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Abstract
The pathogenesis of schizophrenia begins in early neurodevelopment and leads to excitatory-inhibitory imbalance. It is 
therefore essential that preclinical models used to understand disease, select drug targets and evaluate novel therapeutics 
encompass similar neurochemical deficits. One approach to improved preclinical modelling incorporates dual-hit neurodevel-
opmental insults, like neonatal administration of phencyclidine (PCP, to disrupt development of glutamatergic circuitry) then 
post-weaning isolation (Iso, to mimic adolescent social stress). We recently showed that male Lister-hooded rats exposed to 
PCP-Iso exhibit reduced hippocampal expression of the GABA interneuron marker calbindin. The current study expanded on 
this by investigating changes to additional populations of GABAergic interneurons in frontal cortical and hippocampal tissue 
from the same animals (by immunohistochemistry) as well as levels of GABA itself (via ELISA). Because inflammatory 
changes are also implicated in schizophrenia, we performed additional immunohistochemical evaluations of Iba-1 positive 
microglia as well as ELISA analysis of IL-6 in the same brain regions. Single-hit isolation-reared and dual-hit PCP-Iso rats 
both showed reduced parvalbumin immunoreactivity in the prelimbic/infralimbic region of the frontal cortex. However, 
this was more widespread in PCP-Iso, extending to the medial/ventral and lateral/dorsolateral orbitofrontal cortices. Loss 
of GABAergic markers was accompanied by increased microglial activation in the medial/ventral orbitofrontal cortices of 
PCP-Iso, together with frontal cortical IL-6 elevations not seen following single-hit isolation rearing. These findings enhance 
the face validity of PCP-Iso, and we advocate the use of this preclinical model for future evaluation of novel therapeutics—
especially those designed to normalise excitatory-inhibitory imbalance or reduce neuroinflammation.
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Introduction

Current antipsychotics address the positive symptoms of 
schizophrenia in approximately 70% of patients but have 
limited effect on cognitive or negative symptoms. As a 
result, this disorder remains one of the top 10% causes of 
disability worldwide, with an approximate cost of $281.6 
billion in the USA alone during 2020 and an average life-
time cost of $3.8 million per patient [1]. There have been 

extensive efforts to develop improved treatments acting via 
a diverse array of pharmacological targets, but unfortunately, 
most of those that showed promising activity in preclinical 
tests failed to progress beyond phase III clinical trials. This 
high attrition reinforces the need for improved preclinical 
models, to further elucidate disease neurobiology, select 
plausible new targets for drug development and enable more 
predictive evaluation of novel therapeutics [2].

The pathogenesis of schizophrenia begins in early neu-
rodevelopment and leads to lasting excitatory-inhibitory 
imbalance [3]. There is post-mortem evidence that this is 
due, at least in part, to disruption of certain populations of 
GABAergic interneurons in the prefrontal cortex (PFC) and 
hippocampus. For example, in schizophrenia, these regions 
contain lower levels of mRNA encoding parvalbumin 
and somatostatin [4–8], which are markers for respective 
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interneuron subgroups that predominantly target either the 
cell body and initial axon segment, or dendritic shafts and 
spines of pyramidal neurons. This is also apparent at the 
protein level, with patient samples showing fewer parvalbu-
min- and somatostatin-immunoreactive neurons [5, 9, 10], 
or reduced intensity of parvalbumin immunostaining [11]. 
Neuroinflammation has been proposed as a potential mech-
anism underlying these changes, since positron emission 
tomography (PET) and post-mortem immunohistochemis-
try studies in schizophrenia detect increased activation of 
the brains immune cells, microglia [12]. There are reports 
of increased microglial cell density in studies examining the 
major histocompatibility complex class II antigen HLA-DR 
[13–15], as well as a shift towards a more activated amoe-
boid morphology of cells labelled for ionised calcium–bind-
ing adaptor molecule 1 (Iba-1) [16]. These are accompa-
nied by elevated levels of cytokines, including interleukin-6 
(IL-6) [15, 17]. Regardless of whether this inflammation 
is a cause or consequence of interneuron dysfunction, it is 
desirable that preclinical models for schizophrenia should 
feature similar GABAergic and inflammatory changes. This 
is a realistic expectation in genetic [18] and neurodevelop-
mental models [19] but cannot be achieved with simple acute 
pharmacological manipulations.

One approach to producing more comprehensive preclini-
cal models involves ‘dual-hit’ combinations of established 
perinatal and peripubertal interventions. The two ‘hits’ 
are each chosen to mirror different aspects of the delayed 
symptom onset and multiple neurotransmitter involvement 
characteristic of complex neurodevelopmental disorders like 
schizophrenia [20]. For example, neonatal NMDA recep-
tor antagonist administration (between postnatal days 7 
and 11 when sensitivity to their pro-apoptotic effects peaks 
[21]) followed by post-weaning isolation rearing of gregari-
ous rat pups induces a more robust phenotype than either 
manipulation alone [22–25]. Particular advantages of com-
bining neonatal phencyclidine (PCP) with isolation rearing 
(PCP-Iso) are more extensive cognitive impairment across 
a broader array of domains (including spatial reference and 
fear-motivated associative memory [22, 25]), plus altered 
social interaction and concomitant ultrasonic vocalizations 
[26, 27] that appear more akin to negative symptomatology 
than the increased aggression seen with single-hit isolation 
rearing [28]. These are accompanied by downregulation of 
hippocampal genes involved in glutamate metabolism, dopa-
minergic neurotransmission, and GABA receptor signalling, 
as well as those encoding parvalbumin and glutamic acid 
decarboxylase 67  (GAD67) [29]. PCP-Iso also have reduced 
hippocampal expression of the calcium-binding protein 
calbindin [30], which is present in subsets of GABAergic 
interneurons throughout strata oriens, radiatum and lacuno-
sum-moleculare (where our counts were obtained) as well as 
glutamatergic cells within stratum pyramidale. This appears 

