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Abstract
Cognitive impairment is a common comorbidity of chronic pain, significantly disrupting patients’ quality of life. Despite this 
comorbidity being clinically recognized, the underlying neuropathological mechanisms remain unclear. Recent preclinical 
studies have focused on the fundamental mechanisms underlying the coexistence of chronic pain and cognitive decline. 
Pain chronification is accompanied by structural and functional changes in the neural substrate of cognition. Based on the 
developments in electrophysiology and optogenetics/chemogenetics, we summarized the relevant neural circuits involved 
in pain-induced cognitive impairment, as well as changes in connectivity and function in brain regions. We then present the 
cellular and molecular alternations related to pain-induced cognitive impairment in preclinical studies, mainly including 
modifications in neuronal excitability and structure, synaptic plasticity, glial cells and cytokines, neurotransmitters and other 
neurochemicals, and the gut-brain axis. Finally, we also discussed the potential treatment strategies and future research 
directions.
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Introduction

Pain is a complex experience consisting of sensory, 
affective, and cognitive dimensions [1]. Chronic pain (CP) 
is often defined by pain duration, which persists beyond the 
healing process or lasts longer than 3 months [2]. Cognitive 
dysfunction is a particularly burdensome comorbidity of 
CP. Clinical evidence highlights that approximately 20% of 
CP individuals experience cognitive impairments [3], and 
those with multisite pain have a higher risk of dementia 
and faster cognitive decline [4]. Patients with CP are 

reported to experience impairments in memory, language, 
attention, processing speed, and visual-spatial function 
[5, 6]. Despite the comorbidity being clinically well-
established, the involved neuropathological mechanisms 
are difficult to investigate in patients. The commonly used 
animal models of chronic pain, such as complete Freund 
adjuvant (CFA)-induced inflammatory pain, spared nerve 
injury (SNI)-induced neuropathic pain, and colitis-induced 
visceral pain, have contributed to exploring the neural 
mechanisms underlying CP-induced cognitive impairment 
and potential interventions [7].

One hypothesis for the comorbidity between chronic pain 
and cognitive impairment is that pain involves a complex 
neural network (called the “pain matrix”), which shares 
overlapping brain regions with cognitive function [8, 9]. 
Neuroimaging studies indicated that pain chronification is 
accompanied by reshuffling of brain activity from sensory 
to emotional and limbic structures [10]. Structural and 
functional plasticity changes in the corticolimbic regions 
contribute to the development of chronic pain, including the 
media prefrontal cortex (mPFC), anterior cingulate cortex 
(ACC), hippocampus, and amygdala [11]. Alternation 
in these regions during chronic pain may also disrupt 
cognitive processing. Here, we reviewed current preclinical 
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research aimed at modeling comorbid cognitive deficits 
in chronic pain. We then discuss the possible mechanisms 
underlying CP-induced cognitive dysfunction in the relevant 
brain regions, involving neural circuits, neuronal changes, 
synaptic plasticity, glial cells, neurotransmitters, and other 
neurochemicals, as well as  the gut-brain axis. Finally, 
we discuss the potential treatment strategies and future 
directions to enhance our understanding of the mechanisms 
underlying CP-induced cognitive deficits.

Pain and Cognitive Dysfunction

Chronic pain can disrupt normal cognitive processes, 
leading to impairments in learning and memory, attention, 
and cognitive flexibility [12]. We present an overview of 
preclinical evidence for CP-related cognitive impairment 
assessed by different cognitive domains (Table  1) and 
discuss the factors influencing these consequences. Our 
primary focus has been on discussing cognitive impairments 
in models of CP with a peripheral origin, specifically 
neuropathic pain, inflammatory pain, and visceral pain. 
Certain models, such as chronic unpredictable stress-induced 
pain and stroke-induced central pain, are excluded due to the 
challenge of establishing whether chronic pain is the primary 
cause of cognitive impairments.

Pain and Memory Impairment

Pain negatively impacts memory performance in rodents, 
including discriminative memory, working memory, and 
spatial memory, which highly relies on the normal function 
of the hippocampus and prefrontal cortex (PFC). Memory 
dysfunction usually occurs approximately 2 to 4 weeks after 
the injury and can last for at least a year.

Discriminative memory is often assessed by the novel 
object recognition test (NORT) in pain models. The interval 
between NORT training and testing phases, known as memory 
consolidation, allows evaluation of short-term (5 min to 2 h) 
and long-term (24 h) memory [48]. Our previous research 
has shown significant impairments in long-term recognition 
memory in a rodent neuropathic pain model [25, 26]. 
Interestingly, the results of short-term cognitive impairment 
in chronic pain are controversial. For instance, some studies 
noted short-term memory impairment in rodents with SNI 
lasting at least 1 month [17–21], while others observed no 
short-term memory impairment in partial sciatic nerve 
ligation (PSNL) and chronic constriction injury (CCI) 
models [14, 15, 49, 50]. It is worth noting that no memory 
dysfunction was evident within a week after pain surgery [13], 
suggesting that cognitive impairment might be associated 
with the progression of chronic pain over time. Additionally, 
the NORT has been used to assess discrimination between 

dissimilar (recognition memory) and similar (pattern 
separation) objects in neuropathic pain mice. Guida et al. 
found that 1-month post-SNI mice struggled with both similar 
and dissimilar objects in short- and long-term memory tests, 
while 12-month post-SNI mice showed normal recognition 
of dissimilar objects but difficulty recognizing similar objects 
in long-term retention tests [22]. These results indicate that 
discriminative memory impairment in pain is relevant to pain 
progression, behavioral paradigms, and task difficulty.

Working memory (WM) is another form of short-term 
memory that involves planning and performing actions 
rather than passive information storage [51]. Y-maze is fre-
quently used in preclinical studies to evaluate spatial work-
ing memory by measuring spontaneous alternations. Studies 
have indicated that the spontaneous alternations rate was 
decreased in the CCI and SNI groups within 2 to 3 weeks 
after surgery [15, 17, 23, 32, 52]. Other tasks, like food-rein-
forcement delayed spatial alternation in figure-eight [53] and 
T-mazes [54], revealed poor spatial working memory per-
formance in mice with neuropathic and inflammatory pain.

