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Abstract
Misfolded and aggregated proteins build up in neurodegenerative illnesses, which causes neuronal dysfunction and ulti-
mately neuronal death. In the last few years, there has been a significant upsurge in the level of interest towards the func-
tion of molecular chaperones in the control of misfolding and aggregation. The crucial molecular chaperones implicated in 
neurodegenerative illnesses are covered in this review article, along with a variety of their different methods of action. By 
aiding in protein folding, avoiding misfolding, and enabling protein breakdown, molecular chaperones serve critical roles 
in preserving protein homeostasis. By aiding in protein folding, avoiding misfolding, and enabling protein breakdown, 
molecular chaperones have integral roles in preserving regulation of protein balance. It has been demonstrated that aging, a 
significant risk factor for neurological disorders, affects how molecular chaperones function. The aggregation of misfolded 
proteins and the development of neurodegeneration may be facilitated by the aging-related reduction in chaperone activ-
ity. Molecular chaperones have also been linked to the pathophysiology of several instances of neuron withering illnesses, 
enumerating as Parkinson’s disease, Huntington’s disease, and Alzheimer’s disease. Molecular chaperones have become 
potential therapy targets concerning with the prevention and therapeutic approach for brain disorders due to their crucial 
function in protein homeostasis and their connection to neurodegenerative illnesses. Protein homeostasis can be restored, 
and illness progression can be slowed down by methods that increase chaperone function or modify their expression. This 
review emphasizes the importance of molecular chaperones in the context of neuron withering disorders and their potential 
as therapeutic targets for brain disorders.
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Introduction

Protein is a biochemical that plays an active role in almost 
all biological processes. Every protein is first synthesized 
by the process called translation in a form of chain consist-
ing beads of amino acids. To become active functionally, 
the chain structure of protein must be eventually folded into 
a three-dimensional structure on the basis of the informa-
tion on the sequence of amino acids. It is observed that 
proteins are capable of folding into their functional three-
dimensional conformation in vitro without any external aid. 
But, in in vivo, numerous proteins are involved in protein 
folding called molecular chaperones (MCs) [1]. The primal 
function of molecular chaperones is preventing misfold-
ing and aggregation of protein. However, when proteins 
undergo stressful conditions including factors like oxida-
tive stress, high temperature, and inflammation, they are 
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susceptible to forming structures that are not native to their 
functional structure. This leads to protein misfolding, which 
results in aggregate which can have a cytotoxic element to 
it [2–4]. Therefore, irregular folding or proper removal of 
potentially deadly forms of proteins is a common feature of 
many disorders, including neurological diseases like Prion’s 
disease, Parkinson’s disease, Huntington’s disease, and Alz-
heimer’s disease [5]. Several of these brain diseases initiate 
with abnormalities in the function of synapse, which causes 
neurodegenerative networks to malfunction [6]. Other stud-
ies have also shown that cytotoxic aggregates are capable 
of exiting cells and entering the neighboring cells, caus-
ing prion-like spreading of disease [7]. Recent research has 
unveiled the presence of chaperones within the extracellular 
space, suggesting their capacity for neuroprotection [8, 9]. 
Some studies conducted recently have suggested that molec-
ular chaperones are capable of suppressing neurodegenera-
tion, when utilized as a therapeutic target. The subject of 
this review would be to summarize the important molecular 
chaperones involved in neurodegenerative disease, different 
aspects of misfolding and aggregation and involvement of 
molecular chaperones in its prevention, how molecular chap-
erones help in neuroprotection, effect of aging on molecular 
chaperone function, involvement of molecular chaperones 
in pathogenesis of different neurodegenerative disease, and 
finally, how molecular chaperones can be a potential target 
in preventing brain diseases.

Molecular Chaperones

After transcription, many of the formed polypeptides are 
capable of assembling themselves into their native func-
tional three-dimensional structure while there are others that 
require a special type of protein called molecular chaper-
ones. Molecular chaperones are a family of unrelated protein 
that help and facilitate the proper assembly of polypeptide 
chain according to the information encoded in the polypep-
tide chain in vivo without themselves getting incorporated 
in the final structure [10]. Even if the concept of “Molecu-
lar chaperone” was first used to provide a comprehensive 
explanation of the function of nucleoplasmin, which is a 
protein within in the nucleus in the building of chromatin 
[11], our major understanding of the role of molecular chap-
erone in the folding of proteins and overall regulation of pro-
tein balance came after researchers were conducted on heat 
shock protein 70 (Hsp70s) and the chaperonins when it was 
proposed, based the ability of Hsp70s to induct heat, that 
it helps in repair or degradation of polypeptide chain that 
gets damaged under stress [12]. Molecular chaperones, the 
majority of which are heat shock proteins (Hsp), have been 
grouped into nine primary families based on their function, 
shown in Table 1 [13]. Only the chaperone families Hsps, 

Hsp60, Hsp70, Hsps90, and Hsp100, which have the greatest 
influence on human aging and neurodegenerative illnesses, 
will be of interest to us. The chaperone families along with 
number of chaperones and co-chaperones in the family is 
summarized in Table 1.

The Hsp90 System

The members of the Hsp90 family, characterized by heat 
shock proteins with a molecule weight of 90 kDa, operate 
in conjunction with the Hsp70/Hsp40 chaperone system. 
These proteins play a vital role in regulating the alteration 
of protein structure and cellular signaling. Despite exten-
sive research, a comprehensive understanding of the pre-
cise workings of Hsp90 remains elusive. When there is no 
environmental stress, Hsp90 appears to form connections 
with a specific set of substrates, primarily associated with 
medical contexts. These include numerous proteins involved 
in transmission of signals, including receptors for steroid 
hormones, kinases associated with proto-oncogenes (like Src 
or Raf), and cell cycle (such as Cdk4) regulators [14, 15]. 
A C-terminal dimerization domain, an N-terminal ATPase 
domain, and a linker domain are present on each subunit of 
the homodimer Hsp90 [16]. Hsp90 seems to recognize its 
substrates in a setup similar to the natural state. The Hsp70-
dependent mechanism that results in substrate loading is 
facilitated through p60/Hop (Hsp-organizing protein), a 
protein that directly engages with both Hsp70 and Hsp90 
[17, 18]. Hsp90 goes through controlled repeated sequences 
of ATP binding and enzymatic breakdown, with the goal of 
eventually releasing the inherent form of the protein [19, 20]. 
In the presence of stressful circumstances, Hsp90 decreases 
the respective substrate specificity and takes on a broader 
warehousing function for unfolded protein molecules, and 
can subsequently undergo re-folding with the assistance of 
extra chaperones [21]. Hsp90 is integrated within a chaper-
one consortium system that is very sophisticated. According 
to the bound substrate protein, different cofactors may be 
needed for it to function. Many of these co-factors com-
pete for interaction with the EEVD peptide motif situated at 
Hsp90’s C-terminus and contain TPR-clamp domains [18]. 

