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Abstract
Pyruvate kinase M2 (PKM2) is a key rate-limiting enzyme in glycolysis. It is well known that PKM2 plays a vital role in 
the proliferation of tumor cells. However, PKM2 can also exert its biological functions by mediating multiple signaling 
pathways in neurological diseases, such as Alzheimer’s disease (AD), cognitive dysfunction, ischemic stroke, post-stroke 
depression, cerebral small-vessel disease, hypoxic-ischemic encephalopathy, traumatic brain injury, spinal cord injury, 
Parkinson’s disease (PD), epilepsy, neuropathic pain, and autoimmune diseases. In these diseases, PKM2 can exert various 
biological functions, including regulation of glycolysis, inflammatory responses, apoptosis, proliferation of cells, oxidative 
stress, mitochondrial dysfunction, or pathological autoimmune responses. Moreover, the complexity of PKM2’s biological 
characteristics determines the diversity of its biological functions. However, the role of PKM2 is not entirely the same in dif-
ferent diseases or cells, which is related to its oligomerization, subcellular localization, and post-translational modifications. 
This article will focus on the biological characteristics of PKM2, the regulation of PKM2 expression, and the biological role 
of PKM2 in neurological diseases. With this review, we hope to have a better understanding of the molecular mechanisms 
of PKM2, which may help researchers develop therapeutic strategies in clinic.
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Abbreviations
PKM2  Pyruvate kinase M2
AD   Alzheimer’s disease
PD  Parkinson’s disease
PK  Pyruvate kinase
PEP  Phosphoenolpyruvate
ADP  Adenosine diphosphate
ATP  Adenosine triphosphate
HIF-1α  Hypoxia-inducible factor 1α
HRE  Hypoxia response element
PI3K  Phosphoinositide 3-kinase
mTOR  Mammalian target of rapamycin
AMPK  AMP-activated protein kinase
PTEN  Phosphatase and tensin homolog
EGFR  Epidermal growth factor receptor
PKC  Protein kinase C

NF-κB  Nuclear factor kappa enhancer bind-
ing protein

PPAR-γ  Peroxisome proliferator-activated 
receptor γ

mTORC2  Mammalian target of rapamycin com-
plex 2

AKT  Protein kinase B
APJ  Angiotensin II receptor-like 1
SRSF3  Arginine rich splicing factor 3
PTBP1  Polypyrimidine tract binding protein 1
hnRNPA1/A2  Heterogeneous nuclear ribonucleo-

protein A1/A2
circRNA  Circular RNAs
circSRRM4  CircRNA serine/arginine repetitive 

matrix 4
miRNAs  MicroRNAs
miR-124  MicroRNA-124
RBM4  RNA-binding motif 4
PHB2  Prohibitin 2
lncRNAs  Long non-coding RNAs
LINC00689  LncRNA long intergenic non-protein 

coding RNA 689
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ceRNA  Competing endogenous RNA
circMAT2B  Circular RNA MAT2B
Mbd2  Methyl-CpG binding domain protein 2
PPP  Pentose phosphate pathway
FBP  Fructose-1,6-bisphosphate
PHD3  Prolyl hydroxylase 3
GLUT1  Glucose transporter 1
LDHA  Lactate dehydrogenase A
PDK1  Pyruvate dehydrogenase kinase 1
iNs  Induced neurons
LDH5  Lactate dehydrogenase isoform 5
MCTs  Monocarboxylate transporters
NMDA  N-methyl-D-aspartate
NMDAR  NMDA receptor
ERK1/2  Extracellular signal-regulated protein 

kinases 1 and 2
Bcl-2  B-cell lymphoma 2
Bax  Bcl2-associated X
CDKs  Cyclin-dependent kinases
STAT3  Signal transducers and activators of 

transcription 3
6-OHDA  6-Hydroxydopamine
LPS  Lipopolysaccharide
Wnt  Wingless/integrated
GCI  Global cerebral ischemia
5′ Tyr-tRF  5′ TRNA fragments derived from 

tyrosine pre-tRNA
CCND1  Cyclin D1
HDACs  Histone deacetylases
MAPK  Mitogen-activated protein kinase
SCI  Spinal cord injury
TCF4  T-cell factor 4
FAK  Focal adhesion kinase
VEGF  Vascular epithelial growth factor
VCP  Valosin-containing protein
TLRs  Toll-like receptors
Pyk2  Proline-rich tyrosine kinase 2
PGC-1α  Peroxisome proliferator-activated 

receptor-γ co-activator 1-α
HMGB1  High-mobility group box 1
NLRP3  NLR family, pyrin domain containing 3
AIM2  Absent in melanoma 2
EIF2AK2 or PKR  Eukaryotic translation initiation factor 

2 alpha kinase 2
iNOS  Inducible nitric oxide synthase
COX-2  Cyclooxygenase-2
MyD88  Myeloid differentiation factor 88
TRAF6  TNF receptor-associated factor 6
NOX4  NADPH oxidase 4
IFN-γ  Interferon-γ
ROS  Reactive oxygen species
ATF2  Activation transcription factor 2
H3  Histone 3

C1q  Complement component 1q
TNF  Tumor necrosis factor
IL  Interleukin
C3  Complement component 3
C3aR  C3a receptors
RA  Rheumatoid arthritis
Th17  Helper T cells 17
DCs  Dendritic cells
JNK  C-Jun N-terminal kinase
mDCs  Myeloid dendritic cells
RNS  Reactive nitrogen species
NADPH  Nicotinamide adenine dinucleotide 

phosphate hydride
GSH  Reduced glutathione
Nrf2  Nuclear factor-erythroid-2-related 

factor 2
GPX4  Glutathione peroxidase 4
Gclc  The catalyzing subunit of glutamate-

cysteine ligase
Gclm  The modifying subunit of glutamate-

cysteine ligase
NQO1  NADPH quinone oxidoreductase 1
TrxR1  Thioredoxin reductase 1
Trx  Thioredoxin
NAD +   Nicotinamide adenine dinucleotide
NADH  Reduced nicotinamide adenine 

dinucleotide
UPR  Unfolded protein response
ARE  Antioxidant response element
Drp1  Dynamin-related protein 1
Mfn2  Mitochondrial fusion protein 2
MMP  Mitochondrial membrane potential
OPA1  Optic atrophy 1
PP1  Protein phosphatase 1
FUNDC1  FUN14 domain-containing 1
Aβ  Amyloid β-peptide
APH1  Aph-1 homolog
NCT  Nicastrin
IFITM3  Interferon-induced transmembrane 

protein 3
NPSLE  Neuropsychiatric systemic lupus 

erythematosus
MCI  Mild cognitive impairment
BDNF  Brain-derived neurotrophic factor
PSD  Post-stroke depression

Introduction

Pyruvate kinase (PK), as the key enzymes in regulating the 
final rate-limiting step of glycolysis, catalyzes the transfer 
of phosphate groups from phosphoenolpyruvate (PEP) to 
adenosine diphosphate (ADP) to produce pyruvate and 
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adenosine triphosphate (ATP) [1, 2]. PK is composed of 
four isoenzymes encoded by two different genes (PKLR 
and PKM) in mammals [3], namely PKM1, PKM2, PKL, 
and PKR [4]. Among them, PKM2 is a key rate-limiting 
enzyme of glycolysis and a key regulator of tumor metabo-
lism [1]. It has been shown to be overexpressed in various 
cancers and promote the proliferation and metastasis of 
tumor cells [1]. However, the capabilities of PKM2 are 
not limited to this. There is growing evidence that PKM2 
also plays important roles in neurological diseases [5, 6]. 
Furthermore, PKM2 has multiple biological roles in addi-
tion to its abilities to regulate glycolysis and cell prolifera-
tion. And the enzymatic activity of PKM2 is complexly 
regulated by multiple signaling pathways, allowing cells 
to adapt to different physiological states [7].

In this review, we will introduce the biological charac-
teristics of PKM2 and the regulation of PKM2 expression 
in non-neoplastic diseases, as well as its biological roles 
by mediating multiple signaling pathways, and focuses on 
the role of PKM2 in multiple signaling pathways related 
to neurological diseases. A better understanding of these 
contents has important implications for the treatment of 
neurological diseases in which PKM2 is involved.

The Biological Characteristics of PKM2

Studies have shown that the PKM gene produces a pre-
mRNA product that is alternatively spliced to produce two 
different subtypes, PKM1 mRNA and PKM2 mRNA [8, 
9]. The difference between the mRNA encoding PKM1 
and PKM2 lies only in exon 9 containing PKM1 informa-
tion or exon 10 containing PKM2 information [10, 11]. 
PKM1 is expressed in most adult tissues with high cata-
bolic needs, such as muscles and brain [12]. However, 
PKM2 is present in all tissues of the embryonic stage and 
is gradually replaced by other isoenzyme forms in specific 
tissues during development [13]. Studies have shown that 
PKM2 is also expressed in other cells or tissues in addi-
tion to embryonic tissue, such as cancerous tissue, myo-
cardium, liver, brain, stem cells, endothelial cells, mono-
cytes, macrophages, T cells, and platelets [12, 14–19]. 
Notably, PKM1 is the most abundantly expressed subtype 
in nerve cells under normal conditions, while PKM2 is less 
expressed, mainly in proliferating cells, especially embry-
onic cells and neural progenitor cells of the hippocampus, 
cerebellum, and subventricular region [9, 20]. Studies 
have also shown that PKM1 is specifically expressed in 
neurons, while PKM2 is expressed in astrocytes and other 
glial cells in the nervous system [5, 6].

