pathway, has been implicated in stem cell migration, differentiation, and neurite formation but its role in the neuronal differen-
tiation of BMSCs remains unclear. Thus, this study investigated the role and underlying mechanisms of Wnt5a in promoting 
neuronal differentiation of BMSCs both in vivo and in vitro. Wnt5a enhanced neuronal differentiation of BMSCs in vitro while 
reducing astrocyte differentiation. Additionally, high-throughput RNA sequencing revealed a correlation between Wnt5a and 
phosphoinositide 3-kinase (PI3K)/protein kinase B(AKT) signaling, which was confirmed by the use of the PI3K inhibitor 
LY294002 to reverse the effects of Wnt5a on BMSC neuronal differentiation. Furthermore, transplantation of Wnt5a-modified 
BMSCs into SCI rats effectively improved the histomorphology (Hematoxylin and eosin [H&E], Nissl and Luxol Fast Blue 
[LFB] staining), motor function scores (Footprint test and Basso-Beattie-Bresnahan [BBB]scores)and promoted neuron pro-
duction, axonal formation, and remodeling of myelin sheaths (microtubule associated protein-2 [MAP-2], growth-associated 
protein 43 [GAP43], myelin basic protein [MBP]), while reducing astrocyte production (glial fibrillary acidic protein [GFAP]). 
Therefore, targeting the Wnt5a/PI3K/AKT pathway could enhance BMSC transplantation for SCI treatment.
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Introduction

Spinal cord injury (SCI) is a significant neurological condi-
tion that can result from trauma, tuberculosis, tumors, and 
other factors [1]. Damage to the spinal cord tissue's struc-
tural integrity leads to impaired functioning characterized by 
sensory and motor deficits, reflex loss, and other dysfunc-
tions. Secondary injuries such as inflammation and colloid 
scarring further worsen the condition, contributing to long-
lasting impairments and increased disability and mortality 

rates in SCI patients [2, 3]. Although several treatment 
modalities including surgical decompression, pharmaco-
therapy, hypothermia, stem cell therapy, and growth factor 
therapy have been developed, their effectiveness remains 
limited due to the restricted self-repair mechanisms within 
the damaged neurological system [4].

Stem cell transplantation has emerged as a potential ther-
apeutic approach for SCI, particularly bone marrow mesen-
chymal stem cells (BMSCs) that have considerable potential 
for nerve regeneration in SCI patients [5–7]. BMSCs can be 
readily obtained from the bone marrow and differentiate into 
neuronal cells, leading to improved motor function in SCI 
[8, 9]. However, an important limitation of BMSC therapy 
is their tendency to also differentiate into astrocytes within 
injured spinal cord tissues, impacting the overall efficacy of 
stem cell therapy [10–12].

Haimei Yang and Chaolun Liang contributed equally to this study.

Key Points   Spinal cord injury; Stem cell therapy

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s12035-024-04248-8&domain=pdf


	 Molecular Neurobiology

Wnt proteins, a class of glycoproteins, exert significant effects 
on cell differentiation, proliferation, and migration. At least 19 Wnt 
proteins have been identified in humans and mammals and clas-
sified into traditional Wnt proteins (e.g., Wnt3a and Wnt7a) and 
non-classical Wnt proteins (e.g., Wnt5a and Wnt11) based on their 
downstream signaling pathways [13, 14]. Both classical and non-
classical Wnt signaling pathways have been implicated in neuronal 
development [15–18] but the traditional Wnt/β-catenin pathway is 
inherently carcinogenic and susceptible to interference from extra-
neous signals, limiting its practical implementation and clinical 
application for neuronal repair [16, 19–23]. The non-classical pro-
tein Wnt5a [24] is involved in neurogenesis within the hippocampus 
and has implications for endogenous neural repair [25]. It facilitates 
the targeted differentiation of neural stem cells towards a neuronal 
lineage [26] and can enhance the differentiation or functionality 
of various stem cell types [27–30]. However, its potential role in 
BMSCs is unclear, therefore, this study investigated the potential 
of Wnt5a in promoting targeted neuronal differentiation of BMSCs 
both in vitro and in an animal model to provide supporting evidence 
for the application of Wnt5a in BMSC transplantation.

