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Abstract
Blood–brain barrier (BBB) is comprised of brain microvascular endothelial cells (ECs), astrocytes, perivascular microglia, 
pericytes, neuronal processes, and the basal lamina. As a complex and dynamic interface between the blood and the central 
nervous system (CNS), BBB is responsible for transporting nutrients essential for the normal metabolism of brain cells and 
hinders many toxic compounds entering into the CNS. The loss of BBB integrity following stroke induces tissue damage, 
inflammation, edema, and neural dysfunction. Thus, BBB disruption is an important pathophysiological process of acute 
ischemic stroke. Understanding the mechanism underlying BBB disruption can uncover more promising biological targets for 
developing treatments for ischemic stroke. Ischemic stroke-induced activation of microglia and astrocytes leads to increased 
production of inflammatory mediators, containing chemokines, cytokines, matrix metalloproteinases (MMPs), etc., which 
are important factors in the pathological process of BBB breakdown. In this review, we discussed the current knowledges 
about the vital and dual roles of astrocytes and microglia on the BBB breakdown during ischemic stroke. Specifically, we 
provided an updated overview of phenotypic transformation of microglia and astrocytes, as well as uncovered the crosstalk 
among astrocyte, microglia, and oligodendrocyte in the BBB disruption following ischemic stroke.
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Introduction

The neurovascular unit (NVU) has molecular signaling 
and physical attributes and exerts a vital role in carrying 
out neurovascular coupling (NVC). NVC supports the high 
energy demand of the brain from the blood and modulates 
brain functions, such as modulating memory via synaptic 
plasticity [1, 2]. In addition to the vital roles of neurons, 
astrocytes, and vasculature in NVU [3], microglia and oli-
godendrocytes, once considered peripheral to the NVU, 
may indirectly contribute to NVC. Microglia and oligoden-
drocytes are conducive to NVU homeostasis in both health 
and disease conditions. NVC is a finely tuned process in 
contrast with auto-regulation. Auto-regulation ensures that 
blood flow is consistent with variation of systemic blood 

pressure [4] and is known as a more coarse method in regu-
lating blood flow [5].

Ischemic stroke severely interrupts both the physical and 
molecular signaling aspects of the NVU, so that it is either 
entirely lost in some regions or merely dysfunctional in 
other regions. As a part of NVU, BBB is a dynamic regula-
tory boundary that regulates the exchange of ions and other 
molecules and prevents the uncontrolled exchange of bac-
teria, viruses, toxins, and cells between the blood and CNS. 
The loss of BBB integrity induces the injury of paracellular 
permeability following stroke, t, and leads to hemorrhagic 
transformation, vasogenic edema, and increased mortality. 
Moreover, BBB breakdown following ischemic stroke is 
the most important factor that limits the therapeutic time 
window of thrombolytic agent recombinant tissue plasmi-
nogen activator (rtPA) [6–8]. Microglia and astrocytes are 
activated after cerebral ischemia and release the chemokines, 
cytokines, matrix metalloproteinases (MMPs), etc. These 
inflammatory mediators from activated microglia and astro-
cytes are shown as important factors in the BBB breakdown 
[9].
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In this review, we highlighted the current knowledge 
about the effects of ischemic stroke on the BBB break-
down. We particularly focused on the vital and dual roles 
of glial cells on the BBB breakdown after ischemic stroke 
and revealed the phenotypic transformation of microglia and 
astrocytes as well as the intercellular communication within 
astrocytes and microglia.

BBB Injury Following Ischemic Stroke

Structure and Function of BBB

BBB, a part of NVU, is formed by ECs, neuronal cells, glial 
cells, and pericytes. The pericytes are embedded in the base-
ment membrane of capillary vessel. Innermost luminal side 
of the BBB is constituted by continuous non-fenestrated 
ECs, which are sealed by tight junctions (TJs) [10]. The 
close interaction among the astrocytes, microglia, ECs, peri-
cytes, and neurons is indispensable for the integrity of BBB 
[11]. Cerebral ECs have unique characteristics distinguished 
from peripheral ECs, for instance, cerebral ECs form a con-
tinuous monolayer without fenestrations characterized by 
specified TJs and a low transcytosis rate [12, 13]. TJ and 
adherens junctions constitute a circumferential zipper-like 
seal between adjacent ECs; this action ensures they act as a 
gatekeeper for limiting paracellular permeability [14]. TJs 

contain three transmembrane proteins: occludin, claudins, 
and junction adhesion molecules (JAMs) [15, 16]. Adherens 
junctions encompass vascular endothelial (VE)-cadherin and 
transmembrane proteins, with extracellular segments homo-
philic interacting and cytoplasmic domains binding to the 
plaque proteins [17].