Spatial reference memory involves the recall of spatial 
relationships between different locations or landmarks. 
The Morris Water Maze (MWM) task assesses long-term 
memory, with a probe trial conducted at least 24 h after 
training [48]. Xia et al. revealed that CCI mice initially dis-
played similar performance to controls in the MWM within 
5 days, but exhibited increased escape latency and decreased 
time in the target quadrant after 21 days [34]. Furthermore, 
mice with chronic pain took longer to find the platform com-
pared to those with acute pain or no pain, indicating spatial 
memory impairment during chronic pain [55]. Moreover, 
Mohammadi et al. demonstrated that inflammatory pain led 
to spatial memory impairment 7 days after CFA injection 
and gradually recovered by day 21 [31], which was corre-
lated with the progression of thermal hyperalgesia. These 
results indicate that persistent painful stimulation is a pri-
mary contributor to cognitive pathology.

Pain and Attention Deficits

Clinical research has discovered that individuals with chronic 
pain often struggle with tasks requiring sustained attention 
[56]. Likewise, rats in the osteoarthritis group and SNI group 
exhibited higher error rates and more omissions in the 5-choice 
serial reaction time task (5-CSRTT) [38, 39]. Importantly, 
these impairments persisted even with temporary pain relief, 
suggesting permanent alterations in neurobiological attention 
mechanisms due to chronic pain [38]. Moazen and colleagues 
demonstrated that CCI rats exhibited attention deficits in the 
tasks of both low and high attention needs [40]. In addition, 
poor performance on visual attention tasks was found in both 
SNI mice [41] and colitis rats with chronic visceral pain [42].
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Pain and Cognitive Flexibility

Cognitive flexibility is an executive function primarily 
controlled by the PFC. Stephanie et al. used the attentional 
set-shifting task (ASST) to evaluate cognitive flexibility 
deficits induced by SNI. The results showed impairment 
in both male and female mice, with males requiring more 
trials and making more mistakes [44]. Importantly, short-
term analgesia with clonidine did not reverse these deficits, 
indicating that chronic pain caused persistent deficits in high 
brain regions [44]. Furthermore, spinal nerve ligation (SNL) 
rats, osteoarthritis rats, and colitis rats exhibited a preference 
for the familiar but less profitable options in the gambling 
tasks [43, 46]. These findings highlight that chronic pain 
significantly disrupts executive functions.

Methodological Considerations

In considering methodologies for studying the mechanism 
underlying pain-induced cognitive impairment in preclini-
cal research, several factors should be considered. Firstly, 
as mentioned above, the transition of pain from the acute 
phase to the chronic phase is crucial for memory impair-
ment. Therefore, it is important to determine the time points 
of behavioral assessment. Secondly, task difficulty is a sig-
nificant factor influencing cognitive assessment [57]. Phelps 
and colleagues found that rats with nerve damage showed 
memory deficits in more challenging tasks in the NORT, 
indicating that pain may consume cognitive resources, leav-
ing limited capacity for complex tasks [58]. Furthermore, 
it is worth noting the potential impact of the side of pain 
on behavioral changes, due to the ascending pathways of 
nociceptive input and lateralization of brain function [59, 
60]. For instance, Leite-Almeida et al. revealed that left-
sided nerve lesions negatively affected emotional behavior 

in SNI mice, while right-sided lesions worsened cognitive 
performance, especially in PFC-dependent tasks [60]. These 
differences may relate to different PFC activity changes in 
SNI-L (left) and SNI-R (right) rats [61]. Moreover, emerging 
evidence suggested sexual dimorphism in cognition, with 
male mice being more vulnerable to chronic pain-related 
cognitive deficits [44, 62]. Additionally, differences in ani-
mal species (mice vs. rats), chronic pain models, and base-
line pain intensity can contribute to variations in behavioral 
outcomes. Therefore, a comprehensive understanding of the 
pain-cognition relationship in preclinical studies requires 
consideration and control of these methodological factors.

Neural Circuits Involved in Pain‑Related 
Cognitive Dysfunction

Brain imaging studies showed that chronic pain engages the 
transformation of brain activity from the sensory areas to the 
corticolimbic regions. However, the continuous activation of 
corticolimbic circuitry may in turn induce their functional 
and anatomic alterations, and affect cognitive processes [63]. 
Here, we discuss the brain region and related neural circuits 
implicated in chronic pain-related cognitive dysfunction 
(Fig.1).

Hippocampal‑Related Circuits

The hippocampus is a key region of the limbic system 
involved in learning and memory, emotion, and sensory-
motor integration. Neuroimaging studies revealed reduced 
hippocampal grey matter volume [64], altered shape 
[65], and disrupted functional connectivity in chronic 
pain patients [66]. Cognitive dysfunction in CP patients 
correlated with hippocampal structural and functional 

Fig. 1   Altered neural circuits in 
the pain condition that contrib-
ute to cognitive deficits. (mPFC, 
media prefrontal cortex; PrL, 
prelimbic cortex; IL, infralimbic 
cortex; ACC, anterior cingulate 
cortex; Hip, hippocampus; 
dCA1, dorsal CA1; vCA1, 
ventral CA1; DG, dentate gyrus; 
VTA, ventral tegmental area; 
LHb, lateral habenula; BLA, 
basolateral amygdala; NAc, 
nucleus accumbens; MD, medi-
odorsal thalamus)
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abnormalities [67], and those with persistent back pain 
exhibited a large decrease in hippocampal connectivity 
with mPFC [68].

Similar to clinical research, a recent study showed that 
SNI reduced the activity of hippocampal dCA1 neurons 
and dCA1-mPFC connectivity, and optogenetic activation 
of dCA1-mPFC projections reversed pain and memory 
deficits [69]. In the inflammatory pain models, the inhibited 
ventral hippocampus CA1 (vCA1)-infralimbic cortex (IL) 
pathway contributed to pain-related cognitive deficits [70]. 
Moreover, Cardoso-Cruz et al. found chronic neuropathic 
pain disrupted neuronal activity and theta oscillations 
across the dCA1-vCA1 axis during cognitive tasks, which 
was associated with changes in the dopaminergic balance 
of intrahippocampal networks [54, 71]. Hence, both the 
interconnectivity and extra circuitry of hippocampal 
subregions are disrupted by chronic pain. Neuroimaging 
reported a decrease in medial dorsal thalamus (MD) 
connectivity with mPFC and hippocampus in patients with 
CP, which correlates with negative emotions [72]. This 
leads us to speculate that MD, as an important relay of 
pain pathway, may be related to hippocampal dysfunction 
during chronic pain, although the specific mechanisms 
remain unknown.

mPFC‑Related Circuits

The mPFC is a hub that integrates information about pain 
and cognition [73]. Structural and functional changes in 
the mPFC contribute to cognitive impairment in chronic 
pain. Brain imaging has shown a decreased mPFC grey 
matter volume in individuals with CP [64], which is 
closely correlated with working memory performance 
in patients [74]. In addition, functional MRI (fMRI) 
revealed that patients with chronic low back pain showed 
significantly less activation in the cingulate-frontal-
parietal cognitive/attention network during attention-
demanding tasks [75].