consistent with reduced numbers or a disordered pattern of 
calbindin-positive cells in schizophrenia [31, 32], and may 
contribute to the apparent improved predictive validity of 
PCP-Iso compared to single-hit counterparts [30]. To pro-
vide further insight, the current study investigated changes 
to additional parvalbumin- and somatostatin-positive popu-
lations of GABAergic interneurons in sub-regions of the 
frontal cortex and hippocampus plus calbindin-positive cells 
in the frontal cortex (by immunohistochemistry). We per-
formed additional immunohistochemical evaluation of Iba-
1-positive microglia, as well as ELISA analysis of IL-6 and 
levels of GABA itself in bulk tissue from the same regions. 
Findings provide an important backdrop against which to 
interpret neurochemical substrates of the accompanying 
visual recognition memory deficits [30] in the same animals.

Methods

Animals and experimental design

All procedures were conducted in accordance with the Ani-
mals (Scientific Procedures) Act, 1986, with approval from 
the University of Nottingham Animal Welfare and Ethical 
Review Body (AWERB). The research was designed and is 
reported in accordance with the Animal Research: Report-
ing of In Vivo Experiments (ARRIVE) guidelines [33]. It 
used stored brain tissue from a previously described cohort 
of 42 male Lister-hooded rats, in which the PCP-Iso group 
exhibited reduced hippocampal calbindin expression [30].

In summary, rats from a total of 6 litters were obtained 
with dams on postnatal day (PND) 3 (Charles River UK). 
They were maintained under controlled conditions through-
out the study (21 ± 2 °C, 55 ± 10% humidity, 12-h light–dark 
cycle; on at 07:00 h) with unlimited access to food and 
water. Upon arrival, family groups were housed in individu-
ally ventilated cages (GR1800 Double-Decker; Tecniplast) 
containing sawdust bedding and standard environmental 
enrichment (cardboard play tube, wooden chew block and 
paper nest material). One pup died between delivery and 
the start of the study, and the remaining 41 pups, who each 
represented a single experimental unit, were randomised (by 
drawing lots) to receive neonatal administration of saline 
vehicle (Veh; 1 mL/kg s.c.) or PCP HCl (10 mg/kg base; 
Sigma-Aldrich) on PND 7, 9 and 11. Although this ensured 
each family group included a mix of both vehicle- and PCP-
treated pups (which is an important design consideration 
to avoid any possibility of litter effects confounding the 
resulting data) it does introduce the possibility for cross-
contamination (as a result of dams ingesting PCP during 
licking and grooming of drug-treated offspring and pass-
ing it to their suckling control offspring via the milk). It 
is reported that adult rats excrete 93% of an i.v. PCP dose 
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via the urine and faeces within a week [34], but we do not 
have comparable data for neonatal animals following s.c. 
administration, nor any indication of milk levels in lactat-
ing females following p.o. administration. However, there 
were no more than three PCP-treated pups in any one litter, 
and their average cumulative body weights across the dosing 
period (128.1 ± 16.59 g) together with the pharmacokinetic 
information outlined above suggest it is possible that each 
dam had access to in the region of 1.19 mg of eliminated 
PCP over an 11 day period. Elimination of 93% of this by the 
routes outlined above leaves a maximum of 7% (0.0833 mg) 
available for incorporation into milk, and equal division 
between pups (6.83 per litter) results in a maximal possible 
cumulative p.o. dose of approximately 0.67 mg/kg to each 
individual. The dose ‘vehicle-treated’ pups might experi-
ence through this unavoidable cross-contamination therefore 
represents approximately 2% of that likely to encountered by 
PCP-treated pups through their combination of direct plus 
indirect routes, and the long-term consequences of this are 
likely to be minimal. 

At weaning age (PND 21), the Veh-treated rats were 
further randomised (again by drawing lots) to rearing in 
standard groups of three or four per cage (Veh-Gr control; 
n = 14) or isolation, i.e. one per cage (single-hit Veh-Iso; 
n = 13). PCP-treated rats were all isolated (PCP-Iso dual 
hit; n = 14). Our study did not include a single-hit PCP-Gr 
condition because we have already shown that these animals 
do not exhibit cognitive dysfunction or lasting excitatory-
inhibitory imbalance [25, 30]. Our focus here was to further 
understand the differences between Veh-Iso and PCP-Iso 
rather than their absence in PCP-Gr. The present approach 
allowed us to reduce total animal use by 25% and thereby 
comply with the reduction component of the 3Rs principle 
(replacement, reduction and refinement). Group sizes were 
based on previous studies employing the same techniques 
[24–26]. Following weaning, rats were housed in cages (Gr: 
32 × 51 cm, Iso: 25 × 42 cm) containing sawdust bedding 
without environmental enrichment, and which had grid lids 
to ensure maintenance of visual, olfactory, and auditory 
contact between isolation-reared rats and other group- and 
singly housed rats within the same holding room [35]. Han-
dling was restricted to a single weekly cage change and body 
weight measurement until behavioural testing.