BBB is an anatomical and tightly regulated interface 
between the CNS and circulating blood [18] (Fig. 1). Only 
gaseous molecules (e.g.,  N2,  CO2, and  O2) and small lipo-
philic molecules (< 400 kD) can enter the cerebral paren-
chyma due to the low permeability of the BBB; the delivery 
of macromolecules from blood into the cerebral parenchyma 
is severely limited [18]. In order to meet the high-energy 
demands of neuronal activity, BBB is also tightly regulated 
and efficient transport barrier for enabling the delivery of 
essential nutrients to the CNS. Besides, there are much 
higher numbers of mitochondria, receptors, transporters, 
ion channels, and active efflux pumps in cerebral ECs than 
peripheral ECs [19], all of which ensure that cerebral ECs 
can selectively regulate molecular transport between the 
brain and blood [20]. In addition, BBB is an immunologic 
barrier for it can block various leukocytes entering from 
blood into the CNS and inhibit the infiltration of CNS-spe-
cific antigens into the peripheral immune system. As a result, 
BBB hinders many toxic compounds and pathogens enter-
ing into the CNS [21]. Therefore, BBB plays a key role in 
maintaining homeostasis in the neuronal microenvironment.

Fig. 1  Diagram illustration of 
the BBB. BBB is formed by 
brain microvascular endothelial 
cells (ECs), pericytes, astro-
cytes, neurons, perivascular 
microglia, and basal lamina
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Moreover, BBB is a continuous endothelial membrane 
within brain microvessels that have sealed cell-to-cell 
contacts and are sheathed by perivascular astrocyte end-
feet and mural vascular cells [22]. Abluminal EC surface 
is almost surrounded by perivascular astrocytic endfeet 
[23]. Gap junctions, presented in the astrocyte endfeet 
that enwrap the blood vessel walls, mediate intercellular 
communication between astrocytes [24]. Astrocyte-
released sonic hedgehog (Shh), the most widely studied 
molecule, acts on EC hedgehog (Hh) receptors and then 
regulates TJ formation and BBB permeability [25]. Other 
chemical mediators released from astrocytes, containing 
prostaglandins, nitric oxide (NO), glial cell-derived 
neurotrophic factor (GDNF), and arachidonic acid, likewise 
regulate TJs [26]. Thus, as the most abundant glial cells in 
the brain, astrocytes not only participate in regulating the 
cerebral blood flow but also adjusting the BBB permeability 
[27].

The extravasation of peripheral immune cells into CNS 
is dependent on adhesion molecules, including intercellular 
cell adhesion molecule-1 (ICAM-1) and vascular cell adhe-
sion molecule-1 (VCAM-1), which are expressed in ECs 
and pericytes at extremely low levels [28]. ECs can inhibit 
the expression of pro-inflammatory genes and quiesce cir-
culating leukocytes under normal physiological conditions 
[18]. Therefore, the BBB directly regulates immune reac-
tions rather than acts as a neutral and passive barrier within 
the CNS, as well as can modulate the function and fate of 
infiltrating immune cells under physiological condition 
[29]. Under systemic inflammatory conditions, excessive 
immune responses injure TJs and ECs and then induce the 
BBB breakdown [30].

BBB Breakdown Following Ischemic Stroke

BBB breakdown following ischemic stroke results in infiltra-
tion and accumulation of molecules and peripheral immune 
cells entering into brain parenchyma. Hence, cerebral 
ischemia insults rapidly induce cerebral edema, containing 
cytotoxic edema and vasogenic edema. Cytotoxic edema is 
resulted by the excess accumulation of fluid in the intracel-
lular space and occurs minutes after ischemia onset. The 
vasogenic edema appears after cytotoxic edema and is in 
particular related to BBB breakdown [31, 32]. In addition to 
brain edema, BBB disruption likewise induces tissue dam-
age, neuronal inflammation, and dysfunction [33]. During 
the first 3 h after ischemic stroke, BBB disruption in patients 
can be identified by magnetic resonance imaging (MRI) due 
to the development of vasogenic edema [34]. Consistently, 
researchers have reported that cerebral edema forms in the 
first few hours after ischemia onset based on animal models 
[35].

BBB dysfunction likewise contributes to the tPA 
treatment-induced hemorrhagic transformation and the 
increased mortality after ischemic stroke. For instance, 
researchers have revealed that tPA-associated hemor-
rhagic transformation often occurred as a result of the 
catastrophic breakdown of the BBB [36]. Li et al. also 
demonstrated that BBB breakdown was correlated with 
intracerebral hemorrhage following tPA thrombolysis [37]. 
Furthermore, it is well accepted that BBB dysfunction 
contributes to the infiltration and accumulation of mol-
ecules and peripheral immune cells into brain parenchyma 
following stroke and then induces the injury progression 
[38, 39].