Table 1   The chaperone families along with number of chaperones 
and co-chaperones in the family

Family of chaperone Number of chaperones Number of 
co-chaper-
ones

HSP 40 0 49
HSP 90 5 41
HSP 70 17 10
HSP 60 14 1
sHsps 10 0
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Two examples of cofactors with additional enzymatic activ-
ity are the enzymes that carry out peptidylprolyl isomeriza-
tion (like immunophilins and cyclophilins) and serine/threo-
nine phosphatase 5 [22]. Recent research has demonstrated 
that hemoglobin-stabilizing protein (AHSP) preferentially 
inhibits aggregation of α-hemoglobin, allowing β-chain and 
α-chain to assemble stoichiometrically for the formation of 
functional hemoglobin A (HbA) [23].

The Hsp70 System

The molecular chaperone family known as Hsp70 makes 
up the vast majority of them. Hsp70s are found within the 
cytoplasm associated with bacterial organisms, archaea, and 
also in eukaryotic organisms including their endoplasmic 
reticulum (ER), chloroplasts, mitochondria, and nuclei. In a 
number of post-translational activities, Hsp70 interacts with 
growing chains during de novo protein folding and prevents 
protein aggregation [24], which includes targeting of pro-
tein, translocation through plasma membrane, and apop-
tosis [25–27]. Under stressful circumstances, such as heat 
stress, the representation of particular Hsp70 family mem-
bers are strongly activated. Various cofactors work through 
Hsp70 via adjusting its ATP-binding capacity and direct-
ing its role to particular cellular arrangements in order to 
adapt to these various roles. An N-terminal ATPase domain 
and a C-terminal peptide binding domain are the two main 
functional domains of Hsp70 chaperones [28, 29]. Hsp70 
recognizes characteristics that are typically present in non-
native proteins, such as accessible polypeptide backbone 
with hydrophobic amino acid side chains exposed [30]. The 
primary bacterial Hsp70 homolog DnaK provides the most 
comprehensive understanding of the cycle of substrate bind-
ing, release regulated by ATP that underlies all Hsp70 activi-
ties. DnaK quickly binds and releases substrate when it is 
ATP-bound. The chaperone-substrate complex is stabilized 
as a result of the conversion of ATP to ADP. The co-factors 
GrpE and DnaJ control DnaK’s cycling between the ADP- 
and ATP-bound states [31]. Peptide capture and retention 
are made easier by DnaJ’s stimulation of DnaK’s ATPase 
activity. In order to offer unfolded polypeptides to DnaK, 
DnaJ, which can also recognize hydrophobic peptides, may 
be used [32]. The release of substrate and dissociation of 
ADP from DnaK by the nucleotide exchange GrpE factor 
signifies the completion of the DnaK cycle reaction cycle.

Eukaryotes do not have any homologs of GrpE, in con-
trast to Hsp70 chaperones, which appear to frequently col-
laborate with DnaJ-proteins (known as Hsp40 in eukary-
otes). However, it has been discovered that the protein Bag-1 
functions in the eukaryotic cytosol in the role of a nucleo-
tide-exchange factor and a particular modulator of Hsp70 
[33, 34]. It has been discovered that a variety of additional 
Hsp70 co-chaperones regulate the various Hsp70 activities 

throughout particular cellular processes in eukaryotes. For 
instance, some cofactors with Bag domains, such BAG-6 or 
BAG-1, also include an extra domain resembling ubiquitin, 
which allows them to work with CHIP in a functional way 
[35]. The chaperone action of Hsp70 and Hsp90 is inhibited 
by CHIP, a co-chaperone that contains the tetratricopeptide 
repeat (TPRclamp), the mechanism of which is not known 
yet. Furthermore, Hsp70- and Hsp90-bound substrates are 
in vivo promoted by CHIP to undergo ubiquitination and 
proteasomal degradation [36, 37]. The Hsp70 system like 
Bag-1 and CHIP has vital role in protein folding. This pro-
cess is assisted by molecular chaperones and protein deg-
radation, two of the main systems that maintain protein 
homeostasis in cytoplasm of cell [38].

The Hsp60 System

The 60-kDa mitochondrial chaperone Hsp60, commonly 
known as chaperonins, and GroEL, its prokaryotic homolog, 
share a high degree of conservation and are both members 
of this family [39, 40]. Since its formation, Hsp60 mainly 
remains active in the mitochondria, but under certain cel-
lular stressors, it can move to the cytoplasm [41, 42]. The 
Hsp60 is made up of that form bond to form a complex 
of two heptameric rings, and these rings are stacked one 
upon another [43]. This special structure formed due to the 
stacking of two rings results in formation of a huge cav-
ity in the middle in which the folding of proteins occurs 
through hydrophobic bonding [41]. Hsp10 chaperonin sup-
ports Hsp60 in folding by functioning as a dome-like cover 
over the ATP-active form. The inner cavity enlarges as a 
result, encouraging protein folding [42]. Together with other 
chaperones, Hsp60 and Hsp70 help unfolded proteins fold. 
Little is understood about the role of Hsp60 proteins in the 
reconfiguration of pathological misfolded proteins in the 
context of neurodegenerative conditions. Other evidences 
showed that α-synuclein has connection with Parkinson’s 
disease mutant interacts with Hsp60 [44].