Materials and Methods

Animals

The Ethics Committee for Laboratory Animal Management at 
Guangzhou University of Chinese Medicine conducted a com-
prehensive evaluation and approved all animal research activi-
ties. The experimental protocol for this study is registered in 
The Second Affiliated Hospital of Guangzhou University of 
Chinese Medicine. Male Sprague-Dawley (SD) rats weighing 
180-220g were obtained from the Experimental Animal Centre 
of Guangzhou University of Chinese Medicine. The rats were 
housed in specific rearing conditions, including a maximum 
cage occupancy of 5 rats, an ambient temperature ranging from 
22 to 26°C, a 12-hour light-dark cycle, and a relative humidity 
of 55% to 68%. Before the experimental study, the rats were 
provided with appropriate nutrition for one week.

The isolation and cultivation of BMSCs

Two-week-old male SD rats were euthanized using CO2. 
Under aseptic conditions, the tibia and femur were removed, 
cleansed, and sliced to expose the bone marrow cavity. The 
cavity was rinsed with phosphate-buffered saline (PBS) until 
whitened, and the eluate was collected and inoculated in 
glass dishes containing α-MEM medium (1X; Gibco, Life 
Technologies, USA), 10% fetal bovine serum (FBS; Gibco, 
Life Technologies, USA), and 100 U/mL antibiotics (Gibco, 
Life Technologies, USA). The cells were cultured at 37°C 
with 5% CO2, and the medium was changed every 3 days.

Grouping and Treatment of BMSCs

The cultured BMSCs were seeded into 24-well plates (2×103 
cells per well) and divided into three groups: control, nega-
tive control (NC), and Wnt5a. The control group was main-
tained in the original medium, while the NC and Wnt5a groups 
underwent modified culture conditions to induce differentia-
tion. Before differentiation, BMSCs were preconditioned in 
DMEM/F12 medium (1:1) to achieve a healthy state and 
allowed to adhere. The medium was then supplemented with 
1% N-2 supplement CTSTM (100X; Gibco), 2% B27TM sup-
plement (50X; Gibco), 1% L-glutamine (Gibco), 20 ng/mL of 
brain-derived neurotrophic factor (BDNF; PeproTech, Rocky 
Hill, NJ, USA), 10 ng/ml epidermal growth factor (EGF; Pep-
roTech), and 10 ng/ml basic fibroblast growth factor (bFGF; 
PeproTech without (NC group) or with Wnt5a (Wnt5a group) 
[31]. The medium was replaced every 3 days.

For the analysis of the phosphoinositide 3-kinase 
(PI3K) / protein kinase B (AKT) signaling pathway, 
BMSCs were cultured continuously for 15, 30, 60, and 
120 minutes with or without Wnt5a. Then, 25μmol/L 
LY294002 (MedChemExpressly, China) was used to 
block the PI3K/AKT signaling pathway for 30 minutes. 
Subsequently, the cells were removed from the inhibitor 
environment and the cells continued to be cultured for 12 
days to evaluate the related experiments.

High‑throughput RNA Sequencing (RNA‑seq) 
and Bioinformatics Analysis

RNA was extracted using TRIzol reagent (Invitrogen, CA, 
USA) in accordance with the provided instructions. The 
purity, quantity, and integrity of the RNA were subse-
quently assessed. Subsequently, cDNA libraries were con-
structed using the VAHTS Universal V6 RNA-seq Library 
Preparation Kit (Vazyme Biotech, China) according to the 
manufacturer's guidelines. Sequencing was performed on 
the Illumina Novaseq 6000 platform, resulting in the gen-
eration of double-ended read sequences with a length of 
150 base pairs. After removing low-quality data, bioinfor-
matics analysis was performed.

Sequence alignments were executed to ascertain simi-
larities among the samples. Concurrently, the Fragments Per 
Kilobase of transcript per Million mapped reads (FPKM) 
metric was calculated utilizing the HISAT2 software. Princi-
pal Component Analysis (PCA) was used in R version 3.2.0 
to evaluate the biological consistency of the data. Addition-
ally, differential expression analysis was performed using the 
DESeq2 package. To identify differentially expressed genes 
(DEGs), a significance threshold of Q value < 0.05 and a fold 
change greater than 2 or less than 0.5 were used for screen-
ing. Subsequent to the differential gene expression analysis, 
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hierarchical clustering analysis and KEGG pathway enrich-
ment analysis were performed using the R program.