The potential mechanism and vital factors involved in 
BBB breakdown have attracted the attention of more and 
more researchers. Recent study has revealed that within 
the first few hours after ischemia, microglial cells are 
activated and then release pro-inflammatory cytokines, 
containing interleukin (IL)-1 and IL-6. Besides, the 
activated microglia likewise promote the expression of 
ICAM-1, P-selectin, and E-selectin. These molecules 
further promote the adherence and accumulation of 
leukocytes and enable the leukocytes to migrate across the 
blood vessels. This action induces inflammatory cascades 
and BBB breakdown [40] and further exaggerates the 
cerebral infarction [41].

BBB Breakdown and Basement Membrane

The basement membrane is a sheet-like extracellular matrix 
(ECM) complex beneath epithelium and endothelium and 
encircles the abluminal side of blood vessels at the BBB. 
Brain basement membrane contains collagen IV, laminin, 
nidogen, and heparan sulfate proteoglycans. Collagen IV is 
the most abundant component of the basement membrane 
[42]. Basement membrane displays substantial changes 
during the ischemic stroke onset. Loss and degradation 
of basement membrane have been found to occur soon 
after ischemia [43]. In addition, the extravasation of blood 
constituents to the brain tissues through BBB breakdown 
is highly correlated with loss of basement membrane 
[44]. Thus, maintaining basement membrane integrity is 
a key challenge to prevent brain damage and hemorrhagic 
complications following ischemic stroke [45]. High 
content of local matrix metalloproteinase-9 (MMP-9) is 
closely related to basal lamina collagen IV degradation and 
BBB breakdown, which results in neutrophil infiltration in 
the infarcted and hemorrhagic areas [46]. Furthermore, 
MMP-9 plays aggravated effect in tPA-associated BBB 
disruption [47].
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The Role of Glial Cells in BBB Injury 
Following Ischemic Stroke (Fig. 2)

Astrocyte

Accumulating research have revealed the prominent posi-
tion and role of astrocytes in the NVU, such as providing 
neurotrophic support and regulating synaptic activity [48]. 
Astrocytes provide a cellular link among blood vessels and 
the neuronal circuitry in the NVU [49, 50]. For instance, 
astrocytes extend their foot process to wrap around neuronal 
synapses [51]. Astrocytes take up the neurotransmitters at 
the cleft to temporally and spatially refine synaptic signaling 
at the synapses, thereby regulating the information transfer 
between neurons [52]. Besides, astrocytes likewise provide 
structural and nutritional support for neurons, modulate the 
cerebral blood flow, and regulate the function of BBB in 
response to the neuronal activity [53].

However, astrocytes become hyperactive and then induce 
the formation of glial scars under pathological conditions 
such as cerebral ischemia and mechanical injury. Astrocyte 
undergoes molecular, morphological, and functional remod-
eling in response to CNS injury and is named as reactive 
astrocytes, which is considered as the major contributor to 
the pathological process of ischemic stroke [54]. Accumulat-
ing studies have suggested that astrocytes played a vital role 
in immune responses after ischemic stroke. The activation of 
astrocytes during acute ischemic stroke can be identified by 
the upregulated expression of glial fibrillary acidic protein 
(GFAP), which is widespread and long-lasting. Astrocyte 
activation following ischemic stroke can be induced by vari-
ous factors, including hypoxia, blood vessel disruption, neu-
rotransmitters released from neighboring neurons, cell death, 

cytokines IL-1 and IL-6, ciliary neurotrophic factor (CNTF), 
transforming growth factor (TGF)-α, and kallikrein-related 
peptidase 6 (KLK6). Importantly, activation of astrocyte 
following ischemic stroke can further release various pro-
inflammatory mediators, containing tumor necrosis factor 
(TNF)-α, IL-1α, IL-1β, IL-6, interferon-gamma (IFN-γ), 
and reactive oxygen species (ROS)/reactive nitrogen spe-
cies (RNS) [55].

Increasing findings have demonstrated the dualistic 
effects of astrocytes following ischemic stroke. For exam-
ple, transcriptomics has revealed a fundamental discovery: 
astrocytes are diverse and specialized in the healthy brain 
to perform specific roles in distinct CNS circuits [56]. Like-
wise, reactive astrocytes are also diverse, and it is proposed 
that reactive astrocytes have two polarization states: neuro-
toxic (pro-inflammatory) and neuroprotection (anti-inflam-
matory). The polarization of pro-inflammatory astrocytes is 
induced by pro-inflammatory factors, including TNF-α and 
IL-1α, and can be characterized by the expression of C3 and 
inducible nitric oxide synthase (iNOS). Anti-inflammatory 
astrocytes, known as neuroprotective subtype, can be identi-
fied by testing the expression of S100A10 and pentraxin-3 
(PTX3) and the neurotrophic factors, containing IL-2, IL-10, 
and TGF-β [57].