Functions of PKM2 are heavily regulated by multi-
ple mechanisms, such as endogenous allosteric effectors 

and intracellular signaling pathways [21], and are largely 
dependent on its oligomerization, subcellular localization, 
and post-translational modifications [2, 22–24]. Post-trans-
lational modifications include phosphorylation, methylation, 
acetylation, oxidation, hydroxylation, lactylation, succinyla-
tion, and glycination [24, 25]. Oligomers of PKM2 mainly 
exist in high activity tetramer and low activity dimer/mono-
mer forms [26, 27]. The increase in lactylation of PKM2 
at K62 inhibits its tetramer-to-dimer transition, which 
promotes its pyruvate kinase activity and reduces nuclear 
distribution [24]. However, the phosphorylation, acetyla-
tion, sulfinylation, succinylation, and oxidation of PKM2 
promote its conformational transformation from tetramers 
to dimers [28–31]. The oligomers of PKM2 are present in 
the cytoplasm in the tetramer forms and exhibit pyruvate 
kinase activity (metabolic enzyme activity) [32, 33]. PKM2 
is localized in the nucleus and induced by various mecha-
nisms to exert protein kinase activity [34]. PKM2 can also 
translocate to the nucleus through its dimer forms, regulating 
the transcription and expression of downstream genes [1, 
27]. Furthermore, PKM2 nuclear translocation is thought 
to depend on various complex protein–protein interactions 
[22]. PKM2 dimers dominate in cancer cells and play an 
integral role in cancer metabolism [22]. Therefore, the diver-
sity of PKM2’s biological roles is determined by the com-
plexity of its biological characteristics.

Common Signaling Pathways that Regulate 
PKM2 Expression

The gene for the PKM2 protein is PKM [8, 9]. The synergis-
tic effect of PKM transcription and the alternative splicing 
of the pre-mRNA lead to PKM2 protein expression [35]. 
The transcription of PKM and the alternative splicing of its 
pre-mRNA are regulated by multiple signaling pathways.

Hypoxia-inducible factor 1α (HIF-1α) is a common tran-
scription factor that regulates PKM gene transcription. One 
study has shown that HIF-1α expression is upregulated in 
microglia after cerebral ischemia [32]. Moreover, under 
hypoxic conditions, prolyl hydroxylation of HIF-1α being 
inhibited, which leads to proteasome degradation of HIF-1α 
being inhibited, thereby stabilizing and activating HIF-1α 
protein [36]. HIF-1α dimerizes with HIF-1β and recruits the 
hypoxia response element (HRE) site of the PKM gene in 
the nucleus, thereby activating the transcription of the PKM 
gene [32, 34]. And the resulting HIF-1α-PKM2 complex can 
enhance PKM2 nuclear translocation in the dimer form [32]. 
In turn, PKM2 can interact directly with the HIF-1α subu-
nit and promote transactivation of HIF-1 target genes [34]. 
The interaction between HIF-1α and PKM2 forms a positive 
feedback loop [34]. In addition, activation of the phospho-
inositide 3-kinase (PI3K)/mammalian target of rapamycin 
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(mTOR) signaling pathway upregulates HIF-1α-mediated 
PKM gene transcription [37, 38]. The AMP-activated protein 
kinase (AMPK)/mTOR signaling pathway can also promote 
HIF-1α protein expression, thereby upregulating PKM2 pro-
tein levels [39]. This signaling pathway links the regulation 
of PKM2 to hypoxia-ischemic conditions [40]. However, 
increased expression of phosphatase and tensin homolog 
(PTEN) can inhibit mTOR activation, thereby reducing the 
expression of PKM2 [41] (Fig. 1).

Furthermore, activation of the epidermal growth factor 
receptor (EGFR) mediates upregulation of protein kinase 
C (PKC) and nuclear factor kappa enhancer binding pro-
tein (NF-κB)-dependent PKM2 expression [35]. Among 

them, the activation of NF-κB can bind to GCG ACT TTCC 
in the PKM gene promoter and activate its transcription 
[35]. NF-κB activation can also increase the expression of 
PKM2 by inducing HIF-1α expression [42]. In addition, 
the nucleus pluripotent factor Oct4 binds to the region 
of the PKM gene and directly controls the expression of 
PKM2 in embryonic stem cells [43]. Peroxisome prolifer-
ator-activated receptor γ (PPAR-γ) is a nuclear hormone 
receptor that specifically transcribes and regulates the 
expression of PKM2 [40, 44, 45]. Research has shown 
that the Sin1 (the basic component of mTORC2)/mam-
malian target of rapamycin complex 2 (mTORC2)/protein 
kinase B (AKT)-dependent PPAR-γ nuclear translocation 

Fig. 1  PKM2 expression and common signaling pathways for regu-
lation of PKM2 expression. The pre-mRNA transcribed by the 
PKM gene is spliced by alternative splicing factors, such as PTBP1, 
hnRNPA1/A2, or SRSF3, to produce PKM2 mRNA. Due to the 
presence of post-translational modifications, oligomers of PKM2 
mainly exist in tetramer and dimer/monomer forms. Signaling path-
ways, such as PI3K/AKT/mTOR/HIF-1α, AMPK/mTOR/HIF-1α, 
PTEN/mTOR/HIF-1α, EGFR/NF-κB/HIF-1α, EGFR/NF-κB, Sin1/
mTORC2/AKT/PPAR-γ, Apelin-13/APJ, or Oct4, can regulate 
expression of the PKM gene. MiR-146a-5p interferes with transla-
tion of HIF-1α mRNA. CircSRRM4 can bind SRSF3 and inhibit its 
ubiquitination. The Mbd2/c-Myc and estradiol-17β/c-Myc pathways 
regulate the expression of hnRNPA1/A2. MiR-290/371 blocks the 
inhibition of c-Myc transcription by Mbd2. MiR-369 facilitates the 
translation of hnRNP mRNA. However, PHB2 directly inhibits the 
splicing effect of hnRNPA1/A2. MiR-124 interferes with transla-
tion of PTBP1 mRNA. RBM4 inhibits the splicing effect of PTBP1. 
MiR-143 and miR-338-3p interfere with translation of PKM2 mRNA. 

CircMAT2B and LINC00689 block the interference effect of miR-
338-3p. However, miR-155-5p and miR-19a-3p can facilitate the 
translation of PKM2 mRNA. HIF-1α, hypoxia-inducible factor 1α; 
HRE, hypoxia response element; PI3K, phosphoinositide 3-kinase; 
mTOR, mammalian target of rapamycin; AMPK, AMP-activated 
protein kinase; PTEN, phosphatase and tensin homolog; EGFR, epi-
dermal growth factor receptor; NF-κB, nuclear factor kappa enhancer 
binding protein; PPAR-γ, peroxisome proliferator-activated recep-
tor γ; mTORC2, mammalian target of rapamycin complex 2; AKT, 
protein kinase B; APJ, angiotensin II receptor-like 1; SRSF3, arginine 
rich splicing factor 3; PTBP1, polypyrimidine tract binding protein 
1; hnRNPA1/A2, heterogeneous nuclear ribonucleoprotein A1/A2; 
circSRRM4, circRNA serine/arginine repetitive matrix 4; miR-124, 
microRNA-124; RBM4, RNA-binding motif 4; PHB2, prohibitin 2; 
LINC00689, lncRNA long intergenic non-protein coding RNA 689; 
circMAT2B, circular RNA MAT2B; Mbd2, methyl-CpG binding 
domain protein 2
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can mediate the expression of PKM2 in thymic cells [46]. 
In addition, apelin is an endogenous ligand of angiotensin 
II receptor-like 1 (APJ), a G protein-coupled receptor, and 
both apelin and APJ receptors are distributed in vascu-
lar smooth muscle cells [47]. Apelin-13 promotes PKM2 
expression in human aortic vascular smooth muscle cells 
in a dose- and time-dependent manner [47] (Fig. 1).

After the PKM gene transcription into the pre-mRNA, 
the alternative splicing of the pre-mRNA is regulated by 
several alternative splicing factors. Studies have shown that 
overexpression of alternative splicing factors, such as serine 
and arginine rich splicing factor 3 (SRSF3), polypyrimidine 
tract binding protein 1 (PTBP1), and heterogeneous nuclear 
ribonucleoprotein A1/A2 (hnRNPA1/A2), can reduce the 
ratio of PKM1 to PKM2, which contributes to glycolysis-
dominated metabolism [8, 48–52]. Among them, SRSF3 
collaborates with PTBP1 or hnRNPA1 to participate in the 
splicing of PKM mRNA [48] (Fig. 1).

One study found that the circular RNA (circRNA) serine/
arginine repetitive matrix 4 (circSRRM4) can bind SRSF3 
and inhibit its ubiquitination in epilepsy models, improving 
SRSF3-mediated the alternative splicing of PKM, thereby 
stimulating glycolysis in cells [51]. In addition, microRNAs 
(miRNAs) are small non-coding RNAs that regulate genes 
expression by targeting mRNAs [53]. MicroRNA-124 (miR-
124) controls alternative splicing of PKM1 and PKM2 by 
regulating the expression of PTBP1 in pulmonary hyper-
tension [52]. Moreover, the downregulation of miR-124 is 
responsible for the increase in PTBP1 expression, resulting 
in an increase in the ratio of PKM2 to PKM1, which can 
promote glycolysis and cell proliferation even under aerobic 
environment [52, 54]. In addition, EGFR activation can also 
stimulate the expression of PTBP1 [35]. However, the splic-
ing regulator RNA-binding motif 4 (RBM4) antagonizes the 
function of PTB and induces the expression of PTB iso-
forms with reduced splicing activity in mesenchymal stem 
cells [55]. Furthermore, the overexpression of miR-369 can 
stimulate PKM2 splicing by stabilizing the translation of 
hnRNPA2B1 and enhance the induction of cell reprogram-
ming by inducing pluripotent stem cell factors in embryonic 
stem cells [56]. Research has also shown that the estradiol-
17β can enhance PKM splicing into the PKM2 subtype by 
activating the c-Myc/hnRNP axis in human embryonic stem 
cells [57]. Prohibitin 2 (PHB2) can also inhibit the alterna-
tive splicing function of hnRNPA1 by its C-terminus inter-
acting directly with hnRNPA1 [50] (Fig. 1).