The Small Heat Shock Protein System

In situations where cells are exposed to free radicals and 
extreme temperatures, a group of chaperones referred to 
as the small heat shock proteins (sHsps) having size of 
12–35 kDa suffers damage [45]. HspB1 through HspB11 
are the only 11 sHsps that have been found to date, and they 
are structurally and functionally quite similar [46]. sHsps 
form massive multimeric structures and have a conserved 
αcrysallin domain at their C-terminus, which is roughly 90 
amino acids long [47]. The majority of these heat shock 
proteins have been discovered in the nervous system [48]. 
While only operating in the multimeric state and lacking 
any substrate specificity, sHsps shows a remarkable liking 
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for partially folded intermediates [49]. It has been proven 
that the small Hsp protects the exposed hydrophobic surface 
of partially unfolded polypeptides, maintaining their solu-
bility. In recent studies, researchers have found that sHsps 
destabilizes the aggregates, allowing the chaperones Hsp70/
Hsp40 and hsp104 to mediate their solubilization and refold-
ing [50, 51].

The Hsp104 System

Both the eukaryotic homolog and its bacterial ClpB, Hsp104, 
are crucial components associated with the heat-shock reac-
tion and possess the extraordinary ability to rescue stressed 
proteins from a state of aggregation [52]. Hsp104 and ClpB 
belong to the extensive AAA+ superfamily. The energy 
needed to facilitate protein unfolding, disaggregation, and 
disassembly is produced by the ATP hydrolysis mediated 
by the AAA+ domain, which is the characteristic feature of 
this family [53]. The Hsp100 family is made up of members 
that are heat-inducible proteins and that have similar roles 
in assisting organisms in surviving under extremely stressful 
circumstances [54]. Hsp104 is Hsp100 family member of 
motor proteins known as AAA+ (ATPase’s connected with 
several cellular processes), which help organisms withstand 
and adapt to environmental pressure [55]. Adenine nucleo-
tides act as a molecular stabilizer for the homo-hexamer 
Hsp104 [56]. Each Hsp104 monomer has two AAA-1 and 
AAA-2 ATP-binding domains, two additional domains, and 

a domain at its N-terminus that facilitates physical contact 
with Hsp70 aggregates [57]. When protein balance is dis-
turbed, proteins gets accumulated which are removed by 
Hsp104. In humans, this aggregation has a connection with 
neurodegenerative diseases like PD. It is important to note 
that humans lack a cytoplasmic homolog of Hsp104. By 
cooperating with Hsp70 and its co-chaperone Hsp40, sci-
entists have discovered that Hsp104 boosts the generation 
of refolded proteins and expedites the protein aggregation 
resolution [58] (Fig. 1).

Misfolding and Aggregation of Protein: 
a Concise Summary

Misfolding of Proteins

Over an extended period, researchers thought that a poly-
peptide could take on a range of potential configurations, 
and the majority of smaller proteins were able to fold to one 
native configuration under the correct conditions in a matter 
of a few milliseconds [59]. To be physiologically and func-
tionally active, a protein must be in its natural form. Uver-
sky, however, demonstrated that a large number of so-called 
intrinsically disorganized or naturally unfolded proteins do 
not have a steady tertiary structure while being biologically 
active [60]. These proteins do not have a clear and distinct 
3D structure, but they do have a tendency to fold into unusual 

Fig. 1   Function of molecular chaperones in protein homeostasis
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shapes with unusual biological activities. These proteins 
may misfold either naturally or as a result of various cir-
cumstances. Numerous protein conformation disorders, such 
as neurodegenerative disorders, are thought to start with the 
protein misfolding, which are called intrinsically disordered 
proteins (IDP) [61]. We should stress that when considering 
the subject of protein folding and misfolding, a funnel meta-
phor is usually used to portray it. This idea shows the energy 
environment folding and aggregating of protein [62]. The 
freest energy is found in unfolded proteins, which can also 
take on many 3D geometries. The range of sustained thermo-
dynamic states for polypeptides in a healthy condition, how-
ever, is far smaller than it is for their normal active function 
[63]. The number of conformations in which a polypeptide 
can be in decreases when it starts to fold. Since the major-
ity of proteins in cells are made up of N100 amino acids, 
they have a higher propensity to experience rapid lipophilic 
collapse into globular structure. These proteins have a pro-
pensity to fold intermediates with higher chances of escap-
ing into non-native states before reaching their native state 
[64]. Due to their exposed hydrophobic areas, these partially 
folded proteins can occasionally cluster easily. This can lead 
to harmful byproducts being produced inside the cell, which 
may play a factor in some disorders associated with abnormal 
protein misfolding. Aggregation, however, can also result in 
amorphous aggregates that have non-toxic implications [65].

Protein Aggregation

Wetlaufer proposed a nucleation condensation growth model 
in 1973, which describes how proteins aggregate [66]. Three 
distinct phases may be seen in this model: a delay period, 
initial growth phase, and a concluding plateau phase. As a 
start, we are used to thinking that this concept emphasizes a 
progressive change of phase from natural to misfolded mono-
mer, which subsequently initiates to combine into larger enti-
ties known as nucleation sites (nuclei). Only if the nucleus 
develops local connections during the latency phase can the 
aggregation reaction take place [67]. After nucleation, the 
nuclei enlarge, which results in a quickening of growth or 
elongation phase. The extremities of bigger aggregates known 
as protofibrils are supplemented with misfolded monomers 
and/or oligomers during this phase, and the protofibrils com-
bine to form fibrils. At the end of the elongation phase, these 
insoluble, strongly hydrogen-bonded fibrils, also known as 
amyloids, result in the formation of plaque-like formations 
[68]. Recent research, however, demonstrates that the lag 
phase and exponential phase also include a variety of micro-
scopic processes in addition to the nucleus formation and 
fibril formation responses [69]. It is now clear that, contrary 
to what we previously believed, the lag phase comprises of 
several simultaneous processes beginning with the primary 
nuclei that emerge from the solution of monomers during the 