On one hand, pro-inflammatory astrocytes directly exert 
detrimental effects on the BBB integrity via increasing the 
expression of vascular endothelial growth factor (VEGF), 
chemokines (CCL2 and CCL5), cytokines (TNF-α, IL-1β, 
IL-6, and IL-15), ROS, MMP, and lipocalin-2 (LCN-2). 
Astrocyte-produced VEGF reduces the TJs expression in 
ECs, which exacerbates the BBB damage and the neuro-
logical deficits [58]. Polymerase δ-interacting protein 2 
(Poldip2) is likewise upregulated in astrocytes after stroke, 
which can cause the damaged BBB integrity by upregulating 
the expression of MCP-1, VEGF, TNF-α, IL-6, and MMP 

Fig. 2  The relationship among 
BBB disruption and glial cells 
after ischemic stroke. Activation 
of microglia and astrocytes after 
ischemia induces the incre-
ment of cytokines, chemokines, 
VCAM-1, and ICAM-1 in 
ischemic brain tissue. These 
inflammatory mediators result 
in the BBB breakdown, which 
leads to edema and neuroin-
flammation. In pathological 
condition, OPCs often fail to 
differentiate into mature oligo-
dendrocytes
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[59]. On the other hand, astrocytes also produce soluble 
factors that recruit peripheral immune cells via upregulat-
ing the expression of ICAM-1 and VCAM-1 in ECs and 
activate microglia, which in turn indirectly accelerates the 
inflammation-induced BBB disruption [60].

In contrast, anti-inflammatory astrocytes have been 
found to promote BBB repair via resolving inflammation. 
For example, anti-inflammatory (S100A-positive) astro-
cytes accelerate inflammation resolution via secreting IL-2, 
IL-10, and TGF-β. Astrocyte-released PTX3 attenuates 
IgG staining in ischemic brain tissue through restraining 
the expression of VEGF [61]. Insulin-like growth factor-1 
(IGF-1) released from astrocyte protects BBB integrity and 
ameliorates neurological function following stoke via shift-
ing immune cells toward an anti-inflammatory profile in 
the ischemic area [62]. Furthermore, astrocytes can restrain 
overactivation of microglia by promoting the expression of 
C-X3-C Motif Chemokine Ligand 1 (CX3CR1) receptor and 
interleukin 4 receptor-α (IL-4Rα) in microglia [63]. Impor-
tantly, neuroprotective astrocyte was found to surpass the 
transcripts of neurotoxic astrocytes 3 days after ischemic 
stroke. Expressed genes in neuroprotective astrocytes are 
associated with regulation of ECM integrity and scar forma-
tion, which is known as astrogliosis. Astrogliosis restrains 
the immune reaction within the infarct region and inhibits 
the migration of infiltrating immune cells [64].

Surprisingly, accumulating studies have revealed that, 
under pathological situations, reactive astrocytes obtain the 
ability to engulf injured cells and degrade cellular debris 
in the penumbra; this action assists with the resolution 
of inflammation. Besides, the researchers revealed that 
the phagocytotic activity of astrocytes starts 3 days after 
ischemic stroke onset [65]. Further study has demonstrated 
that neuroprotective (S100a10-positive) astrocytes possess 
the phagocytotic activity and protect against the brain injury 
through phagocytosis of apoptotic neurons [66]. Therefore, 
promoting the astrocytic polarization to the neuroprotective 

(S100a10-positive) phenotype significantly mitigates the 
BBB permeabilization and accelerates the stroke recovery 
[67] (Fig. 3).

Microglia

Microglia are the primary immune cells and account for 
5–15% of all cells in the human brain. Besides, microglia 
are important partners of the NVU [68, 69] and are derived 
from the yolk sac and seeded in the brain in the early devel-
opment of CNS, which are known as the first glial cells. 
Both microglia and neurons develop concurrently into highly 
plastic cells with mobility [70–72]. Under physiological 
condition, microglia continuously survey their surrounding 
environment in the CNS. Therefore, microglia are always the 
“pioneers” in the NVU. Microglial cells wander more obser-
vantly and detect their environment via scattering throughout 
the brain as sentinels [73]. While in the pathological status, 
microglia always first respond to the brain insults [9, 74, 75].

As the first activated innate immune cells, microglia can 
be activated within minutes after tissue damage onset [76]. 
Activated microglia acquire the ability of phagocytosis and 
can secrete numerous inflammation factors, with the mor-
phological changes from the ramification to an amoeboid 
shape [77]. The dichotomies of activated microglia, such as 
‘‘M1 versus M2″ and “resting versus activated,” have been 
defined in accumulating studies. Intermediate phenotypes of 
microglia display with diverse combination of polarization 
markers ranging; these intermediate phenotypes represent 
the crossroads of various pro-and anti-inflammatory effects 
[78–80]. Thus, the supposed dichotomy, M1 and M2, hardly 
reflects a wide range of microglial phenotypes. However, 
this dichotomy of activated microglia facilitates understand-
ing the state and function of microglia in various CNS dis-
orders [81].