Animal research by Ji and colleagues demonstrated 
that the deactivation of the mPFC contributes to the 
cognitive comorbidity of pain. Chronic pain-induced 
hyperactivity in the basolateral amygdala (BLA) led to 
mPFC deactivation through glutamate-driven synaptic 
inhibition, causing decision-making deficits [76]. 
Similarly, Cardoso-Cruz et al. found that nerve lesions 
impaired spatial memory performance by disrupting 
information flowing and altering oscillation patterns in 
the mPFC–dCA1 circuit [53]. They further demonstrated 
that optogenetic inhibition of PL (prelimbic cortex)-mPFC 
glutamatergic neurons reversed neuropathic pain-induced 
WM deficits by restoring mPFC-dCA1 interaction [77] 
and local neuronal firing activity [78]. Furthermore, it 
is known that the mPFC-MD-hippocampus interactions 

are involved in spatial memory [79], while chronic 
inflammatory pain reduced mPFC-MD activity during a 
spatial alternation WM task, leading to spatial working 
memory impairment [80]. In addition, chronic pain 
enhanced functional connectivity between PL-mPFC to 
NAc (nucleus accumbens), and its optogenetic inhibition 
restored pain-induced working memory deficits [81]. 
These results suggest that chronic pain disrupts the 
neural network connections of the mPFC and significantly 
impairs the cognitive process. Neuronal excitability 
changes [82] and neurotransmitter imbalances [83] may 
be the reasons for the mPFC inactivation.

ACC‑Related Circuits

The ACC plays a critical role in pain perception, unpleasantness 
of pain, memory, and attention [84]. EEG and neuroimaging 
data showed activation of the ACC in both acute and chronic 
pain conditions [85, 86], which aligns with increased activity 
of pyramidal cells in the ACC in mice with neuropathic pain 
[87]. fMRI studies found that the activity evoked by pain and 
attention-demanding tasks is typically located in similar regions 
of the cingulate cortex, indicating that pain-induced ACC 
activity may influence cognitive process [88].

ACC receives nociceptive information from the 
thalamus and brain regions involved in the regulation of 
emotional states, such as the amygdala and insular cortex 
during pain [89]. It has been reported that the BLA and 
ACC form an interconnected neural circuit involved in 
decision-making [90]. Cao et al. found chronic visceral 
pain impaired theta oscillation synchronization between 
the BLA and ACC, contributing to execution deficits in 
visceral hypersensitivity (VH) rats [91]. Moreover, they 
found that reduced ACC L-lactate release suppressed 
neuronal theta synchrony, and optogenetic astrocytic 
activation restored BLA-ACC desynchronization and 
improved decision-making performance via lactate release 
in VH rats [47]. Furthermore, enhancing oligodendrocyte 
myelination restored ACC network function and improved 
cognitive behaviors in VH rats [92]. Importantly, it is 
essential to further investigate distinct ACC circuits that 
likely contribute to the development and maintenance of 
pain-induced cognitive dysfunction and their maladaptive 
changes during pain chronicity.

VTA‑Related Circuits

The ventral tegmental area (VTA) is an important part of 
the mesolimbic dopamine (DA) system and participates 
in pain-related depression [93], anxiety [94], as well as 
reward and motivation [95]. Studies showed that reduced 
VTA-to-dentate gyrus (DG) dopamine projections 
negatively affected neurogenesis and spatial memory 
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formation during chronic pain [34]. The inhibited activ-
ity of VTA dopaminergic neurons caused by chronic pain 
may be regulated by lateral habenula (LHb). Alemi et al. 
demonstrated that LHb hyperactivity increased local 
GABAergic inhibition on VTA dopamine neurons, result-
ing in working memory impairment in CFA rats, which 
could be reversed by optogenetic inhibition of LHb [96]. 
It is worth noting that hyperactivity of LHb glutamatergic 
neurons induced endoplasmic reticulum stress, inflam-
matory responses, and dopaminergic neuronal damage in 
the VTA [97]. The disruption of VTA decreased dendritic 
spine density in the PFC and hippocampus and impaired 
cognitive function after surgery, which may be due to the 
decreased release of DA [97]. In summary, these limited 
findings highlight that dysfunctions of VTA and DA pro-
jections during pain have potential effects on cognitive 
aspects, and related molecular and cellular mechanisms 
need further investigation.

Cellular Mechanisms Involved 
in Pain‑Related Cognitive Dysfunction

Chronic pain-induced cellular changes serve as the founda-
tion for functional and structural alterations in brain regions 
and circuits. Alterations in neuronal plasticity and glial acti-
vation in the corticolimbic structures contribute to the cogni-
tive deficits induced by chronic pain.

Neurons

Morphological and Electrophysiological Changes

The hippocampus and mPFC undergo significant morpho-
logical and functional changes in response to chronic pain 
(Table 2). Dendritic morphology, a key factor influenc-
ing grey matter volume in neuroimaging [101], is altered 
in neuropathic pain mice. This includes reduced dendritic 

Table 2   A list of preclinical studies showing neuronal morphologic and functional changes in the chronic pain states

Pain model Brain region Neural morphologic and functional changes Reference

CRPS (tibial fraction) Amygdala a. Increased complexity in dendritic structure
b. Increased dendritic branching and length
c. No change in average soma area and dendritic spine density

[21]

Perirhinal cortex a. Increased complexity in dendritic structure
b. Increased dendritic branching and length
c. No change in dendritic spine density

Hippocampus a. No change in the number of neurons
b. No obvious change in the dendritic spine density

CCI Hippocampus CA1 pyramidal neurons:
a. Decreased complexity of apical dendritic trees
b. Decreased number of branches and length of the neurites
c. Decreased dendritic spine density, mainly in the number of mushroom spines
CA3 pyramidal neuron:
a. Decreased in the number of branches and dendritic length
b. Decreased dendritic spine, mainly in the number of mushroom spines
DG granule neurons
a. Increased complexity of basal dendritic trees
b. Increased total number of branches and dendritic length
c. Increased dendritic spine density, with decreased mushroom spines

[15, 23, 24, 52]

SNI Hippocampus CA1 pyramidal neurons:
a. Decreased complexity of dendrites
b. Decreased average number of junctions and total length of dendrites
c. Decreased dendritic spine density
d. Lower NMDA current

[50, 98]