lag phase. As a result, the lag-time denotes the amount of 
time needed for the reaction’s initial nuclei to expand and 
multiply into an aggregate concentration that can be easily 
identified. The majority of the time, this proliferation occurs 
by secondary nucleation, in which fibrils may act as a sur-
face with catalytic properties to encourage the growth of new 
aggregates [69]. These fibrils could also divide or fragment to 
generate new elongation ends. The four events—that include 
primary level nucleation, elongation, secondary level nuclea-
tion, and fragmentation—thus frequently take place during the 
lag phase in many systems, with at least two of the four reac-
tions taking place during this phase. These same processes, 
albeit at slightly different rates, occur during each of the three 
stages of the process of large aggregation due to the concen-
tration and rate constants of reactive entities at each point 
of time [70]. Interaction observed among different entities 
can be attributed to the inclination of masking the hydropho-
bic surfaces of misfolded proteins to escape the hydrophilic 
intracellular environment through forming small nuclei and 
engaging in mutual interactions within their core [71]. The 
conformational stability of α-helices is compromised during 
nucleation-condensation growth and the process of aggregate/
fibril creation, leading to the emergence of potentially harmful 
aggregate structures [72]. Research findings have provided 
evidence that the factor responsible for maturing bacterial 
hydrogenase HypF exhibits its highest toxicity in the form 
of small aggregates generated in the lag phase or in the stage 
prior to fibrillar aggregate formation that emerge at the onset 
of the growth phase. When these aggregates are introduced 
into the culture medium, they have been observed to substan-
tially diminish the viability of cultured cells. Conversely, the 
fully developed fibrils of the identical proteins, which develop 
towards the conclusion of the development phase, demon-
strate a lack of significant harmful effects [71, 72].

Protein aggregation is enhanced by a number of factors 
that have been found. One such aspect is the increase in the 
quantity of improperly folded proteins with in cells, which 
causes aggregates to develop [73]. Moreover, studies have 
shown that modifications in the environment within the cell, 
including variations in pH, temperature, and the presence of 
different metal ions, have the potential to trigger protein mis-
folding and subsequent clustering into harmful forms. These 
environmental changes can arise from a range of sources, 
mutations either somatic or genetic, and post-translational 
modifications, exposure to metabolic or oxidative stress, or 
even inherent oxidative or metabolic processes [74].

Molecular Chaperones as Neuroprotector

The protein quality control system (PQC), a well-built 
mechanism in the cell, assists in maintaining protein 
homeostasis, verifies that proteins are folded in their 
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natural conformation, and aids in the destruction of 
proteins that undergone misfolding when necessary [75]. 
Following the synthesis of polypeptides, they undergo 
a crucial folding process to acquire their functional 
shape. Nevertheless, certain proteins, particularly those 
categorized as intrinsically disordered or natively unfolded, 
have the propensity to undergo spontaneous misfolding 
when subjected to stress conditions. This misfolding event 
can subsequently result in protein conformation disorders, 
disrupting their normal structure and function [76, 77]. The 
accumulation of unfolded proteins is a common occurrence 
that can lead to cellular damage. The PQC system serves 
as a protective mechanism against such damage resulting 
from the buildup of misfolded proteins. This pathway 
involves various components, including molecular 
chaperones, the proteolytic system (such as the system 
for degradation involving ubiquitin-proteasome), and the 
process of autophagy. Molecular chaperones play a vital 
role in assisting unfolded or improperly folded proteins 
in attaining their correct shape. They are considered the 
primary line of protection against neurodegenerative 
disease caused by protein misfolding due to their essential 
role in maintaining protein structure. Defects in the 
functioning of molecular chaperones can lead to the 
hazardous accumulation of unfolded or misfolded proteins 
and subsequent toxicity [78] (Fig. 2).

Role of Molecular Chaperone in UPS

The ubiquitin-proteasome degradation system (UPS) has a 
vital function in eliminating both unfolded and misfolded 
proteins [79]. This process relies on the coordinated action 
of several enzymes, including E3, E1, and E2, which medi-
ate the interaction between target receptor and the ubiquitin. 
The UPS initiates with enzyme E1 establishing a thioester 
bond through ATP-dependent means with the glycine at 
C-terminal of ubiquitin, activating it [80, 81]. Activated 
ubiquitin molecules are then transferred to the linking 
enzyme E2, which subsequently transfers them to the lysine 
residue of protein substrates through the action of the ubiq-
uitin ligase E3. The E3 enzyme establishes bond involving 
is-peptide linkage between the ubiquitin’s glycine and the 
protein substrate lysine. Molecular chaperones are essen-
tial in this process as they assist in recognizing unfolded 
or misfolded proteins, which the E3 ubiquitin ligase alone 
cannot efficiently identify. The recognition of the ubiquitin-
substrate conjugate is facilitated by RPN13 and RPN10, 
located within the subunits of proteasomes having 19S cap. 
Specific ubiquitin proteases, such as UCHL5, USP14, and 
RPN11, enable the recycling of ubiquitin by deubiquitinat-
ing the ubiquitin chains [82–84]. Subsequently, hydrolysis 
of ATP at the 19S cap subunits of proteasomes transforms 
the substrate protein into a polypeptide, which is further 

Fig. 2   Role of molecular chaperone in neuroprotection. Molecular 
chaperones play a vital role in maintaining regulation of protein by 
assisting the refolding of misfolded or unfolded proteins. In an event 
when the substrate proteins are unable to configure properly, chap-

erones guide them towards proteolytic pathways. Misfolded proteins 
that are soluble typically broken down through the UPS (ubiquitin-
proteasome degradation system). However, the unchecked misfolded 
protein tends to form protein aggregates which leads to brain diseases
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degraded by the 20S subunit. This degradation leads to the 
production of small peptides composed of approximately 
9–12 amino acids [85]. These peptides can be utilized for 
the new protein synthesis or displayed on the cell membrane 
to undergo immunosurveillance. In this way, the proteasome 
acts as the structural foundation for recognizing proteins tar-
geted that are degraded by ubiquitin chains [86]