Lentivirus Construction and Transfection

Lentiviral vectors, including the Wnt5a overexpressing lenti-
viral vector (Wnt5a-LV) and the empty lentiviral vector (NC-
LV), were constructed. Lentiviral vectors for Wnt5a overex-
pression were constructed using rat DNA as a template, and 

amplification primers for Wnt5a were designed according to 
NCBI. Subsequently, 293T cells were co-transfected with the 
vector and packaging plasmid. After 8 hours of culture, the cells 
were transferred to complete medium for 48 hours. The super-
natant was collected, filtered, concentrated, and resuspended. 
The optimal MOI was determined via titer assay. BMSCs were 
infected with the two lentiviruses, resulting in NC-BMSCs (NC 
group) and Wnt5a-BMSCs (Wnt5a group). Overexpression of 
Wnt5a was assessed by western blotting analysis.

Fig. 1   Modification of Wnt5a promotes BMSC differentiation 
into neurons and inhibits BMSC differentiation into astrocytes. A: 
Bright field and immunofluorescence staining on days 3, 6, and 12 
of induced neuronal differentiation of Wnt5a-BMSCs using BMSCs 
unmodified with Wnt5a as a control group. B: The number of neural 

differentiation marker-positive BMSCs over time. Data are presented 
as mean ± SEM. *P<0:05 compared with the NC group. C: Com-
parison of MAP2, β3-tubulin, and GFAP expression in the NC group 
versus the Wnt5a group measured by western blotting. Data are pre-
sented as mean ± SEM. *P<0:05 compared with the NC group
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Western Blotting Analysis

Total protein from BMSCs was extracted using ristocetin-
induced platelet aggregation (RIPA) buffer (Gibco, Grand 
Island, NY, USA) containing a phosphatase inhibitor (1nM 

Na3VO4 and 1nM NaF) and a protease inhibitor (1 μg/ml; 
Sigma-Aldrich). The protein content was quantified using 
the BCA protein assay reagent [32]. Next, total protein per 
group (20 μgg) was loaded onto a 10% sodium dodecyl sul-
fate polyacrylamide gel electrophoresis (SDS-PAGE) and then 
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transferred to a PVDF membrane. The membrane was sealed 
using pre-chilled NcmBlot Rapid Closure Solution, and pri-
mary antibodies were added at 4°C: microtubule-associated 
protein-2 (MAP-2) (1:1000; Boster Biological Engineering 
Co.), glial fibrillary acidic protein (GFAP) (1:1000; Boster Bio-
logical Engineering Co.), β3-tubulin (1:1000; CST), growth-
associated protein 43 (GAP43) (1:1000; NOVUS), myelin 
basic protein (MBP) (1:1000; NOVUS), PI3K (1:1000; CST, 
4228), p-PI3K (1:1000; Bioss), AKT (1:1000; CST), p-AKT 
(1:1000; CST), and glyceraldehyde-3-phosphate dehydro-
genase (GAPDH) (1:500; Thermo Fisher). After rinsing the 
membranes with Tris-buffered saline with Tween (TBST), 
they were incubated for 60 minutes with a secondary antibody 
(1:1000; Boster Biological Engineering Co.). Proteins were vis-
ualized using a ChemiDocTM MP imaging system (Bio-Rad). 
The relative intensity of each band was measured using Image 
J (National Institutes of Health, Bethesda, MD). The relative 
intensity of the p-PI3K versus p-AKT bands was determined 
using the PI3K and AKT proteins, respectively. Additionally, 
the entire phosphorylated protein assay was conducted at a tem-
perature of 4°C.