SNI mPFC Layer 2/3 pyramidal neurons:
a. Longer basal dendrites and increased dendritic branches of basal dendrites
b. Increased spine density of basal dendrites
c. Increased NMDA/AMPA current
d. Increased excitability

[99, 100]

SNI mPFC Layer 5 pyramidal neurons:
a. Less complexity and shorter apical dendrites
b. Reduced glutamatergic currents
c. Reduced membrane capacitance and increased input resistance
d. Prelimbic layer 5 pyramidal neurons showed reduced excitability

[82, 100]
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complexity, decreased spine density, and neuronal atrophy 
in CA1 and CA3 pyramidal neurons [15, 23, 98], along with 
decreased intrinsic excitability in CA1 pyramidal neurons 
of spared nerve injury (SNI) mice [69, 90]. In contrast, DG 
granule cells displayed an increase in the length, complex-
ity of dendrites, and total spines’ density, while mushroom 
spines that are responsible for the “storage of memories” 
were decreased [23]. These maladaptive changes in neurons 
are associated with decreased excitatory synaptic transmis-
sion, reduced BDNF levels, and neuroinflammation in the 
hippocampus induced by persistent pain [15, 50, 98].

Metz et al. observed changes in mPFC layer 2/3 (L2/3) 
pyramidal neurons after SNI, including increased basal den-
drites complexity, spine density, NMDA/AMPK currents 
[99], and neuronal excitability [73, 100]. It has been found 
that chronic pain significantly increased noradrenergic inner-
vation within the mPFC L2/3 neuron, which inhibited the 
HCN-mediated current and induced L2/3 pyramidal hyper-
activity [102]. Conversely, layer 5 (L5) pyramidal neurons 
in the mPFC exhibited reduced complexity, shorter apical 
dendrites, and decreased neuronal excitability in neuropathic 
pain [100]. Shiers et al. reported shortened axon initial seg-
ments (AIS) in infralimbic (IL) layer 5/6 neurons in SNI 
mice, impacting neuronal excitability and presynaptic inputs 
[45]. The hypoactivity of L5 pyramidal neurons can be 
attributed to enhanced local GABAergic inhibition, reduced 
glutamatergic activation, and decreased cholinergic modula-
tion during pain [82, 103–105]. Moreover, studies showed 
that the glutamatergic inputs from both the hippocampus and 
thalamus to mPFC L5 pyramidal neurons were weakened 
after SNI, which likely contributes to the mPFC deactivation 
in neuropathic pain and may impair PFC-dependent cogni-
tive tasks [104]. Functional studies highlight the crucial role 
of PFC L5 pyramidal neurons in short-term memory [106]. 
Optogenetic activation of mPFC L5 pyramidal neurons can 
reverse object recognition memory deficits in Alzheimer’s 
disease (AD) mice [106]. Similarly, optogenetic activation 
of the neural circuit from dCA1 to mPFC L5 pyramidal neu-
rons alleviated neuropathic pain behaviors and improved 
novel object recognition ability in SNI mice [69]. Based on 
the layer-specific alterations in the mPFC induced by pain, 
further research can explore the role of different layers and 

their outputs in pain and related comorbidities using layer-
specific transgenic mice. In addition to pyramidal neurons, 
neuropathic pain increased spine density on mPFC interneu-
rons, thus enhancing inhibitory inputs and suppressing glu-
tamate signaling during working memory tasks [107]. These 
maladaptive changes induced by chronic pain collectively 
deactivate the mPFC and disrupt cognitive processes.

Synaptic Plasticity

Synaptic plasticity refers to the activity-dependent modi-
fication of synaptic strength [108]. Chronic pain signifi-
cantly impacts synaptic plasticity in the hippocampus and 
can manifest as a reduction in synapses. Studies have found 
reduced expression of synaptic proteins in the hippocampus 
during chronic pain such as postsynaptic density protein 95 
(PSD95), synapsin 1 (SYN1), vesicular glutamate transport-
ers (vGLUTs), and Arc [24–26, 50], as well as decreased 
dendritic spine density in hippocampal pyramidal neurons, 
indicating a reduction in excitatory synapses [15, 20]. The 
resulting synaptic loss can disrupt information processing 
and transmission within neural networks associated with 
cognition. Moreover, chronic pain induced glutamatergic 
synaptic hypofunction, as evidenced by impaired excitatory 
postsynaptic currents (EPSCs) and reduced NMDA/AMPA 
currents in hippocampal pyramidal neurons [25, 98]. Long-
term potentiation (LTP) and long-term depression (LTD) are 
forms of synaptic plasticity that have been widely studied 
in the context of learning and memory [25, 89]. As shown 
in Table 3, LTP at the lateral entorhinal cortex (LEC)-DG 
and CA3-CA1 synapses are diminished after high-frequency 
stimulation in neuropathic pain models, which may be dis-
rupted by the impairment of excitatory synaptic transmission 
in hippocampal pyramidal neurons. However, no significant 
alteration was observed in LTD at hippocampal synapses 
under pain conditions [110].

In addition, Zhuo and colleagues have proposed that 
enhanced LTP and suppressed LTD of excitatory synaptic 
transmission in ACC result in a dysregulation of synaptic 
tone and hyperactivity in ACC neurons, which contributes 
to chronic pain and its related emotional changes [89, 112]. 
Behaviorally, postsynaptic-LTP at ACC synapses encodes 

Table 3   Changes in various forms of hippocampal synaptic plasticity in the context of pain

LTP long-term potentiation, LDP long-term depression, PTP post-tetanic potentiation 

Locus Synapse between Type of 
modulation

Key findings Reference

Hippocampus LEC-DG LTP LTP at LEC-DG synapses is impaired by chronic pain [18, 19, 22, 32, 109]
CA3-CA1 LTP LTP at CA3-CA1 synapses is impaired by chronic pain [25, 50, 52, 110, 111]
CA3-CA1 LDP Sham-treated and neuropathic mice are almost equivalent [110]
DG-CA3 PTP PTP is decreased in the bilateral hippocampus [64]
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hyperalgesia and unpleasantness of pain, while presynaptic-
LTP mediates pain-induced anxiety [89, 113]. Moreover, the 
restoration of ACC LTP and LTD has been shown to rescue 
peripheral pain hypersensitivity [113, 114]. Chronic pain is 
considered a result of plastic changes in the corticolimbic 
system, with synaptic plasticity as a common mechanism 
for pain and cognition [9]. Further investigation is needed to 
comprehend how changes in ACC LTP and LTD influence 
synaptic activity, neural circuit function, and their potential 
involvement in the cognitive impairment induced by chronic 
pain.