To assess differences in pharmacological reversal of novel 
object discrimination (NOD) deficits between Veh-Iso and 
PCP-Iso, rats underwent NOD (as described in detail else-
where [30]) on three separate occasions at 1–2 week inter-
vals (PND 57–80). They received an acute i.p. administra-
tion of 0.5% methylcellulose 1% Tween-80 vehicle (1 mL/
kg), the 5-HT6 receptor antagonist SB-399885 (10 mg/kg; 
Sigma-Aldrich) or  mGlu7 antagonist MMPIP (10 mg/kg; 
Tocris), on separate test days, using a cross-over design and 
in a pseudorandom order. The humane endpoint would have 

been euthanasia of any rat experiencing a decrease in body 
weight (up to a maximum permitted limit of − 20%) and/
or signs of poor body condition (e.g. piloerection, hunched 
posture, absence of grooming) although in practice none 
of these were encountered. Rats were killed by concus-
sion and immediate decapitation on PND 79–80, straight 
after the final NOD test. The frontal cortex and hippocam-
pus from one hemisphere were dissected on a refrigerated 
table (4 °C), weighed, frozen in liquid nitrogen and stored 
at − 80 °C for use in ELISAs. The remaining intact hemi-
sphere was immerse fixed in 4% paraformaldehyde and 
cryopreserved in 30% sucrose (each overnight at 4 °C) then 
frozen in isopentane on dry ice and stored at − 80 °C for use 
in immunohistochemistry. Full blinding of experimenters 
to neurodevelopmental history throughout the 8–9 weeks of 
post-weaning housing was not possible due to the obvious 
visual difference between group and single housing. How-
ever, these allocations were concealed throughout tissue 
processing and analysis.

Immunohistochemical analysis of parvalbumin, 
somatostatin, calbindin and Iba‑1

Serial coronal sections (60 μm) were obtained through-
out the frontal cortex (Bregma 5.20 to 4.00) and dorsal 
hippocampus (Bregma − 2.56 to − 5.80 [36, 37]), using a 
freezing microtome (Anglia Scientific). They were stored in 
antifreeze (30% ethylene glycol; Fisher Scientific, and 30% 
glycerol; Honeywell, in 0.1 M phosphate buffered saline 
(PBS); Oxoid) at − 20 °C until free-floating immunohisto-
chemistry. Tissue from one Veh-Gr and one Veh-Iso was 
excluded due to technical difficulties during slicing, resulting 
in final group sizes of n = 13 Veh-Gr, n = 12 Veh-Iso, and 
n = 14 PCP-Iso for immunohistochemistry.

For each brain region, six evenly spaced sections were 
processed for each of the four selected markers. Sections 
were washed (4 × 5 min) in PBS to remove antifreeze then 
incubated (1 h) in 2% normal goat serum (Abcam) in buffer 
1 (0.5% bovine serum albumin (BSA); Sigma-Aldrich, 0.3% 
Triton-X100; Sigma-Aldrich, in PBS) to minimise non-spe-
cific binding of the secondary antibody to the tissue. Sec-
tions were incubated (overnight, 4 °C) in rabbit polyclonal 
antibodies against parvalbumin (Abcam ab11427, 1:1000), 
somatostatin (Abcam ab108456, 1:500), calbindin (Abcam 
ab108404, 1:500) or Iba-1 (Wako 019–19741, 1:2000), then 
washed (3 × 5 min) in buffer 2 (0.15% BSA and 0.1% Triton-
X100 in PBS) to prevent any unbound primary antibody 
from interacting with the goat anti-rabbit Alexa-Fluor 568 
secondary antibody (Abcam ab175471, 1:500; 1 h in the 
dark). A series of negative control sections were incubated in 
primary antibody alone, secondary antibody alone, or buff-
ers only. Sections were washed (2 × 5 min each in buffer 
2 then PBS), mounted on gelatinised slides and air-dried. 
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Slides were rinsed with PBS, counterstained with DAPI 
nuclear stain (Sigma-Aldrich, 1:2000 in  dH2O; 30 s) rinsed 
twice with  dH2O and cover slipped with DABCO fluorescent 
mounting medium (Sigma-Aldrich; 0.2% in 90% glycerol in 
PBS) then stored at 4 °C.

To enable qualitative examination of the morphol-
ogy of immunoreactive cells and subcellular localiza-
tion of the signal, a small number of control sections 
were viewed using a Zeiss 880 confocal microscope. 

Representative × 40 images were obtained using Zen 
Black software (Zeiss). For quantitative analysis, sec-
tions were viewed on a Nikon EFD-3 f luorescence 
microscope and consistently placed × 10 snapshot images 
obtained from the medial/ventral orbitofrontal (MO/VO), 
lateral/dorsolateral orbitofrontal (LO/DLO), and prelim-
bic/infralimbic (PrL/IL) cortices (Fig. 1a) as well as the 
CA1, CA2/3, and dentate gyrus (DG) subfields of the 
hippocampus (Fig. 1b) using a Spot Insight 5MP CM05 
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USB camera and Spot Advanced software (v5.6; Diag-
nostic Instruments Inc.). Anatomical boundaries were 
determined using the stereotaxic brain atlas of Paxinos 
and Watson and a digital hippocampal atlas [36, 37]. 
Numbers of parvalbumin-, somatostatin-, calbindin- 
or Iba-1-positive cells per image were automatically 
counted with Fiji (Windows 32-bit [38]) by customizing 
an established protocol [39] to reflect optimal detection 
settings for each marker. Because it is theoretically pos-
sible there might be a decrease in the extent of immu-
noreactivity per expressing cell without any decrease 
in the density of immunoreactive cells the intensity of 
immunoreactivity in each image was automatically deter-
mined using the Analyse > Color Histogram tool in Fiji 
and normalised by subtraction of background staining 
[40]. In addition, the morphology of each individual 
Iba-1-positive cell was manually classified to provide 
an index of activation state. Cells with a small soma and 
expansive thin processes (whose length > soma diameter) 
were categorised as resting. Cells with a larger soma and 
shortened thickened processes (whose length still > soma 
diameter) as well as those transitioning towards a rod-
like shape (narrowed elongated soma with few planar 
processes) were all classed as activated. Cells with a 
dramatically enlarged soma and very short or absent 
processes (whose length ≤ soma diameter) were classed 
as amoeboid [41, 42]. Data for each rat and brain region 
were averaged across the six sections per marker, such 
that n represents the number of biological and not techni-
cal replicates.