In addition, the long non-coding RNA(lncRNA) long 
intergenic non-protein coding RNA 689 (LINC00689) pro-
motes the expression of PKM2 by interacting directly with 
miR-338-3p, thereby playing the role of competing endog-
enous RNA (ceRNA) [58]. Circular RNA MAT2B (circ-
MAT2B) upregulates the expression levels of miR-338-3p 
target gene PKM2 by “sponging” miR-338-3p [59]. Studies 

have shown that the gene for the PKM2 protein is one of the 
target genes of miR-122 in the liver [53, 60]. Moreover, in 
polycystic ovary syndrome, the expression of exosome miR-
143-3p in follicular fluid was upregulated, which inhibited 
PKM2 expression and glycolysis in cells, while the overex-
pression of miR-155-5p can significantly promote PKM2 
expression and glycolysis in cells [61]. Similarly, miR-143 
is significantly induced by ischemic injury in primary neu-
rons, thereby inhibiting PKM2 expression [62]. Moreover, 
miR-19a-3p is also significantly induced by ischemic injury, 
which aggravates ischemic stroke by mediating glycome-
tabolism [63]. Furthermore, the miR-290/371-methyl-CpG 
binding domain protein 2 (Mbd2)-Myc circuit facilitates gly-
colysis and reprogramming in human fibroblasts, and PKM2 
is essential for miR-290-mediated reprogramming [64]. 
Among them, the miR-371 cluster is a human congener of 
the miR-290 cluster [64]. The miR-290 cluster reverses inhi-
bition of the transcriptional activator Myc transcription by 
Mbd2 through targeting the transcriptional inhibitor Mbd2, 
a reader of methylated CpGs, and inhibiting its function, 
thereby regulating glycolysis and metabolic reprogramming 
[64]. In addition, miR-146a-5p in microglia is reduced in 
acute spinal cord injury, resulting in increased expression 
of HIF-1α [65] (Fig. 1).

To sum up, multiple signaling factors or signaling path-
ways can directly or indirectly affect PKM2 protein expres-
sion. Moreover, different diseases and types of stimulation/
injury, as well as different cells, result in the signaling mol-
ecules that affect PKM2 expression are not completely the 
same.

PKM2 Exerts Its Biological Roles by Various 
Signaling Pathways and Modalities

PKM2 and Glycometabolism

PKM2 and Glycolysis

Glycometabolism is precisely regulated by several gly-
colytic enzymes, including PK, hexokinase, and pyruvate 
dehydrogenase [66]. Among the isoenzymes of PK, PKM1 
is a tetrameric protein with enzymatic activity that effi-
ciently converts PEP to pyruvate, contributing to pyruvate 
flow to support mitochondrial oxidative phosphorylation 
[16, 24]; however, PKM2 directs its pyruvate kinase activ-
ity through its own complex allosteric regulation, and the 
oligomers of PKM2 exist mainly in monomer or dimer 
forms, resulting in its enzymatic activity being lower than 
PKM1 [25]. The low catalytic activity of PKM2 dimers 
prevents pyruvate production at normal rates, leading to 
the accumulation of upstream glycolysis intermediates [34]. 
These intermediates are then transferred to other pathways, 
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such as the pentose phosphate pathway (PPP), which sup-
ports biosynthesis in cells [34, 67]. PPP is an alternative 
metabolic pathway parallel to glycolysis in the nervous sys-
tem, not only providing key intermediates for biosynthesis, 
but also controlling the fate of nerve stem/progenitor cells 
[68]. Thus, PKM2 is highly dimerized in cells or tissues 
with high nucleic acid synthesis [34]. When most PKM2 
molecules are in highly active tetrameric conformations, 
they have a high affinity for PEP and bind to other glyco-
lytic enzymes in the glycolytic enzyme complex, such as 
hexokinase, glyceraldehyde 3-phosphate dehydrogenase, 
phosphoglycerol transferase, and enolase, resulting in the 
degradation of glucose mainly to pyruvate and lactic acid 
and regenerating energy [2, 69, 70]. Notably, PKM2 has a 
low affinity for PEP even as a tetramer in the absence of 
fructose-1,6-bisphosphate (FBP) [21]. FBP binds to PKM2 
at a site different from the active PEP binding site, which 
will promote and stabilize the tetramerization of PKM2 and 
increase the binding affinity between PEP and PKM2, so 
that the kinetic parameters of PKM2 are almost the same 
as those of PKM1 [21, 71, 72]. In addition, a study showed 
that PKM2 contains an inducible nuclear transposition sig-
nal that allows cells to regulate their glycolysis flow based 
on local energy states [5]. However, PKM1 is not regulated 
by allosteric and locks neurons into a steady state of glyco-
lysis [5] (Fig. 2).

Warburg pointed out in 1920 that tumor cells, unlike their 
normally differentiated counterparts, have an increased rate of 
glucose uptake and lactate production in the presence of oxygen 
[73, 74]. This phenomenon is known as aerobic glycolysis or the 
Warburg effect [73, 74]. Aerobic glycolysis is capable of trans-
ferring glucose metabolites from ATP production to the syn-
thesis of cellular building blocks (nucleotides, amino acids, and 
lipids) to meet proliferation needs [33]. Studies have shown that 
activated immune cells, such as macrophages, dendritic cells, 
and T cells, also have the ability to switch from oxidative phos-
phorylation to aerobic glycolysis in a manner similar to tumor 
cells [75–78]. FBP and serine have a synergistic allosteric effect 
on PKM2 [79]. And bound PKM2 has higher information trans-
fer efficiency than the FBP/PKM2 or the serine/PKM2 [79]. 
Moreover, FBP-K433-T459-R461-A109-V71-R73-MG2-OXL 
and Ser-I47-C49-R73-MG2-OXL are two possible collabora-
tive allosteric pathways [79]. Other amino acids, such as Asn, 
Asp, Val, and Cys, have also been shown to bind to the amino 
acid-binding pockets of PKM2 and modulate its oligomeriza-
tion, substrate binding affinity, and activity [80]. However, when 
cells are stimulated by certain growth factors, the binding of 
phosphotyrosine peptides with PKM2 leads to the release of 
the allosteric activator FBP, thereby inhibiting the enzymatic 
activity of PKM2 and transferring glucose metabolites from 
energy production to anabolic processes [81]. In addition, as 
mentioned earlier, several post-translational modifications, such 

Fig. 2  PKM2 is involved in the glycolytic process. The tetramer 
PKM2 catalyzes the production of pyruvate from PEP and is more 
stable in the presence of FBP. Multiple stimuli promote the tetramer-
to-dimer transition of PKM2 by protein modifications. The dimer 
PKM2 leads to the transfer of glycolysis intermediates to the pen-
tose phosphate pathway. The dimer PKM2 nuclear translocation 

interacts with HIF-1α and PHD3 to promote the transcription of 
glycolytic genes, ultimately leading to the Warburg effect. PEP, 
phosphoenolpyruvate; HIF-1α, hypoxia-inducible factor 1α; FBP, 
fructose-1,6-bisphosphate; PHD3, prolyl hydroxylase 3; GLUT1, glu-
cose transporter 1; LDHA, lactate dehydrogenase A; PDK1, pyruvate 
dehydrogenase kinase 1; HRE, hypoxia response element
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as phosphorylation, acetylation, sulfinylation, succinylation, and 
oxidation, facilitate the conversion of PKM2 to its dimer. The 
dimer PKM2 is a key regulator of aerobic glycolysis, promot-
ing metabolic reprogramming and lactic acid production [12]. 
With a decrease in PKM2 activity, the monomer/dimer PKM2 
can transfer to the nucleus and form a complex with HIF-1α and 
prolyl hydroxylase 3 (PHD3) on the promoter of HIF-1α, which 
then regulates the expression of many glycolysis-related genes, 
such as glucose transporter 1 (GLUT1), lactate dehydrogenase 
A (LDHA), and pyruvate dehydrogenase kinase 1 (PDK1) [76, 
78, 82]. Nuclear PKM2 dimers can also induce c-Myc expres-
sion by their histone kinase action, promoting the expression 
of glycolytic proenzymes that induce the Warburg effect [73]. 
An imbalance in favor of PKM2 leads to the accumulation of 
glycolytic metabolites and an increase in lactic acid production 
[16, 78]. And the PKM2-driven change is a major component 
of the Warburg effect [16, 78]. In addition to playing a signifi-
cant role in many cancers [22, 83], this effect is also evident in 
induced neurons (iNs) and postmortem prefrontal cortex tissue 
in patients with AD [16]. One study showed that PKM2 pro-
motes Warburg effect-like glycolytic reprogramming in older 
neurons, and the expression of several genes induced by the 
PKM2/HIF1α signaling pathway is involved in the production 
of precursor metabolites and energy and the metabolism of car-
bohydrates [16]. In addition, boosting pyruvate kinase activity of 
PKM2 can lead to a decrease in lactic acid production, which is 
known as the PKM2 paradox in the Warburg effect [24] (Fig. 2).

Potential Effects of Glycolytic Metabolites on the Nervous 
System

Neuronal activity is a high-energy-demanding process 
that recruits all nerve cells adapted to their metabolism 
to maintain neuronal energy and normal physiological 
functions [84]. PKM2-mediated aerobic glycolysis plays 
a critical role in energy metabolism and proliferation of 
tumor cells, but it may not be suitable for normal metabo-
lism of neurons. One study showed that chemical inhibi-
tion of PKM2 nuclear translocation can reduce PKM2 
load in the nucleus and restore metabolic patterns in 
mature neurons [16]. Moreover, the inhibition of PKM2 
can slow down the rate of glycolysis to prevent the toxic 
effect of glycolytic products on neurons [16, 83, 85]. This 
phenomenon may be related to the fact that neurons com-
pensate for their energy shortages mainly rely on oxida-
tive phosphorylation and cannot use aerobic glycolysis or 
mitochondrial biogenesis [85]. Similar conclusions have 
been reached in studies of other diseases. For example, 
one study found that the activation (tetramerization) of 
PKM2 can increase glucose metabolic flux by activat-
ing the glycolytic pathway, which inhibits the accumula-
tion of highly glucose-induced toxic glucose-derived end 
products in podocytes [29].