The neurotoxic (pro-inflammatory) microglia, known 
as “M1-like” phenotype previously, can be determined 

Fig. 3  The dual roles of micro-
glia and astrocytes on the BBB 
injury following ischemic stroke
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by testing the expression of CD32, CD16, CD11b, CD68, 
CD86, iNOS, etc. [82]. The characteristics of activated 
microglia and switch of phenotypes were determined by 
local extracellular and intracellular signals. Besides, the 
polarization of neurotoxic microglia is considered to be 
destructive to NVU [83] and BBB dysfunction [84] and 
can be characterized by increased inflammatory mediators, 
including TNF-α, IL-1β, and ROS [85]. Neuroprotective 
microglia, formerly known as “M2-like” microglia, are 
characterized by upregulation of anti-inflammatory media-
tors, containing TGF-β, IL-10, and glucocorticoids [85]. The 
transformation of neuroprotective microglia can be identified 
by testing the expression of arginase-1 (Arg-1) and CD206 
[86].

After cerebral ischemia, the number of microglia in the 
infarct core decreases immediately. However, the number 
of microglia in the penumbra increases within hours, peaks 
at 48–72 h after ischemic stroke, and persists in this region 
for several weeks [87]. In addition, another research has 
reported that microglia were activated by damage-associated 
molecular pattern (DAMP) within minutes in the peri-infarct 
area, and these activated microglia became round- or amoe-
boid-like in morphology within 12–24 h after experimental 
cerebral ischemia [88].

Besides, microglia begin migrating to the infarct core 
from the penumbra 1 day after stroke onset, and the migra-
tion of microglia is mediated by the annexin-1/casein 
kinase II pathway [89]. After morphological changes, the 
microglial functions and signaling pathways in microglia 
are differentiated between CD16-positive microglia versus 
CD206-positive subtype. Within 48 h after ischemic stroke 
onset, resident CD206-positive microglia shift to the CD16-
positive subtype in the peri-infarct region [90]. Neurotoxic 
(iNOS-positive) microglia activate the nuclear factor-kappa 
B (NF-κB) and promote the formation of NLRP3 inflammas-
ome and then induce the elevated levels of pro-inflammatory 
cytokines [91]. Inhibiting the polarization of neuroprotec-
tive (iNOS-positive) microglia can attenuate the cerebral 
ischemia/reperfusion (I/R)-induced BBB injury [92].

The polarization of neuroprotective (CD206-positive) 
microglia induced by IL-4, IL10, and VEGF begins several 
days after ischemic stroke [93]. The CD206-positive micro-
glia obtain the phagocytic ability, which is similar to the 
infiltrating macrophages [94]. The comparative analysis of 
monocyte-derived macrophage-specific and microglia-spe-
cific transcripts has revealed that microglia are more likely 
liable to transition to the neurotoxic (CD86/32/16-positive) 
subtype in response to stroke compared to infiltrating mac-
rophages [95].

Both IL-4 and IL-10 from neuroprotective microglia [96] 
could restrain IL-1β, IFN-g, and TNF-α expression in the 
ischemic brain but elevate the levels of anti-inflammatory 
factors by inhibiting the NF-κB pathway [97]. In addition, 

neuroprotective microglia likewise can produce the TGF-β 
[94], which can reduce the levels of TNF-α and monocyte 
chemoattractant protein-1 (MCP-1) by affecting the ALK5-
p-Smad2/3 signaling pathway [98]. IL-10 reduces the 
ICAM-1 and VCAM-1 expressions in ECs and limits the 
infiltration of immune cells into the brain [99]. Thus, IL-10 
and TGF-β are vital factors in maintaining the functional and 
structural integrity of the BBB following ischemic stroke. 
Promoting the polarization of neuroprotective (CD206-pos-
itive) microglia could accelerate the resolution of inflam-
mation, promote the BBB repair, and accelerate functional 
recovery (Fig. 3).

Oligodendrocyte

The component of the NVU likewise contains oligoden-
drocytes. The effect of oligodendrocyte on the NVU and 
BBB breakdown following brain injury came into focus 
[100–102]. Oligodendrocytes are supported by other cells 
in the NVU, and these cells collaborate in various processes, 
containing neurogenesis, angiogenesis, and oligodendrogen-
esis [103]. Oligodendrocytes are the myelin-producing cells 
in the CNS and are critical for function and survival of the 
axons [104]. The researchers have revealed the oligoden-
drocytes’ ability to preserve neurons during ischemic stroke 
with minimal glucose. Besides, as a member of NVU, oligo-
dendrocyte lineage cell also monitors the EC processes and 
BBB function [105, 106].