ELISA analysis of GABA and IL‑6 levels

Frontal cortical and hippocampal samples were homog-
enised (4 °C) in a 100:1 mix of radioimmunoprecipita-
tion assay (RIPA) buffer and protease inhibitor cocktail 
(both Sigma-Aldrich). Buffer was added at a ratio of 
100μL per 10 mg of tissue and protein extraction achieved 
by sonication (5–10 s, Soniprep 150; MSE) then vertical 
disc rotation (1 h). Supernatants resulting from centrifu-
gation (5 min, RCF 850; Eppendorf 5417R) were stored 
at − 80 °C until analysis. Tissue samples from all animals 
were included in ELISAs, resulting in final group sizes of 
n = 14 Veh-Gr, n = 13 Veh-Iso and n = 14 PCP-Iso.

Total protein content was determined by Lowry assay. 
Forty microliters of BSA standards (0–0.5 mg/mL) and 
samples (1:100 in  dH2O) were transferred to a flat bot-
tomed 96-well plate and incubated (10 min) with 40μL 
of working Lowry reagent (1 part 0.5% copper sulphate 
pentahydrate, 1 part 2.7% potassium/sodium tartrate and 
10 parts sodium carbonate in 0.5 M sodium hydroxide). 
Folin–Ciocalteu reagent was diluted (1:1 with  dH2O) and 
added (20μL) to each well before incubation (45 min, in the 
dark). Absorbance at 750 nm was read using a SpectraMax 
M2e plate reader (Molecular Devices) with SoftMap Pro 
7.1.2 software.

GABA and IL-6 content was determined against stand-
ards using commercially available ELISA kits (Biorbyt 
orb567856 and orb315058) according to the manufacturer’s 
instructions. Absorbance at 450 nm was read as described 
above. GABA and IL-6 concentrations were normalised to 
total protein concentrations within the same sample to cor-
rect for any minor differences in the efficiency of protein 
extraction between samples.

Statistical analysis

No exclusion criteria were set and data from all animals 
were included in the analyses. These were planned before 
the study took place (although not formally registered) 
and performed using GraphPad Prism v9.4.1. Normal-
ity was assessed with D’Agostino-Pearson or Kolmogo-
rov–Smirnov tests. Based on the outcome of these, inten-
sity of immunoreactivity and ELISA data were analysed 
by two-way repeated measures ANOVA (with neurode-
velopmental condition as a between-subjects factor and 
brain region or sub-region as a within-subjects factor). 
The Geisser-Greenhouse correction for unequal variance 
was applied, and ANOVAs were followed with Tukey’s 
multiple comparisons post hoc test. Cell density and 
Iba-1 morphology data were analysed by non-parametric 
Kruskal–Wallis tests (applied separately to each brain 
sub-region, with neurodevelopmental condition as the 

Fig. 1  Immunohistochemical staining for GABAergic and inflam-
matory markers. Consistently placed snapshot images were col-
lected from a medial/ventral orbitofrontal (MO/VO), lateral/dorso-
lateral orbitofrontal (LO/DLO) and prelimbic/infralimbic (PrL/IL) 
regions of the frontal cortex as well as b CA1, CA2/3 and dentate 
gyrus (DG) subfields of the dorsal hippocampus [36, 37]. Patterns of 
parvalbumin, somatostatin, calbindin and Iba-1 immunoreactivity in 
c confocal microscopy images obtained from the MO/VO for quali-
tative insight into the morphology of labelled cells and subcellular 
localization of the signal, as well as d standard fluorescence micros-
copy images from the MO/VO typical of those used for quantitative 
analysis. To aid placement of these images within the figure only 
one quarter of each image is presented. For each marker, e features 
were detected by automated counting settings. Representative higher 
magnification images from the MO/VO show f reduced parvalbumin 
expression and g increased activation state of Iba-1-positive micro-
glia in rats that received PCP on postnatal day (PND) 7, 9 and 11 
and were housed in isolation from weaning on PND21 (PCP-Iso), 
compared to rats that received vehicle injections and were housed in 
groups (Veh-Gr) or isolation (Veh-Iso). Scale bars are 10 μm in c and 
100 μm in d–g. Arrowheads indicate g examples of activated micro-
glia with enlarged cell bodies and shortened thickened processes, or 
transitioning towards a rod-like morphology with narrowed elongated 
cell bodies and fewer planar processes [41, 42]. Iba-1, ionised cal-
cium–binding adapter molecule 1

◂
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sole factor) followed by Dunn’s post hoc. Data analysed 
with parametric tests are presented as bar charts show-
ing mean ± standard error of the mean (SEM) and those 
analysed with non-parametric tests as box and whisker 
plots showing median, interquartile range (IQR) and 95% 
confidence intervals (CI). P < 0.05 was considered sta-
tistically significant.