Establishment of the Rat Model of SCI

The rat model of SCI was established using Allen's method 
[33]. The rats were immobilized under aseptic conditions with 
general anesthesia, and their back skin was shaved. An incision 
(3 cm) was made with the spinal cord of the T10 segment as the 
center to expose the spinous processes and plates of the T9-T11 
segments. The spinous processes and plates were removedto 
fully expose the spinal cord tissues. The T10 spinal cord was 
impacted using a PinPointTM precision SCI impinger (striking 
speed 1.2 m/s; striking depth 1.0 mm; stopping time 85 ms). It 
was observed that the struck portion of the spinal cord rapidly 
congested and reddened, and the rats exhibited transient spastic 
convulsions in their tail and hind limbs, indicating successful 

construction of the SCI model. In the sham-operated group, the 
spinal cord tissue was exposed without impact.

Grouping and Treatment of SCI Model

Twenty-four rats were randomly divided into four groups 
(n=6): Sham group, SCI group, NC group, and Wnt5a group. 
Cell transplantation was performed through tail vein injection. 
Three days after the surgery, rats in the Sham and SCI groups 
received a saline injection (1 ml) while those in the NC group 
were injected with NC-BMSCs single-cell suspension (1 ml, 
2×106 cells/ml), and rats in the Wnt5a group were injected with 
Wnt5a-BMSCs single-cell suspension (1 ml, 2×106 cells/ml).

Animal Behavioral Assessment

The behavioral assessment of SCI rats in each group was 
performed using the Basso-Beattie-Bresnahan (BBB) scale 
and footprint experiment [34, 35]. On the 3rd, 7th, 14th, and 
21st days following BMSCs transplantation, the rats were 
placed in an open field for 15 minutes to assess hind limb 
motor ability using BBB scale, with scores ranging from 0 to 
21 (0 represents complete paralysis of the hind limbs, and 21 
represents normal hind limb movement). The rat hindlimb 
footprint experiment was conducted on the 21st day: the hind 
paws were dyed and placed on a 100 cm white paper-covered 
track. The rats were guided to the finish line to observe and 
record their locomotion and coordination.

Tissue Preparation and Preservation

On the 21st day after BMSCs transplantation, all rats were eutha-
nized. A section of the injured spinal cord tissue was preserved in 
liquid nitrogen for protein blotting analysis. Another portion of 
the tissue was decalcified in 4% paraformaldehyde (PFA) at room 
temperature for 30 days, dehydrated, embedded in paraffin, and 
sectioned to a thickness of 5 μm for histopathological staining.

Histopathological Staining

Hematoxylin and eosin (H&E), Nissl and Luxol Fast Blue 
(LFB) staining were performed on the diseased tissue accord-
ing to the manufacturer's instructions to observe the histo-
pathological changes, including the number of neurons, mor-
phology of the spinal cord tissue and integrity of the neuronal 
myelin sheath after SCI.

Immunofluorescence Staining and Analysis

The cells were fixed in 4% paraformaldehyde (PFA) and per-
meabilized with 0.3% Triton X-100 at room temperature for 60 

Fig. 2   Transcriptomic sequencing results of BMSCs. A: The gene 
expression in the Control, NC, and Wnt5a groups was relatively 
consistent. B: The similarity of expression was higher for samples 
within groups and lower for samples between groups. C: Principal 
component analysis (PCA) revealed significant differences between 
the Wnt5a and NC groups. D: Differential metabolites in the Control, 
NC, and Wnt5a groups. Up is the number of significantly different 
up-regulated genes and down is the number of down-regulated genes. 
E: A Venn diagram depicting the common differentially expressed 
genes in the NC, Wnt5a, and Control groups. F: Volcano plot of dif-
ferentially expressed genes in the Wnt5a versus the NC group. Blue 
dots represent downregulated genes and red dots represent upregu-
lated genes. G: Clustering heatmap of differentially expressed genes 
in the Control, NC, and Wnt5a groups. The color scale illustrates the 
relative abundance of the samples with blue indicating significant 
down-regulation of metabolites and red indicating significant up-reg-
ulation of metabolites. H: KEGG enrichment analysis of differentially 
expressed genes in the Wnt5a and NC groups