In the UPS, several Ub ligases including UBR2, UBR1, 
E6AP, encoded by the San1, UBE3A gene, and Hul5 col-
laborate with molecular chaperones such as the c-terminus 
of HSP70 interacting protein (CHIP) and parkin [87–89]. 
TPR (tetratricopeptide repeat) proteins act as cochaperones 
with CHIP, which is a Ub ligase part of U-box dependent, 
to regulate the chaperone activities of HSC70 and trans-
form HSP70 into a degradation machinery for endoplasmic 
reticulum (ER) quality control [90, 91]. Additionally, CHIP 
triggers ubiquitylation, leading to the proteasomal degrada-
tion of receptors associated with HSP90 [92]. Consequently, 
CHIP is considered an E3 enzyme in the protein quality con-
trol (PQC) system, specifically targeting substrate proteins 
bound by chaperones HSP70 and HSP90 for ubiquitylation 
[93]. The E2 enzyme UBCH5 collaborates with CHIP to 
exhibit E3 ligase activity, facilitating proteasomal degra-
dation. Ub ligase E3 subsequently recognizes and ubiquit-
inates misfolded protein [94]. The transport of ubiquitinated 
substrates is then facilitated by CHIP’s interaction with the 
subunit RPN10 of the proteasome particles of 19S cap. As 
a result, mutant superoxide dismutase (SOD) 1 in ALS and 
hyperphosphorylated tau in AD are two examples of sub-
strate proteins that CHIP indirectly recognize [95]. Another 
co-chaperone from the sHsps family known as Bcl-2 asso-
ciated athanogene 1 (BAG-1) aids in the function of CHIP. 
The C-terminal region of BAG-1 engages in interactions 
with the domain of Hsp70 that is ATPase, facilitating the 
release of substrates bound to Hsp70. On the other hand, 
the N-terminal portion of BAG-1 contains a UBL (Ub-
like) domain that cooperates with ubiquitin protein degra-
dation protein system the proteasome. CHIP and BAG-1 
work together to direct proteins that are misfolded towards 
the degradation [96–98]. HSP70/HSP40 hence aids in the 
refolding of protein substrates in brain disorders.

Effect of Aging on Molecular Chaperone 
Function

Throughout its lifespan, a stable protein undergoes diverse 
posttranslational modifications. These modifications encom-
pass several processes such as methionine oxidation, and 
protein glycation, as well as the deamidation of asparaginyl 
and glutaminyl residues. As a consequence of these modifi-
cations, isopeptide linkages are formed, which play a major 
role in altering the function and structure of the protein 

[99–101]. In comparison of glutamine synthase, bovine 
serum albumin, and various K+ channels, it was shown that 
proteins’ susceptibilities to oxidative damage vary. This find-
ing suggests that folding and tertiary quaternary structure 
may play a role in this variation [102, 103]. Early research 
has suggested that the inactivation of enzymes such as isoci-
tratelyase and phosphoglycerate kinase due to aging may be 
linked to the accumulation of a heat-sensitive, non-native 
conformation. In a study on refolding, it was observed that 
the augmented helical content of aged aldolase was main-
tained even after the refolding process, indicating that post-
translational modifications occurring throughout the pro-
tein’s lifespan were primarily responsible for inducing the 
conformational changes [104, 105]. Proteins that have an 
extended lifespan experience the accumulation of various 
posttranslational modifications. While intracellular proteins 
typically undergo rapid turnover under normal conditions, 
certain tissues, such as the brain, heart, and liver, exhibit a 
threefold increase in the carbonyl content of aging proteins, 
reflecting oxidative damage. Furthermore, proteins present 
extracellularly like collagen have longer lifetimes, and as 
proteotoxic damage accumulates in these proteins, it leads 
to elevated tissue stiffness and impaired cell-to-cell com-
munication [106, 107]. The proteasome, aided by various 
chaperones, is primarily responsible for protein degrada-
tion. However, aging results in a reduced ability to adapt 
to changing conditions, which leads to an increased occur-
rence of proteotoxicity within cells. The capacity of chap-
erones to identify deteriorated proteins and the function of 
the primary cytoplasmic proteolytic machinery, the protea-
some, are both diminished by aging. Additionally, certain 
oxidized and crosslinked proteins are less susceptible to 
degradation and, in fact, can be potent inhibitors of the pro-
teasome. These factors collectively contribute to a signifi-
cant buildup of post-translationally modified and misfolded 
proteins [108–110]. As organisms age, the accumulation 
of misfolded proteins necessitates an elevated amount of 
chaperones to deter protein aggregation and support deg-
radation. This could potentially be the underlying cause of 
the high levels of certain chaperones, including Hsp22 and 
Hsp70, found in some aging species. The adaptive response 
of aging kidneys, in particular, is characterized by a marked 
increase in the amount of chaperone proteins, with the col-
lagen-specific chaperone Hsp47 being particularly promi-
nent. This is likely due to the heightened fibrosis associated 
with aging kidneys, which requires additional amounts of 
Hsp47 to be produced [111]. A substantial body of evi-
dence indicates that the ability to induce different chaper-
ones becomes compromised in aged organisms, as detailed 
in Table 2. Notably, in older rats, the production of Hsp70 
through heat exposure is reduced, but intriguingly, exercise 
can elicit a significant increase in Hsp70 levels in these same 
animals. Furthermore, the distinct changes observed in the 
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induction mechanisms of numerous chaperones during aging 
gain further support from the discoveries made by Flem-
ing and colleagues, who discovered a significantly modified 
heat shock protein induction pattern observed in elderly fruit 
flies compared to their younger counterparts [117, 118]. The 
differences observed in chaperone induction between aged 
animals and human subjects dismiss the notion of a univer-
sal disruption in the transcriptional mechanism of molecu-
lar chaperones. Surprisingly, the heat shock factor (HSF1) 
level, the transcription factor accountable for the activation 
of the majority of chaperones, remains mostly consistent 
throughout the aging journey. However, there is a significant 
reduction in the binding and activation of HSF1 to the ele-
ment of heat shock, which represents in aged animals, its 
DNA-binding site within the promoter region of molecular 
chaperones is affected. This suggests that the age-related 
reduction in chaperone induction is not solely attributed to 
alterations in HSF1 levels, but rather to impair HSF1 binding 
and activation at the heat shock element [119, 120]. The pre-
cise mechanism underlying the defective activation remains 
unknown. However, in recent times, a number of heat shock 
factor-binding proteins have been uncovered that regulate 
the heat shock response, and they may potentially repre-
sent the molecular basis for the divergent impairments of 
chaperone induction observed during aging [121]. There is 
a scarcity of studies specifically investigating the functional 
changes occurring in molecular chaperones during the aging 
process, as compared to the abundance of research on their 
quantity or induction. Nevertheless, there have been obser-
vations indicating a significant decline in the role of alpha 
crystallin as a chaperone in aged human lenses. This implies 
that, with age, there may be a functional impairment in the 
molecular chaperones to efficiently aid in protein folding and 
hinder protein aggregation, highlighting the need for further 
exploration in this area [122]. Among the proteins found 
in the lens, crystallins possess one of the longest lifespans 
in the human body, rendering them highly susceptible to 
various forms of proteotoxic damage. Hence, the reduced 
activity of crystallins in aged lenses is not surprising. This 
prompts an intriguing question regarding whether impaired 
activity of other chaperones might exacerbate the detri-
mental effects resulting from their decreased induction in 
aging organisms. Another noteworthy example of functional 

