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Abstract
Autism spectrum disorder (ASD) is a mosaic of neurodevelopmental conditions composed of early-onset social interaction 
and communication deficits, along with repetitive and/or restricted patterns of activities, behavior, and interests. ASD affects 
around 1% of children worldwide, with a male predominance. Energy, porphyrin, and neurotransmitter homeostasis are the 
key metabolic pathways affected by heavy metal exposure, potentially implicated in the pathogenesis of ASD. Exposure to 
heavy metals can lead to an altered porphyrin metabolism due to enzyme inhibition by heavy metals. Heavy metal exposure, 
inborn genetic susceptibility, and abnormal thiol and selenol metabolism may play a significant role in the urinary porphyrin 
profile anomalies observed in ASD. Altered porphyrin metabolism in ASD may also be associated with, vitamin B6 defi-
ciency, hyperoxalemia, hyperhomocysteinemia, and hypomagnesemia. The present review considers the abnormal porphyrin 
metabolism in ASD in relation to the potential pathogenic mechanism and discusses the possible metabolic therapies such as 
vitamins, minerals, cofactors, and antioxidants that need to be explored in future research. Such targeted therapeutic therapies 
would bring about favorable outcomes such as improvements in core and co-occurring symptoms.
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TMP  Thiamine monophosphate
TPP  Thiamine pyrophosphate
TTFD  Thiamine tetrahydrofurfuryl disulfide
UROD  Uroporphyrin decarboxylase
Zn  Zinc

Introduction

Autism spectrum disorder (ASD) is a mosaic of neurode-
velopmental disorder composed of early-onset deficits of 
social interaction and communication, as well as repetitive 
and/or restricted patterns of activities, behavior, and interests 
associated with a number of genetic and environmental risk 
factors [1]. It is a spectrum disorder with significant hetero-
geneity in nature, severity, and progression of core symp-
toms, cognitive development, language abilities, and other 
co-occurring problems [2]. According to recent consensus, 
ASD affects around 1% of children worldwide, with males 
having a higher prevalence [3–5]. Furthermore, as stated by 
Zeidan et al., ASD prevalence has expanded over time, vary-
ing substantially across different socio-demographics [3]. 
According to the latest estimates in 2020 from Autism and 
Developmental Disabilities Monitoring (ADDM) Network, 
about 1 in 36 children in the USA are identified with ASD, 
which is a significant increase compared to the estimates of 
1 in 150 chidren in 2000.

With no reliable molecular biomarkers to guide the diag-
nosis, ASD is diagnosed based on clinical criteria defined 
by the Diagnostic and Statistical Manual of Mental Disor-
ders (DSM-5) [6]. The DSM-5 recognizes that ASD can 
coexist with other disorders [6], including sleep disorders 
[7–9]; epilepsy [10]; other neurodevelopmental, mental, or 
behavioral disorders [1]; inherited metabolic disorders [11]; 
and other genetic syndromes [12, 13]. Accordingly, the eti-
ology of ASD is multifactorial and involves a spectrum of 
genetic, epigenetic, and environmental factors [14]. Moreo-
ver, a plethora of research on molecular biomarker studies 
exploring genetics, metabolic biomarkers, autoantibodies, 
and cytokine profile in ASD has shown that the symptoms 
are associated with several dysfunctions including intestinal 
dysbiosis [15], immune and metabolic abnormalities, mito-
chondrial dysfunction, environmental toxicant exposures, 
and oxidative stress [16]. Interplay in these dysfunctions 
may lead toabnormalties in early brain development with 
altered brain connectivity, exaggerated synaptic pruning, 
imbalance of excitatory and inhibitory neurotransmitters, 
and other neuronal-level abnormalities leading to ASD [17].

The key metabolic pathways potentially implicated in 
the pathogenesis of ASD include energy [18, 19], amino 
acid [20, 21], serotonin [22], dopamine [23], one-carbon 
[24–26], purine [27], and porphyrin metabolism [28–31]. 
Porphyrins are a group of naturally occurring compounds 

with great importance in the metabolic processes of many 
organisms including humans. Various porphyrin derivatives 
are biosynthesized from δ-aminolevulinic acid and glycine 
during human haem biosynthesis. The core structure of 
porphyrin is called porphine, and different substitutions on 
the porphine ring result in porphyrin derivatives such as 
uroporphyrin, coproporphyrin, and protoporphyrin [32]. 
Defects in the haem biosynthetic pathway due to genetic 
and/or environmental factors lead to the accumulation of 
metabolic intermediates and abnormal porphyrin excretion 
(porphyrinuria) [33].