Intracellular and Extracellular Structural Changes

Both intracellular and extracellular structural alternations 
contribute to the maladaptive brain plasticity and cognitive 
deficits associated with pain. Microtubules (MTs) are essen-
tial structures for stable neuronal morphology and function, 
with the Tau protein, an MT-associated cytoskeletal element 
known to contribute to neuronal atrophy and dysfunction 
in neurodegenerative disorders, like AD [115]. Clinical 
evidence suggests that chronic pain increases the risk for 
dementia and AD [116]. In animal research, trigeminal neu-
ralgia (TN) induced overexpression of phosphorylated tau 
protein and amyloid-β 1–42 in the cortex and hippocampus 
[117]. Guerreiro et al. first demonstrated that SNI triggered 
memory deficits and AD-related neuropathological changes, 
characterized by Tau hyperphosphorylation accumulation 
and neuronal atrophy in the hippocampus [118]. Genetic 
ablation and degradation of Tau effectively halted the hip-
pocampal deficits induced by SNI, confirming the involve-
ment of Tau in the memory decline associated with pain 
[118]. In addition, MT dynamic equilibrium also contributes 
to the memory decline in pain. You et al. found that SNI 
increased levels of stable microtubules in the hippocampus, 
and treatment of microtubule destabilizer improved hip-
pocampal LTP and alleviated memory deficits in SNI rats 
[13].

The extracellular matrix (ECM) is a complex extracellular 
network that modulates neuronal plasticity and connectiv-
ity [119]. Chronic pain-induced changes in hippocampal 
neuronal structure, LTP, ECM microarchitecture, and ECM 
components and enzymes, such as increased levels of MMP8 
[120]. Interestingly, normalizing these ECM imbalances 
reversed the memory decline, neuronal structure changes, 
and LTP disruption induced by chronic pain, which high-
lighted the involvement of extracellular mechanisms of pain-
related brain plasticity [120].

Glial Cells

Increased inflammatory molecules, disruption of the brain-
blood barrier (BBB), infiltration of immune cells, and glial 

activation are the hallmarks of neuroinflammation. These 
factors contribute to the establishment and persistence of 
central sensitization in pain [121].

Microglia

Microglia, as the innate immune cells in the CNS, are sig-
nificantly increased and activated in supraspinal regions in 
the pain condition [27, 122]. Minocycline, a non-selective 
microglial inhibitor, alleviated pain-related cognitive dys-
function by inhibiting pro-inflammatory cytokine expres-
sion and oxidative stress and restoring synaptic plasticity 
in the hippocampus [98, 123]. High-mobility group box 1 
(HMGB1) is a proinflammatory molecule involved in micro-
glial activation and blockade of HMGB1 in the hippocampus 
effectively alleviated cognitive deficits induced by neuro-
pathic pain [14]. Microglia can transform into either pro-
inflammatory (M1) or neuroprotective (M2) phenotypes 
based on their activation mode. The hippocampus and mPFC 
exhibited increased M1-polarized microglia in the pain mod-
els that aggregated inflammatory response [49, 124]. Modu-
lation of microglial polarization towards the M2 phenotype 
is beneficial for inhibiting neuroinflammation and improving 
behavioral outcomes [125]. Moreover, studies have reported 
that microglia-mediated excessive synaptic pruning contrib-
uted to synaptic loss and cognitive impairment in neurologic 
diseases [126]. Therefore, inhibition of microglia-mediated 
neuroinflammation is an essential target to improve behav-
ioral abnormality following chronic pain.

Inflammatory cytokines and chemokines are released by 
activated glial cells, immune cells, and damaged neurons. 
Studies have shown the overexpression of pro-inflammatory 
cytokines, including tumor necrosis factor-alpha (TNF-α), 
interleukin (IL)-1β, and IL-6, in the hippocampus, PFC, and 
cerebrospinal fluid in pain models [55, 127–129]. These 
increased cytokines can also be detected in plasma samples 
from chronic pain patients [129]. Inhibiting TNF-α, IL-1β, 
and IL-6 or genetically downregulating their receptors could 
prevent microglia activation and maladaptive synaptic plas-
ticity in the hippocampus and rescue cognitive impairment 
caused by pain [27, 33, 35].

Interestingly, certain studies have indicated that the pres-
ence of pro-inflammatory cytokines and reactive microglio-
sis appeared to be confined to the contralateral hippocampus 
of the injury side [130, 131]. However, accumulating evi-
dence also suggested that chronic pain-induced neuroinflam-
mation in the bilateral hippocampus and mPFC [98, 127]. It 
is worth noting that supraspinal neuroinflammation induced 
by pain originates not only from the CNS in situ but also 
from peripheral inflammation [132]. For example, chronic 
pain disrupted BBB permeability and increased leukocyte 
infiltration into the CNS [133]. Mai et al. found that the 
plasma chemokine CXCL12 mediated circulating monocyte 
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recruitment into the perivascular space, contributing to hip-
pocampal neuroinflammation and cognitive impairment in 
the condition of neuropathic pain [134]. Given that nocicep-
tive information is primarily conveyed to the contralateral 
hemisphere, neuroinflammation tends to be more robust in 
the brain regions contralateral to the injury site [135].

Astrocyte

Astrocytes serve critical functions in CNS homeostasis and 
neuronal metabolites [136]. Some studies reported reduced 
astrocyte numbers and atrophy in the hippocampus and 
mPFC, possibly due to the neurotoxic effects of noxious 
inputs [137–139]. Conversely, others found reactive astro-
cyte activation in these cognitive regions as a consequence 
of neuroinflammation [134, 140, 141]. These discrepancies 
may be related to the dynamic changes in astrocytes during 
different pain progression stages. Moreover, chronic pain 
induced alternations in the lactate metabolism of astro-
cytes, leading to disruptions in the supply of energy to the 
brain. Reduced lactate release from dysfunctional astrocytes 
decreased the excitability of dCA1 pyramidal neurons in SNI 
mice, leading to hippocampus-dependent memory deficits 
[69]. ACC astrogliosis in VH rats impaired L-lactate release 
under high activity demand conditions such as decision-
making, which then suppressed ACC neuronal activity [47]. 
These studies enhance our understanding of astro-neuron 
interactions in brain regions during pain conditions. Future 
research should investigate astrocyte metabolic and func-
tional changes and their interactions with other cells during 
comorbid pain and memory deficits.

Molecular Mechanisms of Pain‑Related 
Cognitive Dysfunction

A multitude of molecules within the CNS play a role in the 
development of pain-induced cognitive deficits. In the fol-
lowing section, we provide a summary of current research 
on the role of these molecules in the comorbidity of pain and 
cognitive disorders, including neurotransmitters and their 
receptors, neuropeptides, neurotrophic factors, the endocan-
nabinoid system, and the gut-brain axis.