changes in chaperones observed in older individuals involves 
Hsp90, which plays a protective role against the decline in 
proteasome activity associated with aging. However, with 
advancing age, the association between Hsp90 and the pro-
teasome diminishes, potentially rendering the proteasome 
more vulnerable to stress-induced damage in aging organ-
isms. This decline in the Hsp90-proteasome interaction 
highlights a potential mechanism through which the aging 
process can impact the proteasomal system and its ability to 
effectively degrade and remove damaged proteins. Moreo-
ver, more investigations are warranted to explore the conse-
quences of impaired chaperone function and their interplay 
in the context of aging-related proteostasis [108] (Fig. 3).

Involvement of Molecular Chaperone 
in Human Brain Disease

Parkinson Disease

Parkinson’s disease (PD) progressively causes the breakdown 
of dopamine neurons in the substantia nigra part of the brain. 
It is related to the formation of the so-called Lewy bodies 
which are abnormal protein aggregates and the main com-
ponent of them is insoluble alpha synuclein protein [123, 
124]. Mutations in the SNCA gene, responsible for produc-
ing the α-synuclein protein, have been linked to PD. These 
mutations speed up protein aggregation and cause the death 
of dopaminergic neurons [125]. Hsp70, Hsp90, Hsp40, and 
Hsp27 are among the additional protein quality control sys-
tem elements found in the Lewy bodies [126]. According to 
research, Hsp70 is crucial in PD for preventing misfolded 
α-synuclein from aggregating and becoming toxic [127, 
128]. Patients with PD have been found to exhibit a substan-
tial rise in the expression of Hsp70 genes which react to the 
increase in misfolded α-synuclein and the resulting toxicity 
[129]. Different Hsp70 domains have been used to illustrate 
the chaperone’s effectiveness in vitro. Hsp70 recognizes the 
hydrophobic segment of misfolded α-synuclein through its 
substrate binding domain (SBD). Specifically, by lengthening 
the lag phase during the nucleation phase, the SBD by itself 
is effective in enabling Hsp70 to inhibit α-synuclein aggre-
gation [130, 131]. Either the chaperone or its C-terminal 

Table 2   Table depicting 
changes that occur in chaperone 
with aging

Chaperone Changes Reference

Hsp27 The process of heat induction is compromised. [112]
Hsp32 Oxygen damage induction is compromised. [113]
Superoxide dismutase The process of heat induction is compromised. [114]
Hsp60 The process of heat induction is compromised. [112]
Hsp70 Heat, ischemia, and mitogen induction are impaired. [115, 116]
Hsp70 The process of exercise induction is maintained. [117]
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domain stabilizes α-synuclein monomers and/or small aggre-
gates. Studies have demonstrated Hsp70’s ability to impede 
α-synuclein aggregation in vivo by overexpressing this chap-
erone in flies [132–134]. Additionally, it has been demon-
strated that reducing Hsp70 expression causes an increase 
in -synuclein cytotoxicity, which is followed by neuronal 
degeneration [135]. Hsp90, one of the primary chaperones 
found in Lewy bodies, has also been associated with PD in 
addition to Hsp70. Hsp90 was actually found to lessen -syn 
toxicity in yeast genetic screens [136]. Furthermore, a great 
deal of research has shown that Hsp90 influences the progres-
sion and buildup of α-synuclein-triggered toxicity. Hsp90 has 
been shown in vitro to interfere with, the regions related to 
vesicle binding and amyloid fibril assembly of α-synuclein 
by Falsone et al. [137]. They proved that α-syn assembly 
is regulated by Hsp90, and vesicle binding is prevented in 
an ATP-dependent manner [138, 139]. According to stud-
ies with one of the synuclein A53T mutations, all three 
Hsp90 domains can bind and inhibit A53T aggregation by 
associating with soluble oligomers [140]. Only Hsp27 and 
β-crystalline interact with α-synuclein at this time, despite 
the fact that sHsps have been demonstrated to exhibit strong 
inhibitory effects on α-synuclein in vitro in contrast to the 
aforementioned chaperones. These two chaperones have 
been shown to defend against the toxicity of -synuclein by 
blocking its aggregation [141–143]. It proved that there is a 
significant reduction in α-synuclein aggregation when Hsp27 
and α-β-crystalline are overexpressed. Additionally, it has 
been shown in vivo that Hsp27 shields dopaminergic neurons 
from the harmful effects induced by α-synuclein [144]. Not 
to mention, as already said, Hsp70, Hsp90, and sHsps effec-
tively inhibit the aggregation of α-synuclein in both in vitro 
and in vivo settings. However, once protein aggregates have 

been generated, these chaperones are unable to resolve them. 
Hsp104 can solubilize disordered protein aggregates in this 
situation; however, its effectiveness against human neurode-
generative disorders is limited.