However, lactic acid produced by the glycolysis pathway 
appears to be essential for regulating neuronal functions. Lactic 
acid in the brain is mainly formed from glucose or glycogen 
in astrocytes under normal physiological conditions [51, 86]. 
Glucose is transferred from cerebral vessels to astrocyte via 
glucose transporters and then converted to pyruvate and lactic 
acid by catalysis by PKM2 and lactate dehydrogenase isoform 
5 (LDH5) [87, 88]. Lactic acid is transferred from astrocytes 
to nearby neurons via monocarboxylate transporters (MCTs) 
to meet the energy needs of neurons and provide signals that 
regulate neuronal functions, including plasticity, excitability, and 
memory consolidation [6, 86, 87, 89]. The LDH1 converts lactic 
acid back to pyruvate in neurons, which is then transferred to 
mitochondria via the tricarboxylic acid cycle for aerobic energy 
production [88]. The study showed that L-lactate in neurons 
can stimulate the expression of synaptic plasticity-related genes, 
such as Arc, c-Fos, and Zif268, by the N-methyl-D-aspartate 
(NMDA) receptor (NMDAR)/extracellular signal-regulated pro-
tein kinases 1 and 2 (ERK1/2) signaling pathway [90]. Failure 
to utilize lactic acid can lead to increased neuronal death due to 
glutamate [91]. In addition, PKM2 deletion mediates impaired 
lactate homeostasis and mitochondrial ATP production in myeli-
nating Schwann cells of the sciatic nerve, resulting in slowed 
mitochondrial transport of the axon, the axon terminal retrac-
tion of the muscle, and cellular stress of motor neurons [89]. 
This suggests that aerobic glycolysis is necessary to maintain 
transport of peripheral nerve axons and neuromuscular junc-
tions [89].

Therefore, the role of PKM2-mediated aerobic glycolysis 
on the nervous system cannot be generalized. The biological 
activity of neurons mainly depends on the energy provided 
by oxidative phosphorylation, and the right amount of lac-
tic acid is also essential for maintaining neuronal energy 
requirements and physiological functions. However, exces-
sive accumulation of glycolytic metabolites has a toxic effect 
on neurons.

PKM2 and Apoptosis

Apoptosis is a tightly regulated cell death program involv-
ing the caspase cascade and the B-cell lymphoma 2 (Bcl-2) 
family, such as the anti-apoptosis members Bcl-2 and Bcl-xl, 
as well as pro-apoptosis members Bcl2-associated X (Bax) 
and Bak [92, 93]. PKM2 can regulate apoptosis by various 
signaling pathways.

The Change in Enzymatic Activity (the Dimer‑to‑Tetramer 
Transition) of PKM2 Can Antagonize Apoptosis

Vallée et al. [94] suggest that inactivation of PKM2 may 
lead to the death of neurons in AD. A study also showed 
that nuclear PKM2 combines with the signal transducers and 
activators of transcription 3 (STAT3) and HIF1α to induce 
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relevant genes expression, promoting damage signaling, 
cytokine activity, and apoptosis of elderly neurons in AD iNs 
[16]. Conversely, inhibition of non-metabolic nuclear effect 
of PKM2 in neurons not only leads to a decrease in toxic gly-
colytic metabolites but also reverses the loss of fate, thereby 
restoring neuronal braking to prevent apoptosis [16]. This 
seems to suggest the difference between human elderly neu-
rons and tumor cells that promote their proliferation by the 
PKM2/STAT3 signaling pathway [95]. In addition, PKM2 
is also able to regulate apoptosis in other non-neoplastic 
diseases. Zhou et al. [96] found that pharmacological activa-
tion (tetramerization) of PKM2 alleviated the death process 
of photoreceptor in the rd10 mouse model. Zhao et al. [97] 
found that PKM2 accumulates in mitochondria and is highly 
acetylated during lung ischemia/reperfusion injury. In con-
trast, the K433 deacetylation of PKM2 leads to a change in 
its enzymatic activity, which reverses Bcl-2 degradation and 
significantly reduces apoptosis [97] (Fig. 3).

Decreased Expression of PKM2 Can Regulate Apoptosis

Zhao et al. [98] found that silencing PKM2 promoted Bcl-2 
expression and reduced the level of Bax and the ratio of Bax 
to Bcl-2 in the nerve growth factor-PC12 cells treated with 

hyperglycemia and 6-hydroxydopamine (6-OHDA). Several 
studies have also shown that PKM2 mediates the inactiva-
tion of phosphorylated PI3K/AKT to participate in neuronal 
apoptosis in hypoxic-ischemic encephalopathy and traumatic 
brain injury, as well as anesthesia-induced apoptosis of hip-
pocampal neurons [99–101]. Conversely, silencing PKM2 
can improve neuronal apoptosis in these diseases [99–101]. 
This appears to be different from PKM2 promoting tumor 
cells proliferation by mediating phosphorylation of the 
PI3K/AKT signaling pathway [102] (Fig. 3).

In summary, the change in enzymatic activity (the dimer-
to-tetramer transition) or silencing of PKM2 can antagonize 
apoptosis. Moreover, the way PKM2 regulates apoptosis in 
different cells is not entirely the same. For example, PKM2 
leads to apoptosis by mediating dephosphorylation of PI3K/
AKT and phosphorylation of STAT3 in the nervous system 
[16, 99–101]. However, PKM2 promotes the proliferation 
of various tumors by mediating phosphorylation of PI3K/
AKT or STAT3 [95, 102]. Therefore, further research and 
exploration of the similarities and differences in metabolic 
switches between neurons or other non-tumor cells and dif-
ferent types of cancer are needed (Fig. 3).

Interestingly, the above research results still have some 
controversy, and there are even completely opposite research 

Fig. 3  PKM2 is involved in the regulation of apoptosis. The deacety-
lation of mitochondrial PKM2 gives it the effect of inhibiting Bcl2 
degradation, which then inhibits oxidative stress-induced apoptosis. 
PKM2 inhibits ER stress but promotes the inactivation of p-AKT in 
nerve cells, which then regulates apoptosis. Nuclear PKM2 can acti-
vate HIF-1α, STAT3, or block P53, which then regulates the tran-
scription of glycolytic genes, inflammatory genes, or apoptotic genes. 

Excess glycolytic metabolites are neurotoxic. However, lactic acid 
regulates neuronal excitability and synaptic plasticity and provides a 
source of energy. Bcl-2, B-cell lymphoma 2; STAT3, signal transduc-
ers and activators of transcription 3; HIF-1α, hypoxia-inducible factor 
1α; AKT, protein kinase B; ROS, reactive oxygen species; ER, endo-
plasmic reticulum
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results. Gu et al. [103] found that MiR-326 reduced PKM2 
expression in SH-SY5Y cells treated with Aβ25-35, lead-
ing to persistent endoplasmic reticulum stress and sub-
sequent apoptosis. Kang et al. [87] found that the loss of 
PKM2 increased the degree of hippocampal neuronal dam-
age and lactic acid metabolism disorders after global cer-
ebral ischemia (GCI). Conversely, the neuronal death was 
significantly reduced, and the neuronal survival was saved 
after lactate supplementation, which may be related to the 
ability of lactic acid to maintain energy metabolism in neu-
rons [87]. Inoue et al. [104] found that overexpression of 
PKM2 improved neuronal apoptosis and defects in zebrafish 
induced by the 5′ tRNA fragments derived from tyrosine 
pre-tRNA (5′ Tyr-tRF). 5′Tyr-tRF binds directly to PKM2, 
and it may enhance the phosphorylation of p53 at serine 
15 by inhibiting the interference of nuclear PKM2 on the 
phosphorylation of classical apoptosis-associated protein 
p53 [104]. These findings suggest that overexpression of 
PKM2 appears to be beneficial for the anti-apoptotic effects 
of cells. However, which oligomerized form of PKM2 exerts 
an anti-apoptotic effect has not been clearly identified in 
these studies (Fig. 3).

Thus, PKM2 regulates apoptosis by several not com-
plete same signaling pathways in different diseases or cells. 
Moreover, there is some controversy among some studies. 
This phenomenon may be related to the oligomerization, 
subcellular localization, and post-translational modification 
of PKM2 in different diseases or cells.

PKM2 Is Associated with Cell Proliferation, 
Differentiation, or Migration

Cell proliferation is an important life characteristic of an 
organism and the basis for its growth, development, repro-
duction and heredity. It is precisely controlled by genetically 
programmed regulatory pathways. In normally developing 
tissues, these pathways are able to specify when and where 
cells can increase or subtract. Both cancer and normal cells 
utilize the same “universal molecular toolbox” to coordi-
nate cell proliferation. However, compared to normal cells, 
cancer cells have the abilities to proliferate independently 
of exogenous growth-promoting or growth-inhibitory sig-
nals, to invade surrounding tissues and metastasize to dis-
tant sites, to elicit angiogenesis responses, and to evade 
mechanisms that limit cell proliferation, such as apoptosis 
and replicative senescence [105]. This allows cancer cells to 
survive and multiply while normal cells cannot survive and 
proliferate. The cell cycle, as a complex process, is a core 
event that regulates cell proliferation [106, 107]. It consists 
of DNA synthesis (S) and mitosis (M), which are separated 
by two intervals (G1 and G2); these phases are carried out 
in the order of G1-S-G2-M [107, 108]. Cell cycle switch-
ing is primarily driven by cyclin-dependent kinases (CDKs) 

and cyclins [108]. It is well known that metabolic regula-
tion plays a key role in cell proliferation, differentiation, or 
migration [109].