◂
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Fig. 3   Wnt5a promotes neuronal differentiation in BMSCs through 
the PI3K/AKT signaling pathway. A: Time to phosphorylation activa-
tion of PI3K and AKT. Data are presented as mean ± SEM. *P<0:05 
compared with 0 minute; #P<0:05 compared with 30 minute. B: The 
addition of the PI3K inhibitor LY294002 significantly decreased the 
percentage of neuronal marker-positive BMSCs (with no PI3K inhibi-

tor as control). Data are presented as mean ± SEM. *P<0:05 com-
pared to the Wnt5a group. C: Effects of PI3K inhibitors on MAP2, 
β3-tubulin, and GFAP expression in Wnt5a-modified BMSCs. Data 
are presented as mean ± SEM. *P<0:05 compared to the NC group; 
#P<0:05 compared to the Wnt5a group
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minutes. Tissue sections underwent deparaffinization sequen-
tially with xylene and different concentrations of alcohol. Subse-
quently, the sections were treated with an antigen repair solution 
(10 mM sodium citrate, pH 6.0) for repair. After 1 hour of incu-
bation with 10% goat serum, the following primary antibodies 
were added and incubated overnight at 4°C: GFAP antibody 
(1:600; Boster Bioengineering), MAP2 antibody (1:200; Boster 
Bioengineering), β3-tubulin antibody (1:200; Cell Signaling 
Technology), GAP43 antibody (1:200; NOVUS), and MBP 
antibody (1:200; NOVUS). The next day, DAPI was used to 

stain the nuclei, and cells were incubated with Alexa Fluor sec-
ondary antibody (1:300; Invitrogen) diluted in PBS correspond-
ing to the primary antibodies. Finally, the fluorescent images 
were observed under a fluorescence microscope.

Statistical Analysis

Statistical analyses were performed using SPSS version 16.0 
(SPSS Inc., Chicago, IL, USA). Data were presented as mean 
±standard error of measurement (SEM). Differences between 

Fig. 4   In vivo transplantation of Wnt5a-modified BMSCs promotes 
tissue repair and recovery of hindlimb motor function in SCI rats. A: 
Functional recovery test in SCI rats. B: Hindlimb status of SCI rats. 
C: Changes in hindlimb motor function in SCI rats were evaluated 
by inked footprint analysis. D: Motor function scores of rats. Data are 
presented as mean ± SEM. *#P<0:05 compared to the SCI group; 
&P<0:05 compared to the NC group. E: HE staining of SCI rat spi-
nal cord tissue. F: Nissl staining of SCI rat spinal cord tissue. G: LFB 
staining of SCI rat spinal cord tissue. H: The damaged area of spinal 
cord tissues. Data are presented as mean ± SEM. *P<0:05 compared 
to the Sham group; #P<0:05 compared to the SCI group; &P<0:05 

compared to the NC group. I: Surviving neurons in the spinal cord 
tissues. Data are presented as mean ± SEM. *P<0:05 compared to 
the Sham group; #P<0:05 compared to the SCI group; &P<0:05 
compared to the NC group. J: Relative LFB staining area in the 
spinal cord tissues. Data are presented as mean ± SEM. *P<0:05 
compared to the Sham group; #P<0:05 compared to the SCI group; 
&P<0:05 compared to the NC group. Q: Wnt5a protein expression 
in spine tissue samples was measured by Western blot. Data are pre-
sented as mean ± SEM. &P<0:05 compared to the Sham group; 
#P<0:05 compared to the SCI group; *P<0:05 compared to the NC 
group
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groups were determined using one-way analysis of variance 
(ANOVA) or Student's t-test. A P value less than 0.05 was 
considered statistically significant.

Results

Wnt5a Promoted Neuronal Differentiation of BMSCs

To assess the efficacy of Wnt5a in promoting neuronal differen-
tiation in BMSCs, in vitro experiments were conducted. Initially, 
successful Wnt5a overexpression was confirmed (Appendix 
Figure). Subsequently, the results revealed an increase in both 
MAP2-positive and β3-tubulin-positive cells after 12 days of 
induction, as well as a decrease in GFAP-positive cells in both 
the Wnt5a and NC groups. Moreover, the changes were more 
significant in the Wnt5a group (p<0.05). In terms of cell mor-
phology, cells in the Wnt5a group were more similar to neurons 
(Fig. 1A, B). These findings indicated that BMSCs treated with 
Wnt5a had enhanced neuronal differentiation, while the number 
of astrocytes in the differentiated cells decreased correspond-
ingly. Furthermore, a 12-day protein blot analysis (Fig. 1C) pro-
vided additional support for this conclusion.