Neurotransmitters and Their Receptors

Glutamate

As a major excitatory neurotransmitter in the CNS, gluta-
mate plays an important role in the cognitive process. Glu-
tamate acts on the postsynaptic ionotropic glutamate recep-
tors, including N-methyl-D-aspartate receptors (NMDARs), 
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

receptors (AMPARs), kainate, and metabotropic glutamate 
receptors (mGluRs) [142]. Dysfunction of glutamate and 
its receptors, NMDARs hypofunction in particular, is a key 
mechanism contributing to the cognitive deficits observed 
in chronic pain.

NMDA receptor is an important mediator of LTP and 
excitatory synaptic transmission [143]. In a previous study, 
we found reduced hippocampal glutamate concentrations 
and downregulation of NMDA receptor subunits NR1 and 
NR2B in SNI rats, along with disruption of hippocampal 
glutamatergic transmission and LTP [25]. The administra-
tion of d-serine, an endogenous NMDAR agonist, success-
fully restored hippocampal glutamatergic function and syn-
aptic plasticity and alleviated cognitive decline induced by 
neuropathic pain [25]. Other studies also reported reduced 
hippocampal NMDARs and memory deficits in pain condi-
tions [50, 144]. Furthermore, NMDA-mediated currents in 
CA1 pyramidal cells were attenuated, while AMPA func-
tion remained unchanged under neuropathic pain conditions 
[111]. These findings highlight the significance of NMDARs 
downregulation and hypofunction in the hippocampus in 
promoting cognitive impairment induced by CP. Moreover, 
reduced glutamate level in the mPFC is associated with emo-
tional and cognitive dysregulation in chronic pain patients 
[145]. In SNI mice, Guida et al. found disrupted glutamater-
gic synapse homeostasis in the mPFC, including decreased 
extracellular glutamate levels and increased NR2B subunits 
[20]. They found that administration of NMDARs agonist 
d-Asp solution restored glutamate neurotransmission to 
physiological levels in the Mpfc and alleviated pain-induced 
cognitive deficits in mice [146].

LTP is triggered by Ca2+ influx through NMDARs but 
expressed by an increased abundance of AMPARs at the 
postsynapses [147]. It is widely accepted that upregulation 
of AMPARs-mediated LTP in ACC underlies the unpleas-
ant experience of chronic pain [89, 148, 149]. However, 
decreased AMPAR subunits GluR1-3 were found in the hip-
pocampus after PSNL, possibly due to increased AMPAR 
internalization and degradation in the neuroinflammatory 
context. This may be involved in the disruption of hip-
pocampal synaptic plasticity [14, 144]. In the mature brain, 
most AMPARs consist of Ca2+-impermeable GluR1/GluR2 
subunits that maintain low cytoplasmic Ca2+, while GluR2-
lacking AMPARs are permeable to Ca2+ and dramatically 
alter synaptic function. Liu et al. found that neonatal repeti-
tive noxious stimuli increased GluR2-lacking AMPARs in 
hippocampal neurons, which can result in elevated Ca2+ 
influx, dendritic spine dysfunction, and ultimately contribute 
to pain, spatial learning, and memory deficits in adulthood 
[150].

It also evidenced that negative modulation of mGluRs 
alleviates cognitive decline. mGluRs are widely dis-
tributed on the synaptic boutons that control excitatory 
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synaptic function by regulating glutamate release. Block-
ade of mGluR1 overcame cognitive deficits by attenuating 
local GABAergic inhibition and restoring the inactivation 
of mPFC neurons during pain [151]. Inhibition of mGluR5 
ameliorated pain-related cognitive impairment and restored 
LTP disruption due to its correction of glutamate homeosta-
sis [18]. Additionally, the mGluR7 negative modulator nor-
malized increased mGluR7 expression in the hippocampus 
and cognitive deficits in SNI mice, which might be related 
to mGluR7’s inhibitory effect on glutamate [17]. Therefore, 
these findings highlight the significance of proper func-
tioning of the glutamatergic system for effective cognitive 
function.

GABA

GABA (γ-aminobutyric acid) serves as the primary inhibi-
tory neurotransmitter in the CNS, acting on ionotropic 
GABAA and GABAC receptors, and metabotropic GABAB 
receptors. The GABAergic system is crucial for CNS func-
tion, particularly in learning and memory processes [152]. In 
chronic pain models, elevated GABA levels in the hippocam-
pus [22, 32], and mPFC [153] contribute to an E/I imbal-
ance, resulting in cognitive impairment. In the supraspinal 
region, GABA predominantly interacts with GABAA recep-
tors to mediate rapid inhibitory synaptic transmission [154]. 
Blocking GABAA receptors in the mPFC can restore neu-
ronal activity in the pain model, providing a potential strat-
egy for ameliorating chronic pain-induced cognitive deficits 
[151]. Studies also linked memory impairment to enhanced 
tonic inhibition via GABAA-α5 receptors [155, 156]. Cai 
et al. found a remarkable increase in the expression of the 
GABAA-α5 receptors on the parvalbumin and somatostatin 
interneurons in the hippocampus in SNI rats, and antago-
nizing of these receptors improved cognitive impairment, 
highlighting the role of E/I neurotransmission imbalance in 
pain-induced cognitive dysfunction [157].

Monoamines

Monoamine neurotransmitters, including dopamine (DA), 
norepinephrine (NE), and serotonin (5-HT), are associated 
with pain and memory formation. Thus, it is imperative to 
discuss their roles in the comorbidity of chronic pain and 
cognitive decline.

The hippocampus and PFC mainly receive NE from the 
locus coeruleus (LC) [158]. The LC-NE system plays a sig-
nificant role in arousal, cognition, pain processing, and stress 
response [159]. Chronic pain induces LC-NE dysfunction 
and increases the release of NE, contributing to pain facilita-
tion and cognitive/emotional disorders [155, 156]. Periph-
eral nerve injury elevated NE concentration in the PFC and 
impaired cognitive function [40, 157]. Selective depletion 

of norepinephrine in the LC alleviated attention deficits in 
chronic pain [40]. However, chronic pain-induced LC-NE 
system dysfunction is complex and likely based on down-
stream neuron function and location [116]. The decreased 
noradrenergic tone was found in the hippocampus in models 
of chronic pain [32, 109]. Microinjection of a β2 receptor 
agonist into dCA1 and activation of LC-dCA1 noradrener-
gic projections restored memory deficits in SNI mice, sug-
gesting the role of the noradrenergic system in pain-induced 
cognitive dysfunction [160]. Stimulation of β-adrenoceptors 
with isoproterenol restored hippocampal LTP damage in 
chronic pain models [110]. Furthermore, studies demon-
strated that NE can effectively alleviate neuroinflammation 
and microglial activation in neuropathic pain mice and AD 
mice [161–163]. Therefore, further research on the dysfunc-
tion of the LC-NE system in chronic pain, especially its tar-
geted brain regions and cell types, may generate new ideas 
in the treatment of pain and related comorbidities.