Strikingly, ECs can also control the various aspects of 
oligodendrocytes when they regulate the BBB function. 
For instance, cerebral EC-produced fibroblast growth fac-
tor (FGF) and brain-derived neurotrophic factor (BDNF) 
enable oligodendrocyte precursor cells (OPCs) to survive 
and increase the number of OPCs [107]. In addition, VEGF-
A secreted from cerebral endothelial cells has been found to 
promote OPC migration [108]. Studies have reported that 
BBB disruption is a key factor in the acute ischemic stroke-
induced pathological damage in white matter [109, 110]. Of 
note, loss of white matter integrity and microvascular dys-
function after acute ischemic stroke predict poor outcomes 
[111]. NG2-glia cells, known as OPCs, constitute the fifth 
major cell population in the CNS and possess the ability to 
promote remyelination of axons after ischemic injury [112].

The effects of NG2-glia cells on BBB integrity are incon-
sistent under physiological and pathological conditions. 
During CNS development, NG2-glia cells improve the BBB 
tightness through upregulating the expression of occludin 
and claudins (TJs) through activation of TGF-β signaling 
in ECs. Besides, NG2-glia cells can attach to cerebral ECs 
found in neonatal mouse brains via the basal lamina [108]. 
In a white matter damage model of prolonged cerebral 
hypoperfusion stress, NG2-glia cells can respond rapidly 
before BBB dysfunction via secreting MMP-9, which results 
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in neutrophil infiltration [113]. Moreover, NG2-glia cells are 
necessary for maintaining the microglial homeostasis [114] 
and possess the ability to differentiate into reactive astro-
cytes following permanent brain ischemia [115]. Therefore, 
we predict that NG2-glia cells may promote the repair of 
the BBB function via promoting the expression of occludin 
and claudins (TJs) in ECs during the recovery phase after 
ischemic stroke.

Crosstalk Among Glial Cells in BBB Injury 
(Fig. 4)

Crosstalk Between Astrocyte and Oligodendrocyte

Oligodendrocytes are highly vulnerable to ischemia [116]. 
The restrained maturation of OPCs to oligodendrocytes after 
ischemic stroke results in remyelination failure and then 
hampers the neurological recovery [117]. BBB breakdown 
following ischemic stroke tends to promote the leakage of 
brain auto-antigens, such as myelin oligodendrocyte glyco-
protein (MOG), myelin basic protein (MBP), and proteolipid 
protein (PLP), to the periphery. These auto-antigens in blood 
activate the immune system and promote the migration of 
activated immunocytes into the CNS and then exacerbate 
the brain injury [118].

Moreover, BBB disruption induces the changes of com-
position in the brain microenvironment and then results in 
the infiltration of blood proteins into the CNS. Under this 
condition, OPCs often fail to differentiate into mature oli-
godendrocytes, which hinders the remyelination and myelin 
repair [119]. Therefore, the maturation of OPCs is strongly 

associated with the perivascular condition, which becomes 
terrible for OPC maturation when increased BBB perme-
ability allows blood proteins to enter the brain. Thus, the 
contribution of blood-derived signals to OPC maturation is 
detrimental, but the mechanism is unclear.

Both astrocytes and microglia could promote the prolif-
eration and differentiation of OPCs through noncell auton-
omous means. Astrocytes can attach to oligodendrocytes 
through gap junctions and utilize Cx43 hemichannels to 
transfer ATP and other small molecules [120–122]. Gluta-
mate transporters in astrocytes expel glutamate by activating 
N-methyl-D-aspartatic acid (NMDA) and alpha-amino-3-hy-
droxy-5-methyl-4-isoxazole propionic acid receptors on the 
oligodendrocyte lineage cells in an ischemic environment, 
thereby preventing the differentiation of OPCs [123–126].

Moreover, in addition to the adverse effect of astrocytes 
on the OPC differentiation, astrocyte can significantly 
facilitate OPC differentiation via precluding the release of 
glutamate through blocking the Cx43 hemichannel [127]. 
Therefore, modulation of Cx43 may be key to enabling the 
damaged axons to myelinate and promote the generation of 
new oligodendrocytes. Astrocytes likewise produce benefi-
cial growth factors following brain damage that promote 
neuronal regenerative processes. For instance, astrocyte-
derived BDNF could promote the quantity of oligodendro-
cytes in white matter in a mouse model of cerebral hypop-
erfusion [128]. Additionally, pluripotent stem cells derived 
from astrocytes boost OPC maturation and release tropic 
factors that assist with oligodendrogenesis [129].

Furthermore, astrocytes can become reactive and 
re-acquire immature stem cell like properties under 
inflammatory conditions or following CNS injury [130]. 
These reactive astrocytes are mainly derived from static 

Fig. 4  The crosstalk between the glial cells
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astrocytes rather than endogenous glial precursor cells. 
Reactive astrocytes obtain the pluripotency, self-renewal, 
and display remarkable plasticity [131]. Accumulating 
studies have shown that these reactive astrocytes have stem 
cell properties and have multiple differentiation potentials 
[132]. Membrane-bound neuregulin-1 (Nrg1) is an essen-
tial factor for promoting differentiation and maturation 
of oligodendrocytes. Ding et al. have found that Nrg 1 
could induce reactive astrocytes to express oligodendro-
cyte markers O4 and PDGFR-α at both mRNA and protein 
levels, suggesting that Nrg1 could directly convert reactive 
astrocytes toward oligodendrocyte lineage cells and then 
promote the remyelination following CNS injury [133].