Porphyrinuria in ASD has often been attributed to heavy 
metal toxicity [34–40]. However, the heterogeneity of the 
underlying factors involved in ASD has prompted research-
ers to reconsider their attempts to comprehend the neuro-
chemical changes underlying ASD, including porphyrin 
metabolism. Therefore, it may be anecdotal to attribute 
abnormal porphyrin excretion profile to heavy metal toxicity 
alone. The novel research findings concerning neurochemi-
cal abnormalities in autism etiology propose possible other 
pathogenic mechanisms with implications on alternative 
diagnostic and therapeutic approaches that could enhance 
the quality of ASD interventions. The present review consid-
ers the abnormal porphyrin metabolism in ASD in relation to 
plausible alternative biochemical mechanisms and discusses 
the possible therapeutic implications.

Porphyrin Metabolites in ASD Subjects

Urinary porphyrin levels in ASD have been explored by 
several study groups. However, most of them were con-
ducted by a few research teams in the USA [28, 29, 31, 
36–38, 41, 42], while the rest were conducted in Australia 
[43, 44], France [41], South Korea [45], Egypt [34] Slovenia 
[35], and Armenia [46].

Evaluation of any urinary metabolite requires normaliza-
tion to a ubiquitous urinary metabolite such as creatinine. 
Although it was once hypothesized a possible correlation 
between ASD and depressed urinary creatinine levels by 
Whiteley et al., 2 years later, Nataf et al. concluded their 
study on porphyrinuria in childhood ASD, refuting the for-
mer finding further stating that urinary porphyrin levels were 
elevated in ASD individuals when normalized to creatinine 
[30].

When normalized to creatinine, copropophyrin levels 
[29, 31, 34, 36, 41], precoproporphyrin [31, 34, 36, 41, 45], 
pentacarboxyporphyrin [29, 31, 34, 41, 45], and hexacar-
boxyporphyrin [31, 34, 41] levels have been found to be 
higher in ASD group compaired to controls, while hepta-
carboxyporphyrin and uroporphyrin have been reported to 
be higher in ASD group only in a single study [34]. It is 
important to note that even when the reported differences of 
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specific porphyrins are not statistically significant, the trend 
was towards higher levels in ASD compared to controls.

Uroporphyrin levels have not been reported to be signifi-
cantly different from the controls except in a single study 
[34] and considered a marker independent of environmental 
toxicity [41]. Therefore, several study groups have used spe-
cific porphyrin to uroporphyrin ratios to eliminate the effects 
of variations in urinary volume. Coproporphyrin/uroporphy-
rin ratio and precoproporphyrin/uroporphyrin ratio have 
been reported to be higher in ASD group [37, 41]. Studies 
reporting specific porphyrin levels normalized to creatinine 
and uroporphyrin levels are summarized in Table 1.

Geier et al. and Khaled et al. also compared porphyrin 
levels between subjects with ASD and controls without nor-
malizing to creatinine in several publications [28, 34, 37, 
38]. However, there findings also showed increased pentac-
arboxyporphyrin and coproporphyrin levels in children with 
ASD.

Woods et al. reported that higher porphyrin concentra-
tions were found in young children, particularly uro-, hepta-, 
and coproporphyrins, although their concentrations were 
observed to decline with age, possibly due to age-related 
differences in haem biosynthesis [31]. This indicates that in 
analyzing the differences of porphyrin levels between cases 
and controls, the moderating effects of age should be con-
trolled by using such statistical models as ANCOVA.

Urinary Porphyrin as a Potential Biomarker 
of Heavy Metal Exposure

Many researchers have investigated the correlation between 
ASD, abnormal urinary porphyrin profile, and the possi-
ble causal impact of heavy metals on the correlation [41, 
47, 48]. For instance, Nataf et al. demostrated that aver-
age elevation of coproporphyrin levels in autistic disorder 
was comparable to the elevation observed in subjects with 
significant arsenic (As) and mercury (Hg) exposure [41]. 
This speculation is further strengthened by demonstrating a 
reduction in urinary porphyrins following the treatment of 
ASD children or rats exposed to methylmercury hydroxide, 
with dimercaptosuccinic acid (DMSA/succimer), a heavy 
metal chelator [30, 37, 39, 49, 50].

Many study groups proposed that the abnormally high 
porphyrin levels in subjects with ASD could be due to 
Hg toxicity. For instance, precoproporphyrin, an atypical 
porphyrin, previously described primarily in animals and 
humans exposed to Hg or Hg compounds, was found in 
higher concentrations in the urine of children with ASD [31, 
41]. Additionally, the differences in Hg toxicity-associated 
porphyrin levels from different geographical areas suggest 
the interplay of variations in the environmental factors and 
genetic predispositions in detoxification capacity [51].