BMSC Transcriptomic Sequencing Analysis

High-throughput RNA sequencing was performed on samples 
from the control, NC, and Wnt5a groups. FPKM expression 
values were normalized for subsequent analysis (Fig. 2A). 
Similarity analysis and PCA principal component analy-
sis revealed high intra-group similarity and low inter-group 
similarity, indicating the reliability and reproducibility of the 
experimental samples (Fig. 2B, C). DEG analysis identified 
111 up-regulated and 66 down-regulated genes in the Wnt5a 
group compared to the NC group (Fig. 2D). Furthermore, 56 
genes showed significant changes in expression across all three 
groups (Fig. 2E). Using log2FC absolute value > 1 and p < 
0.05 as the screening criterion, further analysis identified 77 
genes (11 up-regulated and 66 down-regulated) with signifi-
cant differences between the Wnt5a and NC groups (Fig. 2F, 
G). KEGG enrichment analysis indicated that DEGs in the 
Wnt5a group primarily involved in cytological processes such 
as the regulation of the actin cytoskeleton and cytokine-recep-
tor interactions. The involved pathways included the AMPK 
pathway and calcium pathway, and so on. Notably, the PI3K/
AKT signaling pathway was closely associated with stem cell 
differentiation (Fig. 2H).

Fig. 4   (continued)
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Wnt5a Stimulated Neuron‑directed Differentiation 
of BMSCs via the PI3K/AKT Pathway

To explore the involvement of the PI3K/AKT signaling 
pathway in Wnt5a-mediated promotion of neuron-directed 
differentiation of BMSCs, the phosphorylation of PI3K 
and AKT in cells from the NC and Wnt5a groups was 
examined. The results revealed increased phosphoryla-
tion of PI3K and AKT after 30 minutes (Fig. 3A). To 
further confirm the significance of the PI3K/AKT path-
way, the PI3K inhibitor (LY294002) was used. The results 

demonstrated a substantial decrease in MAP2-positive and 
β3-tubulin-positive cells and protein after treatment with 
the PI3K inhibitor LY294002 (Fig. 3B, C) (p<0.05). These 
findings suggest that Wnt5a promotes neuronal differentia-
tion of BMSCs through the PI3K/AKT signaling pathway.

In vivo Transplantation of Wnt5a‑BMSCs Improved 
Hindlimb Function in SCI Rats

To evaluate the efficacy of Wnt5a-transfected BMSCs in 
vivo, a SCI rat model was firstly created and the expression 

Fig. 5   In vivo transplantation of Wnt5a-modified BMSCs reduces 
astrocyte production and promotes neuronal regeneration. A-C: 
Immunofluorescence staining of GAP43, MAP2, and MBP-positive 
cells in spinal cord tissues. Data are presented as mean ± SEM. 
#P<0:05 compared to the SCI group; *P<0:05 compared to the NC 

group. D: GAP43, MAP2, GFAP, and MBP protein expression were 
measured in spine tissue samples by western blotting. Data are pre-
sented as mean ± SEM. &P<0:05 compared to the Sham group; 
#P<0:05 compared with SCI group; *P<0:05 compared to NC group
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of Wnt5a in spinal cord tissues were determined (Fig. 4A, 
B, Q). Then the rats’ hindlimb function was assessed using 
the footprint experiment and the BBB scale. Footprint 
tests revealed normal footprints in the Sham group and a 
dragging pattern in the SCI group. Transplantation of NC-
BMSCs resulted in partial improvement of locomotion in 
the left hind limb of SCI rats, which was further enhanced 
by transplantation of Wnt5a-BMSCs (Fig. 4C). The BBB 
scale confirmed these findings, showing significantly 
higher scores in both the NC and Wnt5a groups com-
pared to the SCI group at 21 days, with a more pronounced 
advantage observed in the Wnt5a group. This advantage 
was evident as early as day 3 (p<0.05) (Fig. 4D). These 
results indicate that Wnt5a enhances the effectiveness of 
BMSCs in rat model.