Results

Validation of immunohistochemical staining 
for GABAergic and inflammatory markers

The selected primary antibodies have been used to visu-
alise parvalbumin [43], somatostatin [44], calbindin [45] 
and Iba-1 [46] immunoreactivity in rat and mouse brain, 
and immunostaining in this study is consistent with pre-
viously observed patterns in the rat frontal cortex and 
hippocampus [41, 47, 48]. Thus, parvalbumin, calbindin 
and Iba-1 immunoreactivity were present throughout 
nuclei, cell bodies and processes (Fig. 1c–d). Abundant 
labelling of cell bodies enabled automated counting of 
immunoreactive cells to be reliably performed (Fig. 1e). 
Somatostatin immunoreactivity was less intense over-
all and showed a comparative absence from intracel-
lular regions of the cell body (Fig. 1c–d). As a result, 
the settings necessary to automatically count cell bodies 
frequently also detected portions of immunoreactive pro-
cesses irrespective of whether or not these were from the 
same or different cells (Fig. 1e). Somatostatin-positive 
cell counts should therefore be interpreted with caution. 
We have confidence in remaining data, which is maxim-
ised by that fact that immunoreactivity was only observed 
in sections incubated with respective primary plus the 
secondary antibody and abolished by the absence of pri-
mary and/or secondary antibodies (data not shown).

Impact of combined neonatal PCP and isolation 
rearing on GABAergic markers

There was a main effect of neurodevelopmental condition 
on parvalbumin immunoreactivity throughout the fron-
tal cortex  (F(2,36) = 11.40, P = 0.0001). This was reduced 
in the PrL/IL of both single-hit Veh-Iso and dual-hit 
PCP-Iso (− 14 and − 19%; P < 0.05 versus Veh-Gr con-
trol, Fig. 2a). Parvalbumin-positive cell density in the 
PrL/IL showed a similar effect of neurodevelopmental 
condition (Kruskal–Wallis statistic = 9.178, P = 0.0102) 
and was also reduced in both Veh-Iso and PCP-Iso (− 56 
and − 49%; P < 0.05, Fig. 2b). Of note, PCP-Iso showed 
additional decreases in both the intensity of parvalbumin 
immunoreactivity in the MO/VO (− 23%; P < 0.01) and 

LO/DLO (− 16%; P < 0.05), and in the density of parval-
bumin-positive cells in the MO/VO (− 71%; P < 0.01), 
neither of which were significantly reduced in Veh-Iso 
(Figs. 1f and 2a–b).

There was no effect of neurodevelopmental condition 
on the intensity of frontal cortical somatostatin immu-
noreactivity  (F(2,36) = 0.056, P = 0.9455; Fig. 2c), and 
although somatostatin-positive cell density in the LO/
DLO was influenced by neurodevelopmental condition 
(Kruskal–Wallis statistic = 8.442, P = 0.0147) there was 
no decrease in Veh-Iso or PCP-Iso compared to Veh-Gr. 
However density in PCP-Iso was higher than in Veh-Iso 
(Fig. 2d). As noted above, these data should be inter-
preted with a degree of caution (see Fig. 1e). There were 
no differences in calbindin immunoreactivity or cell den-
sities in the frontal cortex (Fig. 2e–f), nor in any of the 
interneuron markers within the hippocampus (data not 
shown). Levels of GABA were not significantly impacted 
by neurodevelopmental condition, although interestingly 
apparent trends within the frontal cortex (Fig. 2g) mir-
rored the pattern of reduced parvalbumin immunoreactiv-
ity across this region (Fig. 2a–b).

Impact of combined neonatal PCP and isolation 
rearing on inflammatory markers

There was no effect of neurodevelopmental condition on 
overall expression of Iba-1, either in terms of immunore-
activity or cell densities in the frontal cortex (Fig. 3a–b) 
or hippocampus (data not shown). However, when Iba-
1-positive cells were classified according to their morphol-
ogy to obtain an index of activation state, there was an 
effect of neurodevelopmental condition on the percentage 

Fig. 2  Impact of combined neonatal PCP and isolation rearing on 
GABAergic markers in the frontal cortex. Mean ± SEM intensity of 
a parvalbumin, c somatostatin and e calbindin immunoreactivity, 
together with median, IQR (box) and 95% CI (whiskers) for counts of 
b parvalbumin-, d somatostatin- and f calbindin-positive cell densi-
ties, as well as g mean ± SEM levels of GABA itself in both frontal 
cortical and hippocampal homogenates from opposite hemispheres 
of the same animals. Male Lister-hooded rats received saline vehicle 
(1  mL/kg s.c.; Veh) or PCP (10  mg/kg) on postnatal day (PND) 7, 
9 and 11 were housed in groups (Gr) or isolation (Iso) from wean-
ing on PND 21. They underwent novel object discrimination (NOD) 
three separate times at 1–2  week intervals (PND 57–80) following 
acute i.p. administration of 0.5% methylcellulose 1% Tween-80 vehi-
cle (1 mL/kg), SB-399885 (10 mg/kg) or MMPIP (10 mg/kg) on sep-
arate days using a cross-over design. Tissue was collected on PND 
79–80 (n = 12–14 per neurodevelopmental condition) and immuno-
histochemical data were obtained from consistently placed regions 
of interest within medial/ventral orbitofrontal (MO/VO), lateral/dor-
solateral orbitofrontal (LO/DLO) and prelimbic/infralimbic (PrL/IL) 
sub-regions. *P < 0.05; **P < 0.01 Veh-Iso and PCP-Iso versus Veh-
Gr; #P < 0.05 PCP-Iso versus Veh-Iso (a, c, e, g two-way repeated 
measures ANOVA with Tukey’s or b, d, f Kruskal–Wallis test with 
Dunn’s post hoc)