One study showed that the deletion of PKM2 led to 
PKM1 expression and proliferation arrest in primary cells 
[109]. PKM1 expression impairs nucleotide production and 
the ability to synthesize DNA, as well as progression of the 
cell cycle; however, the expression of PKM2 supports influx 
into metabolic pathways to support DNA synthesis [109]. 
Qiao et al. [110] found that a-synuclein regulates glucose 
metabolism by the PKM2-dependent signaling pathways in 
microglia, thereby promoting the cell migration. In traumatic 
spinal cord injury (SCI), PKM2 nuclear translocation fur-
ther interacts with β-catenin and p27, and they are recruited 
into the cyclin D1 gene (CCND1) promoter, regulating the 
expression of the gene CCND1, thereby promoting astro-
cytes proliferation [111]. Lu et al. [112] found that the inhi-
bition of PKM2 can lead to significant downregulation of 
protein levels of β-catenin, c-Myc, and CCND1, as well as 
a decrease in the number of hippocampal microglia. Simi-
larly, Wu et al. [30] demonstrated that PKM2 located in the 
nucleus rescues cell survival by mediating the β-catenin/T-
cell factor 4 (TCF4) signaling cascade under the conditions 
of ischemic injury. β-catenin and its induced TCF4 are com-
bined with upregulating gene induction of Myc, CCND1, and 
Sgk1, thereby regulating cell proliferation and anti-apoptotic 
effects [30, 113–115] (Fig. 4).

In addition, STAT3 is a transcription factor that regulates 
proliferation, growth, and apoptosis [116]. Chen et al. [40] 
found that PKM2 accelerates cell migration by regulating 
key adhesion/migration factors, such as the focal adhesion 
kinase (FAK), and nuclear PKM2 dimers can directly phos-
phorylate STAT3, resulting in STAT3 activation and down-
stream associated gene transcription. Activation of FAK 
and STAT3 can increase angiogenesis, neurogenesis, and 
functional recovery in adult mice with ischemic stroke [40]. 
PKM2 can also mediate the activity of the MAPK/ERK 
pathway by activating the vascular epithelial growth factor 
(VEGF), thereby upregulating oligodendrocytes prolifera-
tion [117]. VEGF can promote the proliferation and differ-
entiation of neural precursor cells, neural stem cells, and 
even glial cells, playing a vital role in brain injury repair 
and neuronutrition [117, 118]. ERK1/2, as a member of the 
mitogen-activated protein kinase (MAPK) signaling path-
way, has been shown to regulate cell proliferation, differ-
entiation, and motility, as well as cytoskeletal construction 
[117, 119]. In addition, one study showed that extracellular 
PKM2 can enhance the proliferation of skeletal muscle cells 
and the axon growth of cultured neurons [120]. Extracel-
lular PKM2/the valosin-containing protein (VCP) signaling 
molecules in neurons drive ATPase activity in chronic SCI, 
mediating axon increase and motor function recovery [121] 
(Fig. 4).
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In summary, PKM2 regulates gene expression of cell pro-
liferation by multiple signaling pathways, especially gene 
expression of proteins related to driving cell cycle transition, 
thereby promoting cell proliferation.

PKM2 and Inflammatory Response

Inflammation is a well-controlled process triggered by sig-
nals from damaged tissues or infections, aimed at re-estab-
lishing tissue homeostasis [21]. The inflammatory reaction 
involves metabolic reprogramming, directing nutrients to the 
efficient production of ATP, and the synthesis of macromol-
ecules in order to adapt to a highly active metabolic state [6, 
21]. These macromolecules are required for the production 
of pro-inflammatory mediators, cytoskeletal rearrangements, 
and proliferation of immune cells [21]. Compared with the 
oxidative phosphorylation of mitochondria, the glycolytic 
pathway, although less efficient in the utilization of glucose, 
can produce more energy per unit time during immune cell 
hypermetabolism to accommodate the rapidly increasing 
ATP requirement [6, 122]. Therefore, the metabolic con-
version from oxidative phosphorylation to glycolysis is the 
way to adapt to this high metabolic demand. PKM2 reg-
ulates aerobic glycolysis and is an important regulator of 
metabolism and function of inflammatory cells, implying 

its potential role in inflammation [19]. At the same time, the 
dimer PKM2 can also be used as a transcription factor for 
the expression of target genes in inflammation to promote 
inflammatory responses [9, 123]. Moreover, HIF-1α, which 
interacts with PKM2, can also play an important role in the 
metabolic reprogramming of inflammatory cells by promot-
ing the expression of target genes in inflammation [124].

PKM2 Is Involved in the Activation of Macrophages 
and Their Mediated Local or Systemic Inflammatory 
Responses

Toll-like receptors (TLRs) play a key role in regulating 
inflammation and abnormal activation of immune cells 
[125, 126]. Activation of TLR2 can induce PKM2 nuclear 
transposition [127]. Zhang et al. [125] found that PKM2 
can enhance the activation of TLR4, TLR7, and TLR9 by 
activating proline-rich tyrosine kinase 2 (Pyk2). And they 
speculate that PKM2 may promote Pyk2 activation by 
promoting glycolysis and ATP production [125]. Histone 
deacetylases (HDACs) can drive inflammation mediated by 
innate immune cells [128, 129]. One study showed that class 
IIa HDACs (HDAC4, 5, 7, and 9), specifically HDAC7, are 
key molecules that link TLR-induced aerobic glycolysis and 
inflammatory responses in macrophages [128]. Moreover, 

Fig. 4  PKM2 is involved in the proliferation, differentiation, and 
migration of cells. Nuclear PKM2 participates in the proliferation, 
differentiation, and migration of cells via activating signaling path-
ways, such as β-catenin/TCF4, β-catenin/P27, STAT3, STAT3/FAK, 
HIF-1α, or NF-κB/HIF-1α. HIF-1α-mediated glycolysis provides an 
energy source for the proliferation, differentiation, and migration of 
cells. HIF-1α-mediated VEGF can participate in the expression of 

cell proliferative genes via the MAPK/ERK pathway. CCND1, cyclin 
D1; MAPK, mitogen-activated protein kinase; TCF4, T-cell factor 4; 
FAK, focal adhesion kinase; VEGF, vascular epithelial growth factor; 
HIF-1α, hypoxia-inducible factor 1α; HRE, hypoxia response ele-
ment; NF-κB, nuclear factor kappa enhancer binding protein; STAT3, 
signal transducers and activators of transcription 3
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the HDAC7-PKM2 complex, acting as an immune meta-
bolic signaling center, mediates the deacetylation of PKM2 
at lysine 433 and enhances its pro-inflammatory function 
[128]. In addition, Wang et al. [24] demonstrated that the 
lactation of PKM2 inhibits its tetramer-to-dimer transition, 
promotes its pyruvate kinase activity, and reduces its nuclear 
distribution, thereby promoting the transition of pro-inflam-
matory macrophages to repair phenotypes and limiting the 
inflammatory response. Li et al. [130] also found that the 
downregulation of the intracellular ratio of dimer/monomer-
to-tetramer of PKM2 led to the inhibition of nuclear trans-
location of functional PKM2 in macrophages, which then 
increased the percentage of infiltrated M2 macrophages in 
the brain after stroke. In addition, Palsson-McDermott et al. 
[82] found that PKM2 upregulates and phosphorylates in 
lipopolysaccharides (LPS)-treated macrophages and forms 
a complex with HIf-1α, which can bind directly to the pro-
moter of interleukin (IL)-1β. They believe that PKM2 is a 
key determinant of LPS activating macrophages and promot-
ing the inflammatory response. Wang et al. [31] came to a 
similar conclusion, and they believe that succinylation of 

PKM2 promotes the conversion of PKM2 from tetramer to 
dimer. Moreover, the PKM2/HIF-1α/peroxisome prolifera-
tor-activated receptor-γ co-activator 1-α (PGC-1α) signaling 
pathway can also regulate polarization of macrophages and 
inflammatory responses [131] (Fig. 5).

In addition, Rao et al. [132] and Yang et al. [78] con-
firmed that PKM2-mediated aerobic glycolysis contributes 
to the activation of macrophages and the resulting inflam-
matory response. Moreover, the PKM2/HIF1α glycolytic 
pathway plays a key role in regulating the release of high-
mobility group box 1 (HMGB1) by activated macrophages 
[78, 133]. In this signaling pathway, lactic acid produced 
by glycolysis can increase hyperacetylation of HMGB1 by 
inhibiting HDAC activity [78, 134]. Activated macrophages/
monocytes acetylating HMGB1 in their nuclear localization 
sequences, leading to chelation of HMGB1 within cytoplas-
mic vesicles and subsequent release into the extracellular 
environment [78]. HMGB1 is a late mediator of fatal sys-
temic inflammation [133]. One study showed that PKM2-
mediated glycolysis promotes the activation of NLRP3, 
also known as NLR family, pyrin domain containing 3, and 

Fig. 5  PKM2 is involved in inflammatory responses. Multiple stimuli 
promote PKM2 nuclear translocation via TLR4-mediated signaling 
pathways. Nuclear PKM2 mediates the expression of inflammatory 
genes via signaling pathways, such as ATF2, STAT3, STAT3/NF-κB, 
HIF-1α/NF-κB, or HIF-1α, ultimately leading to inflammation. Lac-
tic acid produced by the glycolytic pathway is involved in the tran-
scription of inflammatory genes and can regulate the expression of 
inflammatory genes by activating EIF2AK2. In addition, lactic acid 
can interact with HDAC to block the deacetylation of HMGB1. Acet-
ylated HMGB1 chelates it within the cytoplasmic vesicle and subse-
quently releases it into the extracellular environment. The HMGB1-
mediated TLR4/MyD88/TRAF6 signaling pathway promotes 

neuroinflammatory responses and damage of cells. HDAC7, histone 
deacetylase 7; TLR4, toll-like receptor 4; PGC-1α, peroxisome prolif-
erator-activated receptor-γ co-activator 1-α; HMGB1, high-mobility 
group box 1; NLRP3, NLR family, pyrin domain containing 3; AIM2, 
absent in melanoma 2; EIF2AK2 or PKR, eukaryotic translation ini-
tiation factor 2 alpha kinase 2; MyD88, myeloid differentiation factor 
88; TRAF6, TNF receptor-associated factor 6; ATF2, activation tran-
scription factor 2; TNF, tumor necrosis factor; IL, interleukin; JNK, 
c-Jun N-terminal kinase; NF-κB, nuclear factor kappa enhancer bind-
ing protein; STAT3, signal transducers and activators of transcription 
3; PEP, phosphoenolpyruvate



5013Molecular Neurobiology (2024) 61:5002–5026 

1 3

absent in melanoma 2 (AIM2) inflammasomes by regulating 
phosphorylation of eukaryotic translation initiation factor 
2 alpha kinase 2 (EIF2AK2, also known as PKR) in mac-
rophages, thereby promoting the release of IL-1β, IL-18, and 
HMGB1 by macrophages [135]. In this signaling pathway, 
lactic acid-mediated phosphorylation of EIF2AK2 is the 
main event that controls the activation of inflammasomes in 
macrophages [135]. In addition, nuclear PKM2-mediated 
signaling pathways related to inflammatory responses also 
include JAK1-STAT1/3, NF-κB, MAPK, p65, inducible 
nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-
2) in macrophages, which are activated by PKM2 to further 
promote the release of pro-inflammatory cytokines [136] 
(Fig. 5).