Dopamine is a critical neurotransmitter in hippocampal-
dependent memory processes [164]. Studies highlighted the 
significance of the hippocampal dopaminergic system in 
cognitive deficits associated with pain. Cardoso-Cruz et al. 
found that activation of dopamine D2/D3 receptors restored 
the impaired neural activity and dorsoventral connectivity 
in the hippocampus, ultimately improving working memory 
in SNI mice [71]. Conversely, blocking D2 receptors led to a 
significant decrease in theta-oscillation-mediated connectiv-
ity in the hippocampus and worsened spatial working mem-
ory deficits [54]. The dopamine released by the LC plays a 
crucial role in the dorsal hippocampus, influencing selective 
attention and spatial object recognition processes through 
D1/D5 receptors [165]. However, the effects of chronic pain 
on the dopaminergic system and its role in cognitive dys-
function are not fully understood.

5-HT plays a regulatory role in pain perception, cogni-
tion, and emotion [166]. Mice with chronic pain exhibited 
increased 5-HT levels in the hippocampus [55, 109], with 
potentially detrimental effects on hippocampal neurogenesis 
[167]. Jayarajan et al. reported that 5-HT6 receptor antago-
nists normalized neuropathic pain-induced memory deficits, 
possibly by attenuation of stress response in pain [168]. The 
widespread and diverse receptors underlie the complex func-
tion of 5-HT in the CNS. Subsequent research can focus 
on the potential role of 5-HT and its receptors in pain and 
cognitive processes.

Neuropeptides

Several studies have focused on the role of neuropeptides 
in cognitive processes. Our previous study found that the 
glucagon-like-peptide-1(GLP-1)/GLP-1 receptors axis was 
inhibited in the hippocampus of neuropathic pain mice 
[26], and its activation ameliorated chronic pain-induced 
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cognitive impairment by regulating hippocampal neuroin-
flammation and synaptic impairment [26, 140]. Orexin (Orx) 
is an excitatory peptide that contributes to arousal, appetite, 
and cognition. Pretreatment of Orx1 in the hippocampal 
effectively alleviated spatial memory impairment induced 
by orofacial pain [169], while blocking Orx1Rs in the BLA 
aggregated learning and memory dysfunction in migraine 
rats [170]. In addition, oxytocin (OXT), a classic hypotha-
lamic neuropeptide for social memory and emotion, has 
been found to reduce hyperalgesia [171] and anxiety [172] 
induced by chronic pain. OXT treatment also alleviated 
cognitive impairments by decreasing hippocampal micro-
glial activation and synaptic defects in a mouse model of 
sepsis-associated encephalopathy [173]. Collectively, neu-
ropeptides show promise as effective treatments for chronic 
pain-induced cognitive deficits.

Neurotrophic Factors

Brain-derived neurotrophic factor (BDNF) is widely 
expressed in the CNS and plays an essential role in synaptic 
plasticity. In neuropathic pain mice, reduced BDNF levels in 
the hippocampus impaired synaptic plasticity [98]. Mature 
BDNF binds to the tropomyosin-receptor-kinase B (TrkB) 
receptor with high affinity, participating in mechanisms 
related to learning and memory, including LTP, neurogen-
esis, and synaptic efficiency and formation. In contrast, pro-
BDNF exerts the opposing effect [172]. Enrichment environ-
ment mediated BDNF/TrkB signaling to ameliorate memory 
decline and enhance synaptic plasticity deficits in nerve-
injured mice [24]. Peripheral inflammatory pain increased 
the microglia-dependent proBDNF/BDNF ratio, leading to 
hippocampal neuron death and spatial memory impairment 
in rats [31]. Furthermore, recent research demonstrated that 
the activation of BDNF release from the VTA to the DG 
improved memory decline in neuropathic pain mice via 
restoring hippocampal neurogenesis [34]. This study estab-
lishes a mechanistic link, relying on neural circuits and 
BDNF signaling to modulate neurogenesis, between chronic 
pain and cognitive deficits.

Endocannabinoid System

The endocannabinoid (eCB) system, consisting of can-
nabinoid receptors (CB1R and CB2R) and endogenous 
endocannabinoids (anandamide, AEA; 2-arachidonoyl 
glycerol, 2-AG), has been extensive studies in the field of 
pain, cognition, and emotion [174–176]. Palmitoylethan-
olamide (PEA), an eCB-like compound, alleviated neuro-
pathic pain-related nociceptive, emotional, and cognitive 
behaviors by improving glutamatergic synapse homeo-
stasis in the mPFC [20]. Additionally, PEA treatment 
restored impaired synaptic plasticity and neurogenesis in 

the hippocampus of SNI mice [19]. Recent findings indi-
cated that inhibition of AEA breakdown improved pain-
related behaviors, enhanced LTP in the LEC-DG pathway, 
and normalized monoamine levels in the hippocampus via 
CB1 receptors following osteoarthritis [109]. These find-
ings highlight the beneficial role of the endocannabinoid 
system in maintaining synaptic plasticity and homeosta-
sis in the CNS during pain. Furthermore, both CB1R and 
CB2R agonists show potential in alleviating nociceptive 
and anxiety-like behaviors, whereas only CB1R agonists 
improved memory impairment in the osteoarthritis pain 
model [177]. These diverse effects may be attributed to 
the different distribution and cellular locations of the two 
cannabinoid receptors. In the condition of pain, CB1R 
is expressed throughout the CNS, with CB2R being less 
abundant in the brain [178]. The eCB system holds the 
potential to serve as a multi-target therapeutic approach 
for pain management.