◂
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of MO/VO cells in the resting state (Kruskal–Wallis sta-
tistic = 6.371, P = 0.0414), which tended to decrease in 
PCP-Iso compared to Veh-Gr (0.0797; data not shown). 
Neurodevelopmental condition also influenced the per-
centage of MO/VO cells in the early stages of the acti-
vated state (Kruskal–Wallis statistic = 13.06, P = 0.0015), 
which was higher in PCP-Iso than both Veh-Gr (1.8-fold; 
P < 0.01) and Veh-Iso (1.6-fold; P < 0.05; Figs. 1g and 

3c). The percentage of cells in the later, amoeboid stage 
of the activated state was extremely low (medians ≤ 1%, 
IQRs 0–1%) and not influenced by neurodevelopmental 
condition (data not shown). Levels of the inflammatory 
cytokine IL-6 within the frontal cortex were also higher in 
PCP-Iso (but not Veh-Iso) than Veh-Gr (P < 0.05; Fig. 3d). 
There were no differences in inflammatory markers within 
the hippocampus.

Fig. 3  Impact of combined neonatal PCP and isolation rearing on 
inflammatory markers in the frontal cortex. Mean ± SEM a inten-
sity of Iba-1 immunoreactivity, together with median, IQR (box) and 
95% CI (whiskers) for b Iba-1-positive cell densities and the c per-
centage of Iba-1-positive microglia with morphological indications 
of an activated state [41, 42], as well as d mean ± SEM levels of the 
cytokine IL-6 in both frontal cortical and hippocampal homogenates 
from opposite hemispheres of the same animals. Male Lister-hooded 
rats received saline vehicle (1 mL/kg s.c.; Veh) or PCP (10 mg/kg) on 
postnatal day (PND) 7, 9 and 11 were housed in groups (Gr) or iso-
lation (Iso) from weaning on PND 21. They underwent novel object 
discrimination (NOD) three separate times at 1–2  week intervals 

(PND 57–80) following acute i.p. administration of 0.5% methylcel-
lulose 1% Tween-80 vehicle (1  mL/kg), SB-399885 (10  mg/kg) or 
MMPIP (10 mg/kg) on separate days using a cross-over design. Tis-
sue was collected on PND 79–80 (n = 12–14 per neurodevelopmental 
condition) and immunohistochemical data were obtained from con-
sistently placed regions of interest within medial/ventral orbitofrontal 
(MO/VO), lateral/dorsolateral orbitofrontal (LO/DLO) and prelim-
bic/infralimbic (PrL/IL) sub-regions. *P < 0.05; **P < 0.01 PCP-Iso 
versus Veh-Gr; #P < 0.05 PCP-Iso versus Veh-Iso (a, d two-way 
repeated measures ANOVA with Tukey’s or b, c Kruskal–Wallis test 
with Dunn’s post hoc)
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Discussion

Improved preclinical models are essential to enable more 
predictive evaluation of urgently needed novel therapeutics 
for negative and cognitive symptoms of schizophrenia. The 
dual-hit combination of neonatal PCP followed by insolation 
rearing is reported to produce a wider range of behavioural 
and neurochemical changes than single-hit isolation rear-
ing, and alterations in PCP-Iso appear more akin to those in 
schizophrenia [22, 25–27, 30]. The current study is the first 
to show additional parvalbumin deficits, microglial activa-
tion and IL-6 elevation within the frontal cortex of PCP-Iso, 
and these findings further support improved face validity of 
the dual-hit PCP-Iso model.

Decreased frontal cortical or hippocampal expression of 
parvalbumin has been reported following a variety of pro-
tocols involving some form of social isolation as a single 
developmental manipulation. This includes work in highly 
gregarious rodents like rats, and also studies in mice—
despite males of this species generally being more aggres-
sive towards conspecifics [49]. However, the outcomes in 
these single-hit models are variable in terms of the affected 
brain region (e.g., [50, 51] versus [52, 53]). Moreover, they 
are frequently localised to an individual sub-region, like the 
PrL or IL as observed in our Veh-Iso [24, 54–56], or even to 
a specific cell layer within a sub-region [57]. This explains 
why they might not be detected during analysis of pooled 
sub-regions [58]. To the best of our knowledge, no studies 
have assessed the impact of either post-weaning isolation 
rearing or adulthood social isolation on frontal cortical or 
hippocampal somatostatin expression. Isolation-induced 
changes to other markers appear more variable. For exam-
ple, decreased hippocampal calbindin in our Veh-Iso [30] 
is more localised than in isolation-reared females from the 
same strain [50]. The current absence of any frontal cortical 
change to this marker is in keeping with one prior report 
[24] but conflicts with mixed findings from another group, 
who have reported both decreases [59] and increases [60]. 
Similarly, we [40, 61] and others [62, 63] variously detect 
increases, decreases or no change to levels of cytokines like 
IL-6 in the frontal cortex of isolates. Taken together, these 
findings reinforce the need for more robust models featuring 
a wider and more reproducible spectrum of changes akin to 
those in complex psychiatric disorders like schizophrenia.