Amyotrophic Lateral Sclerosis

In the motor neuron disease most commonly observed in 
adults, amyotrophic lateral sclerosis (ALS) causes mus-
cle atrophy, paralysis, and eventual death typically occur-
ring within 2 to 5 years after diagnosis [145]. It affects the 
brainstem, spinal cord, and cortex. Most cases of ALS are 
sporadic, while 5–10% are familial and are caused by gene 
mutations. ALS has been linked to a variety of genetic alter-
ations. One of these is a mutation in the free radical-scav-
enging enzyme SOD1, which accounts for 20% of familial 
ALS cases. Protein misfolding has become one of the most 
predominant theories associated with ALS. The mutations 
enhance the accumulation of misfolded proteins and their 
aggregates that make up cytoplasmic inclusions in ALS-
affected degenerated motor neurons resembling features of 
other neurodegenerative disorders [146–149]. These protein 
aggregates are thought to occur in ALS due to a variety 
of molecular chaperones. Several mutant forms of SOD 
can actually form complexes with Hsp70/Hsp40, Hsp25, 
B-crystalline, and Hsp27. In ALS mouse models, it was dis-
covered that Hsp70 overexpression alone was insufficient to 
decrease SOD1 toxicity [150]. In the pathophysiology of 
ALS, Hsp27 also functions as a preventive factor. Small heat 
shock proteins like B-crystallin and Hsp27 have also been 
found in vitro tests to be able to prevent SOD1 from aggre-
gating [151]. Studies conducted in living organisms have 
demonstrated that overexpressing Hsp27 prevents mutant 

Fig. 3   Aging and molecular 
chaperones: Aging causes 
molecular chaperone functional 
in-efficiency. This leads to 
increased amount of misfolded 
proteins in cell and formation 
of aggregates that leads to brain 
diseases
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SOD1-induced cell death [152]. HSJ1a, another protective 
protein, demonstrates a protective function opposing the 
development of aggregates of mutant SOD in the advanced 
stage of the disease involves interacting with the mutated form 
of SOD1G93, facilitating its ubiquitination, and promoting 
proteasomal degradation [153].

Prion’s Disease

Prion diseases constitute a cluster of neurodegenerative disor-
ders, such as Jakob-Creutzfeldt disease, fatal familial insom-
nia, Gerstmann-Sträussler-Scheinker syndrome, and variant 
Jakob-Creutzfeldt disease. These diseases are characterized by 
the presence of misfolded proteins called prions. Prions can be 
acquired, genetic, or sporadic in nature. The normal form of 
the prion protein (PrPC) adopts a primarily α-helical structure. 
However, in prion diseases, the normal PrPC undergoes a con-
formational change, converting into an abnormal form known 
as proteinaceous infectious particle (PrPSc). PrPSc possesses 
a predominantly β-pleated sheet structure [154]. These par-
ticles acts as a catalyst, inducing the conversion of PrPC into 
additional PrPSc when they come into contact, leading to the 
generation of more prions. This process can perpetuate and 
amplify the prion population exponentially. In sporadic Jakob-
Creutzfeldt disease, which comprises the majority of prion 
disease cases (80 to 95%), the transformation from PrPC to 
PrPSc is commonly considered a spontaneous process. Yet, 
in genetic prion diseases (constituting 10 to 15% of cases), it 
is theorized that mutations in the prion protein gene, PRNP, 
heighten the vulnerability of PrPC to undergo conformational 
changes (misfolding) into PrPSc [155]. The role of chaper-
ones has been examined in various prion systems, including 
[PSI+], [PIN+], and [URE3] in Saccharomyces cerevisiae, as 
well as human prions such as SOD1 and its mutations. Several 
distinct molecular chaperones and co-chaperones have been 
identified to mitigate the aggregation of mutant SOD1 and 
promote cell survival in humans. These include small heat 
shock proteins (HSPB8, HSPB5, HSPB1), DNAJB1, Hsp70 
(HSPA1), BAG1, and CHIP. Notably, in the animal model 
SOD1G93A of ALS, molecular chaperones have been shown 
to confer neuroprotection at advanced stages of the disease. 
Recent research highlights examining the contribution of 
HSJ1 (DNAJB2), a member of the Hsp40 protein family, to 
mitigating the aggregation of mutant SOD1 and enhancing the 
survival of motor neurons in ALS models [156–159].

Huntington’s Disease and Polyglutamine

Polyglutamine (Poly Q) disorders encompass a range of neu-
rodegenerative disorders marked by the gradual deteriora-
tion of the brain. These disorders arise due to the anomalous 
repetition of the trinucleotide CAG, leading to the functional 
impairment and increased toxicity of the associated proteins, 

thereby giving rise to poly Q–related pathologies. Notably, it 
has been observed that the propensity for protein aggregation 
is directly influenced by the length of the polyQ expansion. 
Multiple disorders, including Huntington’s disease (HD) asso-
ciated with the spinocerebellar ataxias, and huntingtin protein 
arising from ataxin, have been identified as being driven by 
the expansion of poly Q repeats [160, 161]. In 1998, Cum-
mings and colleagues conducted a groundbreaking study uti-
lizing a cellular model of polyQ disease, which highlighted 
the potential of molecular chaperones as regulators of protein 
aggregation. Specifically, they demonstrated that DnaJ had the 
ability to decrease the aggregation of ataxin-1. Subsequent 
investigations in the field of HD have predominantly focused 
on investigating the involvement of Hsps in averting protein 
aggregation linked to polyQ diseases. Subsequent research 
revealed that elevated levels of Hsp100, Hsp70, Hsp60, and 
Hsp40 exhibit the capacity to reduce protein aggregation 
induced by polyglutamine, thereby slowing down the pro-
gression of the disease [162]. Actually, it was discovered that 
increased poly Q aggregates generated in transgenic models 
and transfected cell cultures were co-localized with Hsp70 
and its cochaperone, among molecular chaperones [163]. A 
considerable reduction in poly Q aggregation, for instance, 
was observed when cells expressing abnormally extended 
poly Q were treated with an inducer of chaperone expression, 
such as Hsp90, Hsp70, or hsp40 [164]. In accordance with 
additional reports from various groups, overexpressing Hsp40 
or Hsp70 in cell cultures can inhibit the clustering of poly Q 
proteins [165–168]. Additionally, enlarged poly Q proteins 
are less harmful when Hsp70 and its co-chaperone Hsp40 are 
overexpressed in models of drosophila [169, 170]. Studies 
conducted in vitro have shown that Hsp70 and its cochaper-
ones exert an ATP-dependent inhibitory effect on the aggre-
gation of poly Q polypeptides. This mechanism promotes the 
creation of non-fibrillar aggregates soluble in SDS, which 
are proposed to be non-toxic [171]. In the presence of polyQ 
expanded aggregates, additional heat shock proteins, includ-
ing Hsp84 from the Hsp90 family and Hsp105, were found to 
be upregulated. This upregulation contributes to the reduction 
of polyQ aggregation and mitigates its toxicity [172]. Last but 
not least, it was discovered that the expression of HSp104 in 
mammalian cells reduced aggregation in a mouse model of 
Huntington’s disease [173].