Further studies have demonstrated the dual roles of 
reactive astrocyte on the oligodendrocyte contribute to 
the phenotypic transformation. For instance, C3-positive 
(neurotoxic) astrocytes have inhibitory effects on oligo-
dendrogenesis and OPCs’ differentiation via releasing 
pro-inflammatory cytokines. In contrast, PTX3-positive 
(neuroprotective) astrocytes promote the oligodendro-
cytes maturation via releasing trophic factors, such as 
BDNF and VEGF, and produce the anti-inflammatory 
cytokines [134]. Similarly, transplantation of neuropro-
tective (S100a10-positive) astrocytes could improve motor 
recovery of spinal cord injury (SCI) via promoting the 
myelination. However, neurotoxic (C3-positive) astrocyte-
transplanted SCI mice showed a higher extent of disorgan-
ized structures of neurons and a lower number of myeli-
nated axons [135].

Crosstalk Between Microglia and Oligodendrocyte

Microglia might regulate the oligodendrocyte function and 
accelerate remyelination by eliminating defective myelin and 
apoptotic cells during diseased states [136]. Microglia can 
transform to the CD206/Arg-1-positive (neuroprotective) 
subtype from iNOS/IL-β-positive (neurotoxic) subtype dur-
ing the remyelination process. CD206/Arg-1-positive micro-
glia could promote the differentiation of oligodendrocytes 
both in vivo and in vitro [137]. For instance, the mecha-
nism of ethyl pyruvate-mediated differentiation of OPCs is 
found to be related to increasing the CD206-positive micro-
glia and decreasing CD16/32-positive microglia [138]. In 
addition, microglia can localize at the demyelinated region 
after axonal demyelination and utilize progenitor cells and 
neural stem cells to produce additional OPCs in the cor-
pus callosum [139]. Of note, activated microglia induced 
by lipopolysaccharide (LPS) could decrease the OPC gen-
eration through TLR4 signaling pathways [140]. Therefore, 
promoting the polarization of neuroprotective microglia 
could initiate remyelination and heal the ischemic stroke-
induced brain injury.

Crosstalk Between the Microglia and Astrocyte

Anti-inflammatory factors derived from neuroprotective 
microglia promote the transformation of astrocytes to the 
neuroprotective phenotype via reducing the expression of 
purinergic 2Y1 receptor (P2Y1R) in a brain trauma model 
[141], suggesting that neuroprotective astrocytes might also 
be induced by activated microglia in the acute ischemic 
stroke. The phenotypic transformation of astrocytes to neu-
rotoxic (pro-inflammatory) or neuroprotective (anti-inflam-
matory) following ischemic stroke is parallel to the activated 
microglia. In addition, both activated microglia and reac-
tive astrocytes play dual roles in BBB breakdown and brain 
injury after ischemic stroke. For instance, astrocytes accel-
erate BBB disruption by exacerbating inflammation injury 
and promoting the secretion of soluble factors. Transcrip-
tome analysis has revealed that genes involved in leukocyte 
transendothelial migration, inflammation, and JAK/STAT3 
signaling were up-regulated in reactive astrocytes [64].

The activation of toll-like receptor 4 (TLR4) and NF-κB 
pathway has been identified as the key molecules in mediat-
ing the activation of microglia and astrocytes [142]. Acti-
vation of NF-κB pathway initiates the neuroinflammation 
following ischemic stroke via promoting the expression 
and secretion of inflammation-related genes in astrocytes 
and microglia [143, 144]. Besides, the vital roles of TLR4 
and NF-κB in the activation of microglia and astrocytes 
were further confirmed by Liu et al. [9] using rat middle 
cerebral artery occlusion (MCAO)/reperfusion model. Fur-
thermore, accumulating studies have revealed that inhibit-
ing the expression of TLR4 and NF-κB activation obviously 
reduces neuroinflammation and ameliorates subsequent cer-
ebral ischemia injury [145, 146]. Another study verified that 
inhibiting the TLR4/NF-κB signaling pathway could protect 
against rat cerebral I/R injury [147].