There is growing appreciation for the value of dual-hit 
neurodevelopmental models [2, 20]. Although not all com-
binations of relevant maternal, dietary or social risk factors 
have an additive effect on rodent behavioural or neurochemi-
cal endpoints [40, 64, 65], there is now a strong body of 
evidence that the consequences of post-weaning social isola-
tion are exacerbated by prior blockade of NMDA receptors 
during the neonatal period [22, 24–27, 30, 52, 66]. Reduced 

frontal cortical parvalbumin expression in PCP-Iso mirrors a 
number of post-mortem findings from schizophrenia patients 
over the past 25 years. This applies to both the dorsolateral 
PFC [10, 11, 67, 68] (whose closest functional homolog in 
rodents includes the PrL [69], impacted by both Veh-Iso 
and PCP-Iso here) and the orbitofrontal cortex [9] (crucially 
affected only by PCP-Iso). Evidence for reduced hippocam-
pal parvalbumin in schizophrenia is more sparse [5, 70], 
and negative reports for both regions [71–73] have led to 
the proposal of a ‘low GABA marker’ subgroup, compris-
ing approximately 50% of the patient population [74]. There 
is also an inflammatory subgroup [15, 75, 76] and whilst 
additional research is needed to clarify the proportion of 
patients exhibiting low GABA markers [74] in conjunc-
tion with increased brain regional cytokines [17], we feel 
PCP-Iso have the potential to provide insights into disease 
neurobiology and treatment strategies for this combined sub-
group. There is ongoing debate whether reduced expression 
of calcium binding proteins in schizophrenia represents a 
selective loss of these proteins from the interneurons, or a 
loss of the cells themselves. Reports of reduced total corti-
cal neuron number and density [77–79] point towards cell 
loss, yet these are conflicted by reports of unaltered neuronal 
numbers or density [80, 81]. Similar conflicts exist for stud-
ies that have examined mRNA encoding general GABAergic 
markers like isoforms of the GABA synthesis enzyme GAD 
[81–84] versus the vesicular GABA transporter (vGAT) [7, 
85–87]. However, a recent meta-analysis of proton magnetic 
resonance spectroscopy in patients points towards lower lev-
els of GABA itself within the PFC [88] and trends within the 
current PCP-Iso data appear to mimic this. We feel this may 
be indicative of an interneuron dysfunction that goes beyond 
a selective absence of parvalbumin from otherwise normal 
cells. A reduction in calcium binding protein content is pro-
posed to render cells less excitable, due to reduced ability 
to buffer  Ca2+ transients and regulate repolarization.  This 
in turn would disinhibit control over pyramidal cell output, 
with a similar outcome predicted upon loss of parvalbumin-
positive cells [89].  However this view may represent an 
oversimplification since frontal cortical slices from mice 
subjected to two weeks of social isolation in the critical post-
weaning period (PND 21-35) and then allowed to resocialize 
actually exhibit increased excitability of parvalbumin-posi-
tive interneurons in layer V of the PrL [90, 91].

Veh-Iso and PCP-Iso from this cohort both exhibited 
deficits in visual recognition memory in the NOD task 
[30], which means this robust phenotype has been reliably 
observed in each of the nine PCP-Iso cohorts now exam-
ined in our laboratory, despite only occurring in 70% of our 
previous Veh-Iso studies [30, 35]. Localised disruption of 
parvalbumin-, somatostain- and neuronal nitric oxide syn-
thase (nNOS)–positive interneurons in the hippocampus is 
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sufficient to impair NOD [92], but cognitive deficits in our 
Veh-Iso and PCP-Iso cannot be attributed to altered parval-
bumin, somatostatin or inflammatory marker expression in 
this region, nor to somatostatin or calbindin alterations in 
the frontal cortex since no changes were detected. Neuro-
chemical disturbances in PCP-Iso will extend beyond the 
molecules [29] and brain regions [66] studied here, so we 
cannot definitively state that frontal cortical parvalbumin, 
microglial and/or IL-6 alterations contribute to accom-
panying cognitive changes. The medial PFC (mPFC) and 
orbitofrontal cortex are actually more strongly implicated 
in working memory, reversal learning, attentional set shift-
ing and social cognition [93]. Nevertheless, lesions of the 
PrL and IL profoundly impair performance in a food-moti-
vated object-based working memory test [94], and NOD 
is attenuated by localised administration of the  GABAA 
receptor agonist muscimol into the mPFC [95]. With regard 
to parvalbumin-positive neurons in this region, localised 
knockdown of the calcium-binding protein or selective 
inhibition of GABA release from these cells reduces spatial 
working memory, reversal learning [96] and social inter-
action [97]. And although transient optogenetic inhibition 
of these neurons does not appear to impact these cognitive 
processes [98, 99], optogenetic stimulation or chemogenetic 
activation of parvalbumin-positive cells in the PFC is able 
to overcome NMDA receptor antagonist–induced impair-
ments in working memory and cognitive flexibility [100, 
101]. Whilst these elegant approaches have not been used 
to examine the role of frontal cortical parvalbumin-positive 
neurons in NOD, it is intriguing to note that acute inflam-
mation elevates recruitment of these neurons within the 
PrL during this task [102]. It is therefore conceivable that 
reduced parvalbumin expression could contribute to NOD 
impairments, particularly in the face of PCP-Iso–induced 
inflammation. To provide more definitive insight into the 
neurochemical substrates of cognitive and social deficits 
in PCP-Iso future work should examine whether these can 
be reversed by optogenetic or chemogenetic stimulation of 
parvalbumin-positive neurons, as demonstrated for aggres-
sive behaviour in a single-hit social isolation model [54].