Alzheimer’s Disease

Alzheimer’s disease (AD), the most common 
neurodegenerative disorder, primarily affects the elderly 
population. It is characterized by the deposition and 
accumulation of misfolded proteins, including Aβ (Amyloid-β) 
both outside and inside neurons, as well as the formation 
of hyperphosphorylated tau protein NFTs (neurofibrillary 
tangles) within neurons [174–179]. In various animal models 
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with reduced levels of Hsp40, Hsp70, and Hsp90, the toxic 
effects of amyloid β have been shown to be attenuated [180]. 
Immunohistochemical techniques have revealed the elevated 
levels of Hsp70 in neurofibrillary tangles (NFTs) and neuritic 
plaques observed in AD brains [181]. Furthermore, in cell 
culture models of AD, Hsp70 has demonstrated its ability to 
inhibit the aggregation of Aβ and reduce cytotoxicity [182]. 
Experimental evidence has shown that there is interaction 
between Aβ and recombinant Hsp70, Hsp40, and Hsp90. 
These chaperones exhibited a concentration-dependent ability 
to slow down the rate of peptide aggregation, directing the 
aggregation pathway towards the formation of soluble 
circular oligomers rather than amyloid fibrils. Interestingly, 
when Hsp70, Hsp40, and Hsp90 were combined, they were 
capable of modifying the structure of pre-existing fibrils and 
oligomers, whereas their individual additions did not produce 
noticeable effects [183, 184]. A prominent characteristic of 
AD pathogenesis is the buildup of hyperphosphorylated tau 
proteins, resulting in the creation of insoluble neurofibrillary 
tangles (NFTs) within brain cells. The hyperphosphorylation 
of tau alters its conformation, promoting increased 
aggregation, destabilization of microtubules, and subsequent 
neurodegeneration [185, 186]. Multiple studies have provided 

evidence that various Hsps and their co-chaperones, such as 
Hsp90, Hsp27, Hsp90, and α-crystallin, possess the ability 
to recognize hyperphosphorylated tau species and facilitate 
their clearance or recycling. In 2014, Karagoz et al. revealed 
the structure of the Hsp90-tau complex, providing insights 
into the simultaneous binding of Hsp90 and Hsp70 to the 
unstructured tau protein [187, 188, 189] (Table 3).

Molecular Chaperones as Drug Target in Brain 
Diseases

Molecular chaperones have emerged as promising targets for 
therapeutic interventions aimed at controlling the aggregation 
and cytotoxicity of protein clumps in neurodegenerative 
disorders. Increasingly, preclinical investigations, both 
pharmacological and gene therapy methods, have been 
explored to boost chaperone function, demonstrating 
encouraging outcomes. Pharmacological drugs designed to 
target molecular chaperones primarily focus on the Hsp70 
system and can be categorized into three groups: (1) Direct 
chaperone function compounds, (2) HSF-1 modulators, 
and (3) Hsp90 inhibitors. Table 4 provides a summary of 

Table 3   Brain disease 
associated with molecular 
chaperones

Brain disease Involved gene Aggregating protein Chaperone involved Reference

Parkinson disease α-synuclein α-synuclein HSP70, HSP40 [190]
Amyotrophic lateral sclerosis SOD1 Mutant SOD1 HSP70 [191]
Huntington’s disease Huntingtin Mutant huntingtin HSP70 [171]
Alzheimer’s disease Amyloid 

precursor 
protein

Aβ peptides, hyper-
phosphorylated tau

HSP72
HSP27
HSP90

[192, 193]

Table 4   Different substances 
used to target molecular 
chaperones in brain diseases. 
17-Allylamino-17-demethoxy-
geldanamycin (17-AAG), 
17-dimethylaminoethylamino-
17-demethoxygeldanamycin 
(17-DMAG)

Brain disease Material used Target chaperone system Reference

Parkinson disease Geldanamycin Hsp90 [194]
17-AAG​ Hsp90 [195]
SNX-0723 Hsp90 [196]
Trehalose Direct chaperone function [197]

Amyotrophic lateral sclerosis Geldanamycin Hsp90 [198]
17-AAG​ Hsp90 [199]
Celastrol Hsp90 [200]
Trehalose Direct chaperone function [201]
Human Hsp70 Chaperone activity [202]

polyQ diseases Geldanamycin Hsp90 [203]
17-AAG​ Hsp90 [204]
17-DMAG Hsp90 [205]
Geranylgeranyl acetone Hsp70 [206]

Alzheimer’s disease Geldanamycin Hsp90 [207]
Celastrol Hsp90 [208]
Trehalose Direct chaperone function [208]
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the various agents used in the treatment of different brain 
disorders.

Conclusion

Experimental evidence strongly supports the critical role 
of molecular chaperones in modulating neurodegeneration 
and protein aggregation. However, the precise mechanism 
by which chaperones contribute to the understanding of 
neuroprotection that is still limited. Aberrant protein 
interactions, resulting from altered conformations in 
disease-causing proteins, likely initiate the cascade of 
pathogenic events leading to neuronal dysfunction prior 
to the formation of inclusion bodies. The identities of 
the proteins engaged in these interactions, and how they 
contribute to neuronal dysfunction, and the specific 
rescue mechanisms employed by molecular chaperones 
require further investigation, particularly through 
molecular genetic approaches in animal models. Studies 
in animals have demonstrated that chaperones can support 
neuroprotection without influencing the formation of 
inclusion bodies. This implies that protective interactions 
might occur with small, diffusible aggregate assemblies 
or misfolded monomeric conformations. Developing 
tools to detect these distinct misfolded conformations and 
assemblies in vivo and understanding how their interaction 
with cellular proteins, including molecular chaperones, 
which modify pathogenesis are crucial. Effective therapies 
will likely involve modulating multiple components of the 
protein quality control system, with molecular chaperones 
playing a central role. Given that molecular chaperones act 
as the initial line of defense against misfolded proteins, 
operating during the early stages of disease pathogenesis, 
they represent an exciting prospect for pharmacological 
intervention.
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