In an astrocytes-microglia co-culture model of inflamma-
tion, the researchers have found that activation of microglial 
 P2Y6 receptors induced the release of nitric oxide (NO), 
which caused astrocyte apoptosis [148]. Besides, the acti-
vated microglia and astrocytes were found to be adjacent to 
each other in the penumbra, indicating the potential interac-
tion and “co-activation” between microglia and astrocytes. 
Importantly, the polarization of neurotoxic (pro-inflamma-
tory) astrocyte is found to be induced by IL-1α, TNF-α, 
and C1q, which are released by activated microglia [149, 
150]. Additionally, inhibiting the TLR4-mediated activa-
tion microglia could decrease the secretion of TNF-α and 
then restrain the NF-κB-induced activation of neurotoxic 
astrocyte and reduce the neuronal damage following cerebral 
ischemia [9].

As aforementioned, BBB disruption-induced brain 
edema, potentially leading to brain herniation and death, 
is a life-threatening consequence of stroke [151]. BBB 
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integrity is dependent on ECs and astrocytes and cell–cell 
junctions, containing adherens junctions, tight junctions, 
vascular endothelial (VE)-cadherin, claudin-5, and clau-
din-1 [152–154]. VE-cadherin is expressed in ECs and 
promotes junction stability via interacting with the actin 
cytoskeleton [153]. Claudin-1 is strongly expressed 
in leaky microvessels in brain after stroke, but rarely 
expressed in the normal BBB [152]. Additionally, AQP4 
is densely expressed in the astrocytic endfeet and medi-
ates water accumulation, which results in the cytotoxic 
edema and is associated with the stroke onset [154].

Activated microglia are strongly associated with the 
degradation of the BBB after cerebral ischemia. Acti-
vated microglia engulf blood vessels in the penumbra 
through extending cellular protrusions toward vessels, 
which results in the extravasation of macrophages from 
blood. Besides, microglia in peripheral vessels engulf the 
ECs, which induces the dysfunction of endothelium and 
BBB disintegration [155]. Activated microglia that have 
detrimental effect on BBB disruption have been identi-
fied as CD68-positive (neurotoxic) subtype, and they can 
produce pro-inflammatory factors, such as TNF-a, IFN-
g, CCL2, IL-1α, IL-1β, IL-6, VEGF, and MMP-9. The 
expressions of IL-1α and IL-1β are strongly upregulated 
in the ischemic brain tissues 6–24 h after stroke onset 
[156]. Removal of IL-1α or IL-1β could attenuate BBB 
disintegration and reduce brain injury in experimental 
stroke. IL-1α is a key mediator of the CXCL1 and IL-6 
expression in the ECs. Besides, IL-1α can induce the 
expression of AQP4 in astrocytes, which is known as a 
deteriorated factor of BBB and brain edema [157].

Furthermore, IL-1β from neurotoxic microglia like-
wise increases the degradation and relocation of occlu-
din and ZO-1 in ECs [158] and promotes the expression 
and release of VEGF from astrocytes [159]. Moreover, 
IL-1β could cause an incremental release of CCL2, 
CCL20, and CXCL2 and downregulate the expression and 
release of sonic hedgehog from astrocyte. Sonic hedge-
hog is known as an important signal in maintaining BBB 
integrity [160]. Furthermore, neurotoxic microglia-pro-
duced TNF-α induces downregulation of occluding and 
promotes the endothelial necroptosis via binding to TNF 
receptor 1 [83]. TNF-α could upregulate the expression 
of MMP-9 but decrease collagen IV expression in ECs; 
both of these actions obviously increase BBB perme-
ability in vitro [161]. Moreover, IL-1β, IL-6, IFN-g, and 
TNF-α increase the expression of ICAM-1 and VCAM-1 
in the ECs and then facilitate the infiltration of peripheral 
immune cells [162]. Therefore, inhibiting activation of 
microglia or blocking the release of detrimental cytokines 
after stroke may reduce the BBB breakdown.

Conclusion

It has become apparent that BBB is a mechanical and 
immunologic barrier between blood and CNS. BBB can 
block various leukocytes and proteins entering the CNS 
and inhibit the infiltration of CNS-specific antigens into 
the peripheral immune system. During the pathological 
process of ischemic stroke, brain edema, hemorrhagic 
transformation, and neuronal damage occur in close 
association with BBB breakdown. As reviewed in this 
article, microglia, astrocytes, and oligodendrocytes 
regulate BBB permeability under physiological state. 
After cerebral ischemia onset, the activation of astrocytes 
and microglia and the injured oligodendrocyte are deeply 
involved in BBB disruption. Importantly, both activated 
microglia and reactive astrocytes show the dual effects on 
BBB breakdown due to the phenotypic transformation. To 
better understand the roles of activated microglia, reactive 
astrocytes and oligodendrocyte on the BBB breakdown 
will provide more opportunities and insight to explore 
appropriate therapeutic interventions for ischemic brain 
injury. Moreover, in the pathological process of BBB 
disruption, there is a close relationship among microglia, 
astrocyte, and oligodendrocyte. Moving forward, more 
research will need to further explore the agents that can 
promote the phenotypic transformation of astrocytes and 
microglia to neuroprotective subtype.
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