We acknowledge that some of our methodological choices 
may have impacted on the findings, and future work should 
also attend to these considerations. For example, rats were 
bred at a commercial establishment and shipped to our labo-
ratories as neonates, arriving (PND 3) four days before the 
start of treatment (PND 7). It is recognised that transporta-
tion can have lasting effects on a wide array of physiological 
and behavioural parameters, including plasma corticosterone 
[103], and the age-critical nature of our PCP administration 
regime allows limited scope for an extended acclimatization 
period while these normalise. Although one potential alter-
native would be to breed animals in-house to avoid the need 
for transport, it is conceivable that stress levels at the time 

of PCP administration and the start of isolation rearing may 
interact with our intentional interventions and contribute to 
the final phenotype. Under those circumstances attempted 
refinements could have negative implications in terms of 
replication, and a dedicated study would be needed to assess 
the consequences of such methodological change. We also 
acknowledge that the current analysis was restricted to male 
rats, and this decision was originally taken because there 
are well-recognised biological sex differences in the human 
illness we seek to model, including worse premorbid func-
tioning, an earlier age at symptom onset and greater severity 
of negative symptoms in males [104]. Although previous lit-
erature shows that cognitive impairment [105] and localised 
parvalbumin deficits do occur in single-hit isolation-reared 
female rats [50], emerging findings demonstrate that micro-
glial activation is much more pronounced in isolation-reared 
male than female mice [106]. We are yet to examine female 
PCP-Iso but the current findings in male PCP-Iso, together 
with indications that perhiperal inflammatory biomarkers in 
patients vary according to biological sex [107] and a general 
move towards representation of both sexes in preclinical and 
clinical trials [108], make studies in female PCP-Iso increas-
ingly timely. Lastly, we note that the brain regional samples 
analysed here were obtained from rats that each received one 
administration of the 5-HT6 receptor antagonist SB-399885, 
one administration of the  mGlu7 antagonist MMPIP and one 
administration of vehicle control prior to cognitive testing in 
the 3 weeks leading up to tissue collection for immunohis-
tochemistry. It would be highly unlikely for acute treatment 
to impact on the immunohistochemical data presented here 
or in our prior manuscript from the same study [30], and 
treatments were all administered in a pseudorandom order 
that was fully balanced across Veh-Gr, Veh-Iso and PCP-Iso 
groups to avoid any potential confounds based on recency.

Atypical antipsychotic agents are able to correct some, 
though by no means all of the disordered behaviours in 
male PCP-Iso. Acute administration of aripiprazole or 
cariprazine reversed locomotor hyperactivity and NOD 
impairments without marked effects on social interaction 
and fear memory [27]. Similarly chronic administration of 
clozapine reversed locomotor hyperactivity and enhanced 
social recognition memory without normalizing sensorimo-
tor gating or reversal learning [109]. The anticonvulsant 
lamotrigine, which blocks voltage-gated sodium channels 
to reduce excitatory neurotransmission, also reversed loco-
motor hyperactivity and improved NOD without correcting 
sensorimotor gating [29]. These reports are broadly con-
sistent with the moderate clinical efficacy of these com-
pounds in schizophrenia (e.g. [110–112]), and the model 
also replicates negative clinical findings with 5-HT6 recep-
tor antagonists [30, 113]. Given our new confirmation of 
inflammation in PCP-Iso an obvious next step in our reverse 
translational assessments of predictive validity would be to 



6978 Molecular Neurobiology (2024) 61:6968–6983

examine an anti-inflammatory agent, since these have also 
shown modest efficacy in patients [114, 115]. Another key 
priority, given the current GABAergic findings, is posi-
tive modulators of the Kv3.1/3.2 voltage-gated potassium 
channels on parvalbumin-positive interneurons. These 
compounds appear to normalise parvalbumin-positive cell 
counts in alternative models for schizophrenia [116] and 
have recently shown promising effects on gamma oscil-
lations in patients [117]. In terms of forward translation, 
chronic administration of a glycine transporter (GlyT1) 
inhibitor is so far the only manipulation to normalise social 
interaction and aberrant patterns of prosocial ultrasonic 
vocalizations in PCP-Iso [26]. This class of compounds 
have subsequently been shown to restore inhibitory neu-
rotransmission and normalise excitatory-inhibitory imbal-
ance [118], and emerging clinical evidence suggests they 
have real potential for improved therapeutic effect [119]. 
Metabotropic glutamate receptor 7  (mGlu7) negative allos-
teric modulators are at an earlier stage in the drug devel-
opment pipeline [120, 121], and our preliminary demon-
stration that they reverse NOD deficits in PCP-Iso [30] 
certainly suggests more in-depth assessment in this model 
is now warranted. In conclusion, the current demonstration 
of frontal cortical parvalbumin reduction, microglial acti-
vation and cytokine elevation enhance the face validity of 
our PCP-Iso model, and support its use to further elucidate 
disease neurobiology and select plausible new targets for 
drug development. Accumulating evidence supports the 
predictive validity of the PCP-Iso model and we advocate 
more widespread adoption of this valuable tool for pre-
clinical evaluation of novel therapeutics for schizophre-
nia—especially those designed to normalise excitatory-
inhibitory imbalance or reduce neuroinflammation.
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