PKM2 Is Involved in the Activation of Glial Cells and Their 
Mediated Neuroinflammatory Responses

There is evidence that PKM2 plays a key role in neuroin-
flammation and central nervous system disorders [23, 137]. 
Zhang et al. [137] found that PKM2 aggravates oxygen–glu-
cose deprivation and reoxygenation induced neuroinflam-
matory responses and damage of cells by activating the 
HMGB1-mediated TLR4/myeloid differentiation factor 88 
(MyD88)/tumor necrosis factor (TNF) receptor-associated 
factor 6 (TRAF6) signaling pathway. TLR4 belongs to the 
type 1 transmembrane proteins family with an extracellu-
lar leucine-rich repeat domain and an intracellular domain 
homologous to Toll and the IL-1 receptor in mammals [138]. 
MyD88 is a transfer factor of TLR4 and mainly promotes 
signal transduction of TLR4 [138]. Furthermore, PKM2 can 
mediate activation of glycolysis and NLRP3 inflammasomes 
in mouse models of LPS-induced neuroinflammation [139] 
(Fig. 5).

Activation of glial cells and production of inflamma-
tory mediators are the main events of neuroinflammation 
[140]. Microglia, as tissue-resident macrophages of the 
central nervous system, are key nervous system-specific 
immune cells [141, 142]. PKM2 plays a potential role in 
microglia-mediated neuroinflammation [23]. One study 
showed an increase in PKM2 expression in LPS-treated 
microglia cultures [9]. PKM2 can be recruited as a tran-
scription factor and localized in the nucleus under inflam-
matory conditions [9]. Moreover, microglia polarize into 
M1-type cells with pro-inflammatory activity in inflam-
matory diseases, which are activated along with the TLR4 
signaling [143]. Inhibition of PKM2 can inhibit polariza-
tion of BV2 cells and activation of the TLR4 signaling 
[143]. Similarly, Zhai et al. [144] found that NADPH oxi-
dase 4 (NOX4) promotes PKM2 expression in microglia 
treated with LPS and interferon-γ (IFN-γ) by increasing 
the expression of reactive oxygen species (ROS), thereby 
accelerating polarization of M1-type cells and production 

of inflammatory factors. Furthermore, Li et al. [23] found 
that the dimer PKM2 directly interacts with the pro-
inflammatory transcription factor activation transcription 
factor 2 (ATF2) and regulates ATF2 phosphorylation and 
nuclear accumulation to bridge glycolysis and pyroptosis 
in microglia, which may be a key crosstalk between meta-
bolic reprogramming and neuroinflammation in central 
nervous system. In addition, lactic acid can also further 
promote the release of pro-inflammatory cytokines by glial 
cells under pathological conditions [145] (Fig. 5).

In addition, p300 acetyltransferase can catalyze PKM2 
acetylation to enter the nucleus and bind to histone 3 (H3) 
and STAT3 [146]. Moreover, Gao et al. [32] found that 
stroke-mediated translocation of PKM2 into the nucleus in 
a dimer forms in microglia, followed by phosphorylation 
and activation of the transcription factor STAT3, thereby 
promoting transcription of pro-inflammatory genes and 
subsequent production of pro-inflammatory factors TNF-a 
and IL-1β. Dhanesha et al. [17] also found that nuclear 
PKM2 regulates excessive activation of neutrophils after 
cerebral ischemia by promoting STAT3 phosphorylation, 
driving the thrombo-mediated inflammatory response, 
thereby aggravating the severity of stroke, and it is likely 
that the PKM2/STAT3/NF-κB axis plays a role in it. The 
PKM2/STAT3 signaling pathway also plays an important 
role in the activation of astrocytes. Wei et al. [6] found that 
activated astrocytes after LPS treatment take up more glu-
cose to increase aerobic glycolysis and promote sustained 
activation of active astrocytes and HMGB1 secretion by 
the PKM2/STAT3 signaling pathway. In addition, knock-
ing out PKM2 in epilepsy inhibits microglial activation 
and secretion of inflammatory factors, such as complement 
component 1q (C1q), TNF-α, and IL-1α, by inhibiting the 
activation of NF-κB, resulting in decreased expression of 
complement component 3 (C3) in astrocytes and subse-
quent neuronal damage caused by the interaction of C3 
with neuronal C3a receptors (C3aR) [147] (Fig. 5).

Thus, the non-enzymatic nucleogenesis of PKM2, 
as well as PKM2-mediated metabolic reprogramming 
and glycolytic products, play important roles in various 
inflammatory diseases by regulating multiple signaling 
pathways.

PKM2 and Pathological Autoimmune Responses

Autoimmunity is the phenomenon in which the body’s 
immune system responds to autoantigens and produces 
autoantibodies and/or self-sensitized lymphocytes [148]. 
Autoimmune diseases are diseases in which the body 
reacts to autoantigens and causes damage to its own tissues 
[148]. The emerging field of immunometabolism focuses 
on the functional link between metabolic reprogramming 
and the immune system, which provides an additional 
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dimension to understanding immunity in health and dis-
ease [149].

Elevated PKM2 levels have been reported in several 
autoimmune diseases, such as autoimmune encephalo-
myelitis, rheumatoid arthritis (RA), inflammatory bowel 
disease, idiopathic inflammatory myopathy, and dermato-
myositis/polymyosis [150–153]. A study showed that 
CD4 + T cells are a population of immune cells that play 
a key role in the immune response [34]. They induce B 
cells to produce antibodies; induce microbicidal activity of 
macrophages; recruit neutrophils, eosinophils, and baso-
phils to the site of infection; and produce cytokines and 
chemokines to induce the immune response [154]. Among 
them, helper T cells 17 (Th17) and Th1 cells play impor-
tant roles in the pathogenesis of autoimmune diseases, and 
their energy source relies on glycolysis [155, 156]. A study 
has shown that PKM2 is necessary for the development 
and differentiation of Th1 and Th17 cells [155]. Angiari 
et al. [153] found that inducing PKM2 tetramerization and 
inhibiting its nuclear translocation can limit the develop-
ment of Th17 and Th1 cells and improve the immune 
response in experimental autoimmune encephalomyeli-
tis. Similarly, PKM2 was expressed in T cells infiltrating 
the central nervous system in a mouse model of multiple 
sclerosis, and the regulation of PKM2 may provide a new 
avenue for the treatment of multiple sclerosis [157]. In 
addition, dendritic cells (DCs) play a central role in innate 
and adaptive immunity [158, 159]. One study showed that 
the c-Jun N-terminal kinase (JNK) signaling pathway stim-
ulates the binding of p300 and PKM2 when DCs are acti-
vated by LPS, resulting in PKM2 acetylation and nuclear 
translocation [158]. Subsequently, nuclear PKM2 binds 
to c-Rel to enhance IL12p35 expression, which then regu-
lates differentiation of Th1 cells [158]. Moreover, PKM2 
with low enzyme activity promotes glycolysis and fatty 
acid synthesis, helping DCs meet the demand for biologi-
cal macromolecules [158].

These findings suggest that PKM2-mediated metabolic 
and non-metabolic pathways can modulate pathological 
autoimmune responses by promoting differentiation and 
activation of several immune cells. Therefore, it plays a 
crucial role in autoimmune diseases.

Antioxidant Damaging Effects of PKM2

The body produces excess ROS and reactive nitrogen spe-
cies (RNS) in response to various harmful stimuli [160]. 
They accumulate in tissues or cells and cause an imbal-
ance between high ROS/RNS and low antioxidant defenses, 
which will lead to a state of oxidative stress and cause cyto-
toxic reactions and tissue damage [160–162]. Therefore, the 
body’s antioxidant capacity is essential for maintaining the 
function of cells or tissues. PKM2 is an important signaling 

molecule in the body to regulate antioxidant capacity and 
plays a crucial role in oxidative damage.

Zhu et al. [163] found that light-induced oxidative stress 
levels of retinal cone cells in mouse were significantly 
reduced after treatment with PKM2 inhibitors, which 
might be related to upregulation of PPP. The S-nitrosation 
(decreased enzyme activity) or inhibition of PKM2 can 
increase substrate flow through PPP to produce reducing 
equivalents, such as nicotinamide adenine dinucleotide phos-
phate hydride (NADPH) and reduced glutathione (GSH), 
and protect cells from oxidative stress [163–166]. This is 
because PKM2 is slower than PKM1 in enzymatic activity, 
and the decrease in its pyruvate kinase activity promotes 
an anabolic pathway that replaces the glycolytic pathway, 
i.e., PPP, resulting in generation of reducing equivalents to 
prevent oxidative stress [2, 67, 167] (Fig. 6).