In vivo Transplantation of Wnt5a‑BMSCs Promoted 
Spinal Cord Tissue Repair in SCI Rats

To determine the role of Wnt5a in promoting BMSC func-
tion for spinal cord tissue repair, histopathological changes 
in the spinal cords of SCI rats were examined. H&E stain-
ing results showed that the Sham group had numerous cells 
with normal morphology and a dense distribution among 
them. Following surgery, the SCI, NC, and Wnt5a groups 
exhibited a significant decrease in cell number and numer-
ous large cavities in the spinal cord tissues. After BMSC 
transplantation, the damaged area in the spinal cord tis-
sues reduced significantly in both transplantation groups, 
and the number of neurons with normal morphology also 
increased significantly (p<0.05). Moreover, rats transplanted 

Fig. 5   (continued)
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with Wnt5a-BMSCs had better spinal cord tissue integrity 
and cellular status compared to those transplanted with NC-
BMSCs (p<0.05). These findings were further supported by 
Nissl staining results. The results of LFB staining showed 
extensive myelin destruction in the tissues of SCI rats, 
whereas transplantation of BMSC significantly promoted 
the repair of myelin (the effect was significantly better in 
the Wnt5a group than in the NC group) (Fig. 4E, F, G, H, I, 
J). This suggests that Wnt5a facilitates the repair of damaged 
spinal cord tissues by BMSCs in SCI rats.

Transplantation of Wnt5a‑modified BMSCs in vivo 
Inhibited Astrocyte Generation and Stimulates 
Neuronal Regeneration

To further investigate the effects of Wnt5a-modified BMSCs 
on astrocytes and neurons in vivo, immunofluorescence 
staining was conducted using markers GFAP, GAP43, 
MAP2, and MBP. GAP43 regulates axon growth and new 
junction formation, while MAP2 is involved in microtubule 
assembly and maintaining cellular structural integrity in 
mature neurons. MBP serves as an essential marker for mye-
lin regeneration. Staining analysis revealed a significantly 
higher number of GAP43-positive, MAP2-positive, and 
MBP-positive cells in the BMSC-transplanted group com-
pared to the SCI group (p<0.05). Furthermore, the trans-
plantation of Wnt5a-modified BMSCs resulted in an even 
more significant increase in positive cells (p<0.05) (Fig. 5A-
C). The protein blotting results were consistent with the 
fluorescent staining outcomes (Fig. 5D). Thus, transplanta-
tion of Wnt5a-modified BMSCs promotes the development 
of mature neurons, axon formation, and myelin remodeling.

GFAP staining, which serves as a significant indicator for 
astrocytes, revealed a substantial number of GFAP-positive 
cells in the SCI group. This number significantly decreased 
after the transplantation of unmodified BMSCs by Wnt5a 

(p<0.05) and further decreased after the transplantation of 
Wnt5a-modified BMSCs (p<0.05) (Fig. 5A-C). The protein 
blotting results were consistent with the fluorescent staining 
outcomes (Fig. 5D). This result demonstrated that BMSC 
transplantation substantially decreased astrocyte production, 
and Wnt5a modification further reduced astrocytes.

Discussion

SCI is a severe neurological condition that often leads to 
permanent neurological dysfunction, imposing a significant 
burden on patients and their families [4, 36]. Currently, 
there is no clinically recognized and unequivocally effec-
tive treatment for SCI but stem cell differentiation into neu-
rons to restore damaged spinal cord tissue has emerged as a 
promising therapeutic approach [37]. However, a consider-
able proportion of transplanted stem cells differentiate into 
astrocytes instead of neurons, reducing the efficacy of stem 
cell therapy [38–40]. Therefore, increasing the rate of neural 
differentiation following stem cell transplantation is crucial.

The Wnt signaling pathway in multicellular eukaryotes 
regulates various cellular processes such as cell prolifera-
tion, differentiation, migration, polarization, and modula-
tion. It exerts significant effects on the recovery of neuro-
logical functions following central nervous system injury. 
Previous research has shown that both the classical Wnt/ 
β-Catenin pathway and non-classical Wnt pathways, includ-
ing Wnt/JNK and Wnt/Ca2+, are associated with neuronal 
differentiation in stem cells [17, 41–44]. Wnt5a is an activa-
tor of the non-classical Wnt pathway and has been closely 
associated with neuron generation [25, 26, 45]. Furthermore, 
Wnt5a promotes the osteogenic differentiation of BMSCs 
[46–49]. However, few studies have examined its ability 
to promote neuronal differentiation of stem cells. Our pre-
liminary investigation using high-throughput sequencing 