Microbiota Gut‑Brain Axis

The microbiota gut-brain axis has been demonstrated to 
play a significant role in pain modulation and cognitive 
dysfunction. It refers to bidirectional communication 
between the gut and the brain through immunological, 
neural, and hormonal signals, and the gut microbiota is 
now considered a key gastrointestinal factor [179]. Hua 
et al. found fecal microbiota transplantation (FMT) from 
the Sham group improved allodynia and cognitive per-
formance in SNI mice by normalizing eCB signaling in 
the PFC, suggesting a link between gut microbiota, endo-
cannabinoids, and neurological changes in chronic neu-
ropathic pain (CNP) [180]. Gut dysbiosis in CNP may 
disrupt eCB signaling, exacerbating neuroinflammation 
and brain energy imbalances, ultimately resulting in cog-
nitive dysfunction [180]. Evidence also highlighted the 
role of short-chain fatty acids (SCFAs) in cognitive func-
tion by regulating BBB permeability, immune response, 
and CNS maturation [181]. Studies found that chronic 
postsurgical pain (CPSP) mice with cognitive impairment 
had altered gut SCFAs-producing bacteria, and FMT from 
CPSP rats transmitted cognitive impairment. SCFAs sup-
plement improved cognitive impairment in CPSP mice by 
enhancing histone acetylation and synaptic transmission 
[182]. Moreover, the gut-microbiota-brain axis via the 
subdiaphragmatic vagus nerve modulated neuroinflam-
mation, and alleviated inflammatory pain and comorbid 
spatial working memory impairment in the CFA mice 
[183]. These results showed that gut microbiota dysbiosis 
might be an important etiology of cognitive impairment 
in chronic pain patients, and its neural mechanism needs 
further investigation.



8135Molecular Neurobiology (2024) 61:8123–8143	

Potential Intervention Strategies for Chronic 
Pain–Induced Cognitive Impairment

Effective pain analgesia and management may alleviate its 
associated cognitive impairment. Reports indicate that the 
chronic pain-induced gray matter decrease and cognitive net-
work disruption can be partly recovered when chronic pain 
is treated successfully [68, 184]. However, the commonly 
used analgesic medications, such as gabapentin and opioids, 
have been shown to evoke or exacerbate existing cognitive 
impairment [185, 186]. The cognitive impairment induced 
by CP is marginally addressed in the clinic. Therefore, some 
potential treatments for cognitive impairment in CP patients 
are needed.

rTMS and tDCS

Repetitive transcranial magnetic stimulation (rTMS) and 
transcranial direct current stimulation (tDCS) are innova-
tive tools in neurology and psychiatry for CNS diseases. 
They are able to modulate neuronal activities in stimulated 
areas, inducing functional changes in connected distant 
regions. It has been reported that rTMS stimulation on the 
dorsolateral prefrontal cortex (DLPFC) produced cognitive-
enhancing effects in patients with depression, mild cogni-
tive impairment, AD, and Parkinson’s disease [187–190]. 

Low-frequency magnetic stimulation improved cognitive 
behavior by enhancing structural synaptic plasticity in the 
hippocampus of aging mice [191]. Additionally, tDCS on 
DLPFC enhances response speed and accuracy in cognitive 
tasks [192]. These findings suggest that rTMS and tDCS are 
potential treatments for cognitive impairment in chronic pain 
patients by targeting the prefrontal cortex and hippocampus, 
and modulating dysfunctional neural networks.

Anti‑inflammation and Neuroprotection

Anti-inflammation and neuroprotection are key focuses in 
treating cognitive dysfunction induced by pain. Preclinical 
research indicated that anti-TNF-α, IL-1β, or IL-6 agents 
and their receptor antagonists may be effective treatments 
to reduce inflammation and exert neuroprotective effects 
[27, 33, 35]. Minocycline is widely used to inhibit micro-
glia activation and has shown promising clinical applications 
in pain and cognition [193, 194]. Erythropoietin (EPO), as 
an immune modulator factor, improved recognition mem-
ory impairment through reducing hippocampal microglial 
expression, IL-1β production, hippocampal apoptosis, and 
necroptosis induced by inflammatory pain [195]. Metformin 
alleviated pain-related cognitive impairment and restored 
functional and morphological changes in the brain of neuro-
pathic mice [44]. The neuropeptide GLP-1 receptor agonist 

Fig.2   A schematic overview of 
alternations in neurochemical, 
neuroinflammatory, and neuro-
plastic mechanisms implicated 
in pain-related cognitive deficits
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exendin-4 suppresses neuroinflammation, protecting neu-
ronal plasticity in mice with neuropathic pain [26]. Moreo-
ver, treatments with NMDAR agonists d-serine and d-Asp 
can restore synaptic transmission and synaptic plasticity 
in the brain [25, 146, 196]. SCFA treatment improved gut 
microbiota, alleviated neuroinflammation and microglia acti-
vation in the cortex and hippocampus, and restored synaptic 
transmission in pain [182, 197]. Other targets, like BDNF, 
and eCB-like compound PAE, are potential treatments for 
cognitive impairments in CP patients. However, translating 
these preclinical findings into clinically useful medicines 
remains a challenge.

Conclusion and Future Directions

Clinical evidence has consistently demonstrated that patients 
suffering from chronic pain often experience cognitive 
impairments, which facilitates preclinical research to 
investigate the underlying mechanisms of CP-induced 
cognitive dysfunction. For this purpose, animal models seem 
necessary even though some findings from experimental 
animals may not be translated to bed-side. In this review, 
we have summarized methodological considerations for 
generating these models. Moreover, we proposed that 
chronic pain shares overlapping neuroanatomical substrates 
with cognitive processing, which may change the structure 
and function of these regions and lead to cognitive deficits. 
We discussed the mechanisms at molecular, cellular, 
and neural circuit levels that contribute to the comorbid 
cognitive deficits in chronic pain, primarily focusing on the 
hippocampus and mPFC (Fig. 2).

However, several important issues remain less studied. 
Firstly, the most currently used animal models of pain are 
chronic neuropathic and inflammatory pain, with less atten-
tion given to other prevalent types of clinical pain like chronic 
visceral pain, headaches, and musculoskeletal pain. Expand-
ing investigations to include these different pain conditions 
can provide a more comprehensive understanding of the rela-
tionship between pain and cognitive deficits and accurately 
model the pain experiences in humans. Moreover, the current 
preclinical research on pain-induced cognitive dysfunction is 
largely restricted to the hippocampus and mPFC, with much 
less exploration of other relevant brain regions like ACC, 
amygdala, NAc, and LC. Despite extensive research on the 
ACC’s role in pain and emotion disorders [84], there is still 
limited research on its direct mechanisms underlying pain-
related memory impairments. Understanding local molecular 
and cellular changes in these brain regions and specific cir-
cuits by which pain disrupts cognitive processes is important 
in future research on pain-induced cognitive deficits, which 

provides guidance for clinical drug targets and electro-physical 
therapies.
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