In addition, nuclear factor-erythroid-2-related factor 2 
(Nrf2) is the main regulator of cytoprotective responses in 
response to oxidative stress [168]. Ren et al. [169] found 
that nuclear PKM2 can bind to Nrf2 and form a complex 
that activates and facilitates cytoplasmic Nrf2 entry into the 
nucleus in hippocampal HT-22 neurons. The PKM2-Nrf2 
complex further regulates the transcription of mitochondrial 
glutathione peroxidase 4 (GPX4) [169]. One study showed 
that levels of PKM2 expression in the blood were inversely 
correlated with the PD comprehensive score scale [170]. 
Nrf2, trans-activated by the PKM2 dimer in astrocytes, 
can upregulate expression of the catalyzing subunit (Gclc) 
and modifying subunit (Gclm) of glutamate-cysteine ligase 
(GSH-synthesized rate-limiting enzyme) by binding to pro-
moters of their genes, thereby improving oxidative stress of 
PD [171]. Moreover, dimerized PKM2 binds to Nrf2 and 
activates the Nrf2/antioxidant response element (ARE) path-
way in PC12 cells, triggering upregulation of Nrf2-driven 
antioxidant molecules, such as NADPH quinone oxidoreduc-
tase 1 (NQO1), thioredoxin reductase 1 (TrxR1), thioredoxin 
(Trx), and GSH, thereby improving antioxidant capacity and 
exerting neuroprotective effects [14].

In addition, lactic acid, as a crucial bioenergetic metabo-
lite, is formed under anaerobic or aerobic glycolytic condi-
tions and can also be used by cells as an oxidation substrate 
[86, 90, 172]. One study showed that L-lactate is transported 
into cells through MCTs, and L-lactate dehydrogenase con-
verts it to L-pyruvate with the help of the cofactor nicotina-
mide adenine dinucleotide (NAD +), resulting in elevated 
levels of intracellular reduced nicotinamide adenine dinu-
cleotide (NADH), thereby regulating the redox state of neu-
rons [90]. L-lactic acid can also upregulate cellular defense 
mechanisms by promoting outbreaks of mild ROS, including 
the unfolded protein response (UPR) and Nrf2 activation 
[172] (Fig. 6).

These studies suggest that the PKM2-mediated Nrf2 
signaling pathway and PPP, as well as lactic acid produced 
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by glycolysis, play a crucial role in improving oxidative 
damage.

PKM2 and Mitochondrial Dysfunction

Mitochondria are organelles coated by two layers of mem-
branes and are crucial structures in cells for producing 
energy [173]. In addition to oxidative phosphorylation 
to produce ATP, mitochondria are capable of fission and 
fusion, mitophagy, and mitochondrial biogenesis [174]. 
Mitochondrial dysfunction is associated with apoptosis, 
aging, cancer, and many neurodegenerative and muscle dis-
eases [175, 176]. PKM2 plays an important role in regulat-
ing mitochondrial functions.

Mitochondria are constantly dividing and fusing to repair 
damaged components of mitochondria, with the division 
process separating damaged mitochondria and the fusion 
process enabling material exchange between healthy mito-
chondria [177]. Lack of fission or fusion reduces mitochon-
drial transport, leading to abnormal mitochondrial distribu-
tion and functional defects in cells [178]. A study has shown 
that elevated PKM2 can lead to abnormal mitochondrial 

division/fusion events and mitochondrial dysfunction by 
weakening the stability of P53 targeting dynamin-related 
protein 1 (Drp1) [178]. Furthermore, Zhao et al. [98] found 
that diabetes-mediated PKM2 overexpression leads to 
increased vulnerability of dopaminergic neurons to 6-OHDA 
by promoting high glycolysis and abnormal mitochondrial 
fusion (upregulation of mitochondrial fusion protein 2 
(Mfn2) expression) in neurons. Conversely, silencing PKM2 
can increase the number of mitochondria and improve the 
metabolic homeostasis of mitochondria [98]. However, 
a study showed that weakened interaction between Mfn2 
and PKM2 and mitochondrial defects were found in rat hip-
pocampal tissues after exposure to 2% sevoflurane [179]. 
Conversely, promoting Mfn2-PKM2 interaction can prevent 
brain damage and maintain mitochondrial fusion [179]. In 
addition, Qi et al. [29] found that hyperglycemia or diabe-
tes reduced the tetramerization and activity of PKM2 by its 
sulfenylation and oxidation. Conversely, PKM2 activation 
could improve or even reverse diabetes or hyperglycemia-
induced mitochondrial dysfunction by increasing levels of 
PGC-1α protein, mitochondrial membrane potential (MMP), 
and mitochondrial quality [29]. This phenomenon may be 
related to PKM2-mediated enhancement of the optic atrophy 

Fig. 6  PKM2 is involved in the regulation of oxidative stress. The 
dimer PKM2 leads to the transfer of glycolysis intermediates to the 
pentose phosphate pathway, which then produces reducing equiva-
lents, such as GSH and NADPH. Nuclear PKM2 interacts with Nrf2 
to promote the expression of antioxidant genes, resulting in the pro-
duction of antioxidant molecules. The lactic acid produced by the gly-
colysis process produces L-pyruvate and NADH under the action of 
L-LDH. These antioxidant molecules can antagonize oxidative stress. 
NADPH, nicotinamide adenine dinucleotide phosphate hydride; 

GSH, reduced glutathione; Nrf2, nuclear factor-erythroid-2-related 
factor 2; GPX4, glutathione peroxidase 4; Gclc, the catalyzing sub-
unit of glutamate-cysteine ligase; Gclm, the modifying subunit of 
glutamate-cysteine ligase; NQO1, NADPH quinone oxidoreductase 
1; TrxR1, thioredoxin reductase 1; Trx, thioredoxin; NADH, reduced 
nicotinamide adenine dinucleotide; L-LDH, L-lactate dehydrogenase; 
PEP, phosphoenolpyruvate; FBP, fructose-1,6-bisphosphate; ARE, 
antioxidant response element
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1 (OPA1) protein [29, 180]. The activation or tetramerization 
of PKM2 can also promote PGC-1α-mediated mitochondrial 
biogenesis by inhibiting the phosphorylated PI3K/Akt sign-
aling pathway [181]. Furthermore, the PKM2/AMPK sign-
aling pathway mediates the activation of mitophagy [182]. 
In addition, Li et al. [19] found that PKM2 can upregulate 
the PINK1/Parkin signaling pathway-mediated mitophagy. 
Shen et al. [183] suggested that the interaction of PKM2 
with protein phosphatase 1 (PP1) mediates the binding of 
PP1 to FUN14 domain-containing 1 (FUNDC1), resulting in 
FUNDC1 dephosphorylation and occurrence of FUNDC1-
dependent mitophagy.

These findings suggest that PKM2 can modulate mito-
chondrial fission and fusion, mitophagy, or mitochondrial 
biogenesis by mediating multiple signaling pathways. How-
ever, some of these studies do not point to how different 
forms of PKM2 oligomerization regulate mitochondrial 
functions. Therefore, how PKM2 regulates mitochondrial 
functions in different diseases or cells needs further research 
and exploration.

In summary, PKM2 has diverse biological functions. In 
addition to the classical regulation of glycolysis and meta-
bolic reprogramming, it also has the effects of regulating 
apoptosis and proliferation of cells, inflammatory responses, 
pathological autoimmune responses, oxidative stress, and 
mitochondrial dysfunction. However, the pathophysiological 
mechanisms of PKM2 in different tissues/cells or diseases 
need to be further studied.

Potential Link of PKM2 to Neurological 
Diseases

PKM2 and Cognitive Dysfunction

PKM2 and Amyloid β‑Peptide (Aβ) Production

It is known that β-amyloid plaques are the main pathologi-
cal feature of AD, the main component of which is fibrillar 
aggregates formed by Aβ aggregation [184]. PKM2 expres-
sion was increased in brain samples of patients with AD and 
in the cerebral cortex of mice with AD [185]. Moreover, 
upregulation of PKM2 was concentrated in microglia near 
Aβ plaques in mice with AD [186]. One study found that 
hypoxia induced upregulation of PKM2 expression in the 
nucleus of neurons with AD, the PKM2 dimer modulated 
the aph-1 homolog (APH1)-nicastrin (NCT) subcomplex 
to regulate gamma-secretase by transcriptional control of 
Aph-1a, and activation of gamma-secretase could promote 
Aβ production [185]. In addition, elevated PKM2 promotes 
abnormal activation of aerobic glycolysis in microglia with 
AD, leading to excessive production of lactic acid [186]. 
Lactic acid-mediated histone lactification, especially when 

elevated H4K12la markers are detected, can modify genes 
of multiple transcription factors that activate genes of glyco-
lytic enzymes, such as HIF-1α, PKM, and LDHA [186]. Lac-
tic acid can also directly promote the release of microglial 
pro-inflammatory factors, such as TNF-α, IL-6, and IL-1β, 
to mediate neuroinflammation [145]. Subsequently, inflam-
matory cytokines induce interferon-induced transmembrane 
protein 3 (IFITM3) expression in neurons and astrocytes, 
which then binds to and activates γ-secretase, increasing Aβ 
production [187]. Therefore, the positive feedback loop of 
glycolysis/H4K12la/PKM2 aggravates the glucose metabo-
lism disorder and microglial dysfunction of the cortex and 
hippocampus in patients with AD, thereby promoting the 
formation of Aβ plaques [186] (Fig. 7).

Thus, both non-enzymatic nuclear action of PKM2 and 
glycolytic metabolites mediated by PKM2 can regulate Aβ 
production by relevant signaling pathways.

PKM2 Is Involved in the Regulation of Cognitive 
Dysfunction Associated with Various Diseases

Cognitive function belongs to the advanced functions of the 
brain, including memory, language expression, visuospatial 
ability, executive ability, calculation ability, and ability to 
understand and judge [188]. Impaired one or more of the 
above can manifest cognitive dysfunction [188]. Several 
diseases, including AD, cerebral small vessel disease, neu-
ropsychiatric systemic lupus erythematosus (NPSLE), and 
AIDS, can cause cognitive dysfunction, and PKM2 has been 
shown to be involved in the regulation of cognitive dysfunc-
tion via related signaling pathways in these diseases [112, 
123, 186, 189].