Fig. 6   Illustration of the mecha-
nism by which Wnt5a promotes 
neuron-directed differentiation 
of BMSCs through the PI3K/
AKT signaling pathway
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(Appendix 1) revealed the potential significance of Wnt5a 
in BMSC neuronal differentiation. Subsequently, in vitro 
assays were conducted to validate Wnt5a's involvement in 
facilitating neuronal differentiation induction and reducing 
the astrocyte count in BMSCs, as Wnt4, Wnt5a, and Wnt11 
genes are upregulated in neurogenic induced-human bone 
marrow-derived mesenchymal stem cells [50].

The mechanism by which Wnt5a stimulates neuronal 
differentiation is unclear. Wnt5a-induced upregulation of 
miRNA200b-3p inhibits RhoA/Rock signaling pathway 
activation promoting neuronal differentiation of neural stem 
cells [26] but conversely, IL-1β stimulated Wnt5a activates 
the RhoA/Rock signaling pathway to facilitate the neuronal 
differentiation of neural precursor cells [17]. These results 
suggest that the Wnt5a signaling pathways are dependent 
on the cell type and its microenvironment. High-throughput 
RNA sequencing and KEGG pathway enrichment analyses 
revealed a connection between the PI3K/AKT pathway and 
Wnt5a-induced neuronal differentiation in BMSCs (Appen-
dix 2), which was confirmed by the use of the PI3K inhibi-
tor LY294002 to reduce the number of differentiated neurons 
from Wnt5a-modified BMSCs. The PI3K/AKT pathway exerts 
crucial effects on the regulation of neuronal cell growth, pro-
liferation, and differentiation [51–53]. Previous studies have 
shown that Wnt5a affects the proliferation and differentiation 
of mesenchymal stem cells (MSCs) through the PI3K/AKT 
pathway [54, 55]. Additionally, we observed that Wnt5a con-
trols neural differentiation of BMSCs via PI3K/AKT. PI3K/
AKT/JNK activation of Wnt5a enhanced the differentiation 
and proliferation of MSCs and chondrocytes [56] and PI3K 
inhibition hampered the promotion of trigeminal ganglion neu-
rite growth by Wnt5a [57]. Therefore, we hypothesized that 
Wnt5a/PI3K/AKT stimulates neural differentiation in BMSCs, 
potentially facilitating BMSC transplantation for SCI.

Assessments of rat motor performance and histology 
demonstrated that the introduction of Wnt5a-modified 
BMSCs enhances neuronal development and reduces the 
number of astrocytes. This was further supported by the 
identification of markers associated with neurons and astro-
cytes in spinal cord tissues, consistent with previous research 
findings [45]. LINGO-1, for example, enhances neuronal 
differentiation in neural stem cells and inhibits astrocyte dif-
ferentiation through Wnt5a in rats. This study was the first to 
investigate the effect of Wnt5a on promoting neuronal differ-
entiation of BMSCs for functional recovery following SCI, 
confirming Wnt5a's involvement in inducing neuronal differ-
entiation while reducing astrocytes in BMSCs. Furthermore, 
we established a relationship between Wnt5a and the PI3K/
AKT pathway, demonstrating that Wnt5a promotes targeted 
neuronal differentiation of BMSCs and improves SCI-related 
manifestations in an animal model. These findings support 
the potential efficacy of Wnt5a-BMSC transplantation as a 
promising therapeutic approach for SCI.

Conclusion

This study demonstrated that the presence of Wnt5a in 
BMSC may have a favorable impact on neuronal devel-
opment (Fig. 6) by promoting neurite proliferation while 
reducing the population of astrocytes. This effect may be 
mediated through the PI3K/AKT signaling pathway but 
further studies are required to confirm this. Additionally, 
the transplantation of Wnt5a-modified BMSCs may have 
the potential to improve tissue repair and facilitate motor 
function recovery following SCI, emphasizing the viabil-
ity of Wnt5a-modified BMSCs as a promising therapeutic 
intervention for SCI.
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