The Downregulation of PKM2 Can Improve 
Cognitive Dysfunction

As mentioned earlier, nuclear PKM2 regulates the rel-
evant gene expression and assists Aβ production by some 
signaling pathways. Conversely, PKM2-specific deletion 
in microglia can improve spatial learning and memory in 
mice with AD by reducing the burden of Aβ [186]. Lu et al. 
[112] found that the PKM2-mediated β-catenin signaling 
pathway promoted microglial activation and phagocytosis 
of over-activated microglia, aggravated the loss of neuronal 
synapses, and then promoted cognitive dysfunction in mice 
with NPSLE. Conversely, inhibiting the expression of PKM2 
in microglia could alleviate the above symptoms [112]. In 
addition, Bian et al. [123] found that serum PKM2 levels 
in patients with cerebral small vessel disease were posi-
tively correlated with the white matter hyperintensity and 
increased perivascular space and negatively correlated with 
cognitive function. Moreover, higher levels of serum PKM2 
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may lead to chronic inflammation, decreased cerebral blood 
flow, and cognitive dysfunction [123]. Conversely, inhib-
iting PKM2 expression may help suppress inflammation, 
restore cerebral blood flow, and reduce cerebral infarction 
area, as well as reduce cognitive impairment after stroke 
[190] (Fig. 8).

Inactivation of PKM2 Can Worsen Cognitive 
Dysfunction

Impaired activity of PKM2 is exhibited in methampheta-
mine-induced deficits in neurocognitive function [191]. One 
study found that protein oxidation played an important role 

Fig. 7  PKM2 is involved in 
the production of Aβ. PKM2 
modulated APH1-NCT sub-
complex to regulate γ-secretase 
by transcriptional control of 
Aph-1a. In addition, PKM2 
promotes aerobic glycolysis-
mediated the overproduction of 
lactic acid. Lactic acid promotes 
the release of pro-inflammatory 
factors to mediate neuroin-
flammation. Subsequently, 
inflammatory cytokines induce 
IFITM3 expression to bind 
to and activate γ-secretase. 
Activation of γ secretase 
promotes the production of Aβ. 
Aβ, amyloid β-peptide; APH1, 
aph-1 homolog; NCT, nicastrin; 
IFITM3, interferon-induced 
transmembrane protein 3

Fig. 8  Potential link of PKM2 to neurological diseases. PKM2 can 
exert various biological functions, including regulation of Aβ pro-
duction, glycolysis, inflammatory responses, apoptosis, proliferation 
of cells, oxidative stress, mitochondrial dysfunction, or pathological 
autoimmune responses. In addition, PKM2 is involved in the occur-
rence and development of neurological diseases, such as cognitive 

dysfunction, ischemic stroke, PSD, cerebral small vessel disease, 
hypoxic-ischemic encephalopathy, traumatic brain injury, traumatic 
SCI, PD, epilepsy, neuropathic pain, GCI, and autoimmune encepha-
litis by different biological roles. Aβ, amyloid β-peptide; PSD, post-
stroke depression; PD, Parkinson’s disease; SCI, spinal cord injury; 
GCI, global cerebral ischemia
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in the progression of mild cognitive impairment (MCI) to 
AD [192]. PKM2, functionally involved in the regulation of 
energy metabolism and synaptic plasticity, was also found 
to be significantly oxidized in the hippocampus of subjects 
with MCI [192]. In HIV-related neurocognitive dysfunction, 
the HIV-1 protein gp120 alters the expression of PKM1 and 
PKM2 by promoting the expression of PTBP1, leading to the 
accumulation of advanced glycation end products and pre-
venting the cleavage of the pro-brain-derived neurotrophic 
factor (pro-BDNF) protein into mature brain-derived neuro-
trophic factor (BDNF), which ultimately alters normal syn-
aptic plasticity [189]. Instead, these events can be reversed 
by stabilizing the tetrameric form of PKM2 [189] (Fig. 8).

PKM2‑Mediated Aerobic Glycolysis 
or Antioxidant Damaging Effects Can 
Improve Cognitive Dysfunction

PKM2 is thought to also improve cognitive dysfunction. 
Some studies have shown that electroacupuncture can 
improve cognitive function of AD by boosting glucose 
metabolism in the brain [193–195]. Li et al. [195] believe 
that aerobic glycolysis decreases significantly in AD. In con-
trast, electroacupuncture can promote the expression of aero-
bic glycolysis-related proteins in the hippocampus, including 
PKM2, thereby improving the learning and memory ability 
of APP/PS1 mice [195]. Similarly, Kang et al. [87] found 
that lactic acid supplementation after GCI restored exacer-
bation of neuronal damage and cognitive dysfunction due 
to PKM2 gene deletion. In addition, Ren et al. [169] sug-
gested that nuclear PKM2 in hippocampal HT-22 neurons 
can inhibit iron death by mediating the PKM2/NRF2/GPX4 
signaling pathway, thereby mitigating radiation-induced 
damage of hippocampal neurons and improving cognitive 
and memory consolidation decline (Fig. 8).

In summary, regulatory effects of PKM2 on cognitive 
dysfunction cannot be generalized. The oligomerized form 
of PKM2 and the biological role it plays differently in differ-
ent cognitive-related diseases will lead to different ways in 
which it regulates cognitive dysfunction. Therefore, disease-
specific analysis should be carried out. However, the link 
between PKM2 and cognitive dysfunction needs to be veri-
fied by a large number of experimental studies.

PKM2 and Neuropathic Pain

Neuropathic pain is usually a chronic disease caused by 
lesions or pathological changes within the nervous system 
[66, 140]. Peripheral and central sensitization can lead to 
highly sensitive pain behaviors and are considered cru-
cial mechanisms of neuropathic pain [196]. Inflammatory 

processes and metabolic disorders are two aspects of central 
sensitization [66, 197, 198]. Neurons and glial cells, such 
as microglia and astrocytes, as well as bloodborne mac-
rophages, play a key role in inducing and maintaining neu-
ropathic pain by releasing powerful neuromodulators, such 
as pro-inflammatory cytokines and chemokines, to enhance 
neuronal excitability [66, 140, 199]. Studies have shown that 
glial cells can synthesize and secrete many inflammatory 
factors and cytokines by PKM2-mediated aerobic glycolysis, 
which can bind to the corresponding receptors of neurons 
to enhance the excitability of neurons, thus playing a key 
role in chronic pain [6, 200]. Activated astrocytes exacerbate 
inflammatory pain via PKM2-mediated aerobic glycolysis 
and the STAT3 signaling pathway [6]. In contrast, Wang 
et al. [66] found that inhibition of PKM2 effectively attenu-
ated the neuropathic pain and inflammatory responses in 
rats induced by chronic compressive injury, which might 
be achieved by modulating the ERK and STAT3 signaling 
pathways. In addition, the accumulation of lactic acid can 
cause a decrease in intracellular pH and acidification of tis-
sues under pathological conditions, which can also lead to 
painful behavior [6] (Fig. 8).

Thus, both PKM2-mediated aerobic glycolysis and 
inflammatory responses can worsen neuropathic pain.

PKM2 and Post‑stroke Depression (PSD)

PSD is a common psychiatric disorder after cerebrovascu-
lar injury [201]. Depression is characterized by low mood, 
lack of energy, sadness, insomnia, and an inability to enjoy 
life [202]. Pathological mechanisms of PSD may involve 
an increase in inflammatory factors, dysregulation of the 
hypothalamic–pituitary–adrenal axis, decreased levels of 
monoamines, glutamate-mediated neuronal excitotoxicity, 
and abnormal neurotrophic responses [203, 204]. How-
ever, disruption of hippocampal synaptic plasticity may be 
a significant pathological mechanism in depression [205]. 
Yang et al. [206] found that hydrogen sulfide can inhibit 
β2-microglobulin-induced depression-like behavior, which 
may be associated with improving hippocampal synaptic 
plasticity by enhancing the hippocampal Warburg effect. 
Feng et al. [117] found that PKM2 improves PSD by acti-
vating the VEGF-mediated MAPK/ERK signaling pathway, 
which may be associated with improving of inflammatory 
responses and oxidative stress and proliferation of oligo-
dendrocytes. In addition, some studies on PKM2 in stroke 
may indirectly suggest a potential link between PKM2 and 
PSD. For example, PKM2 plays a vital role in the inflam-
matory response after stroke [32]; PKM2-mediated lactate 
production plays an important role in maintaining neuronal 
excitability and synaptic plasticity [90]. As mentioned ear-
lier, inflammatory responses, neuronal excitatory toxicity, 
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and impaired synaptic plasticity may be pathological mecha-
nisms of PSD [203–205] (Fig. 8).

Therefore, there is a certain connection between PKM2 
and PSD. However, the mechanism of the link between the 
two needs to be further studied.

PKM2 and Other Neurological Diseases

In addition to the above neurological diseases, PKM2 is also 
involved in pathological changes in other neurological dis-
eases. For example, PKM2 is involved in neuronal apopto-
sis in GCI, hypoxic-ischemic encephalopathy, and traumatic 
brain injury, as well as anesthetic-induced apoptosis of hip-
pocampal neurons [87, 99–101], proliferation of astrocytes 
in traumatic SCI [111], angiogenesis, neurogenesis, and 
functional recovery after ischemic stroke [40], as well as 
activation of neutrophils and infiltrating macrophages in the 
brain after stroke [17, 130], activation of glial cells in epi-
lepsy [147], immune responses in autoimmune encephalitis 
[153], regulating oxidative stress of dopaminergic neurons 
in PD [171], and regulating mitochondrial dysfunction in 
anesthesia-induced brain injury [179]. Therefore, PKM2 has 
a crucial role in neurological diseases (Fig. 8).

Conclusion

This article focuses on the key role of PKM2 in neurologi-
cal diseases, expanding the understanding of the typical and 
atypical biological role of PKM2. Moreover, PKM2 does not 
work exactly the same in different diseases or cells, which is 
related to its oligomerization, subcellular localization, and 
post-translational modifications. Multiple signaling path-
ways intricately regulate the biological activity of PKM2, 
allowing cells to adapt to different physiological states. 
Therefore, PKM2 may have potential links with neurologi-
cal diseases and may be used as a research direction for 
the treatment of these diseases and become a potential new 
target for clinical treatment of these diseases.
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