The biosynthesis of haem begins with delta-aminole-
vulinic acid (ALA) formation and ends with the insertion of 
iron into the protoporphyrin IX ring [52]. Exposure to heavy 
metals such as Pb and Hg can lead to several metabolic dis-
turbances, with heavy metals being known direct or indirect 
inhibitors of several metabolic pathways in the human body.

The meta-analysis by Zhang et al. revealed higher levels 
of Hg and Pb in children with ASD compared to controls 
[53]. Another study demonstrated that following chelation 
therapy with DMSA, urinary Hg concentrations increased 
from three to approximately five folds higher in ASD sub-
jects compared to healthy controls, while Pb and cadmium 
(Cd) levels in urine showed only statistically non-significant 
increase [54]. Windham et al. suggested a possible associa-
tion between ASD and estimated environmental exposure of 
potential neuro- and developmental toxicants near the birth 
region in their 2006 case-control study, and seven more eco-
logical studies revealed a correlation between environmen-
tal Hg and ASD, while another study uncovered a similar 
association to Pb [55–63]. Some studies, however, observed 
no statistically significant difference in urinary Hg levels 
or previous Hg exposure as measured by fish consumption, 
vaccines received, or the number of dental amalgam fillings 
in subjects with ASD compared to the controls [31]. Fur-
thermore, Adams et al. demonstrated a significantly strong 
correlation between toxic metal excretion and behavioral 
measures of ASD [48].

In contrast to Pb and Hg, meta-analysis of zinc (Zn) levels 
in blood showed significantly lower levels in subjects with 
ASD compared to neurotypical controls [53, 64]. Atypical 
porphyrin levels might be a consequence of the imbalance 
between the level of heavy metal exposure and protective 
factors such as detoxification capacity and sufficiancy of Zn 
at least in a subset of ASD individuals. For instance, a young 
ASD subject with low-level Hg exposure might have rela-
tively higher urine atypical porphyrins in the presence of 
low detoxification capacity. Furthermore, Zn deficiency may 
potentiate the toxic effects of heavy metals even at relatively 
normal levels [65].

The main target in Pb poisoning is delta-aminolevulinic 
acid dehydratase (ALAD), also known as porphobilinogen 
synthase (PBGS). The main mechanism of inhibition is the 
oxidation of sulfhydryl groups located at the active site of 
ALAD [66]. The lone electron pair on Pb(II) could also 
sterically interfere with the substrate or product binding to 
ALAD enzyme [67]. The inhibition of ALAD causes the 
accumulation of ALA. As cited by Akshatha et al., ALA 
which is implicated in symptoms of porphyria alters neuro-
transmitter metabolism, induces mitochondrial dysfunction, 
inhibits melatonin release, and increases production of reac-
tive oxygen species, which are also relevant in pathogenesis 
of ASD [68]. Interestingly, there are case reports describing 
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patients with Pb toxicity presenting with clinical features of 
porphyria and ASD [69].

Coproporphyrinogen III oxidase (CPOX) seems to be 
the second vulnerable enzyme, catalyzing the two-step 
decarboxylation of coproporphyrinogen III into proto-
porphyrinogen IX [52]. Impaired CPOX activity leads to 
increased coproporphyrin levels in urine. Pb does not exert 
any direct inhibitory effect by its binding to the active site 
of the enzyme. As the enzyme is located in the mitochon-
drial intermembrane space, Pb-induced mitochondrial mem-
brane distortion has been discussed as a potential culprit 
[70]. However, Hg binding to thiol groups of the CPOX 
enzyme (e.g., C319 cysteine moiety) could interfere with the 
structure and directly inhibit the conversion of harderopor-
phyrinogen to protoporphyrinogen [71].

Uroporphyrin decarboxylase (UROD) is also inhibited 
by Hg binding to thiol groups. Accordingly, the inhibition 
can be prevented by the thiols [72]. While Hg and Cd may 
inhibit ferrochelatase directly, Pb is thought to reduce iron 
availability for  Fe2+ ferrochelatase activity in the cell, lead-
ing to Zn protoporphyrin accumulation owing to  Zn2+ fer-
rochelatase activity unopposed by  Fe2+ [70].

ALAD gene exhibits polymorphisms due to transver-
sion of the base at position 177, producing two codominant 
alleles, namely ALAD1 and ALAD2. Consequently, three 
genotypes are formed by pairs of alleles: ALAD1-1, ALAD1-
2, and ALAD2-2. ALAD2 protein binds Pb more tightly to 
the enzyme than ALAD1 protein due to the substitution of 
asparagine for lysine at the 59th position, resulting in more 
effective inactivation of ALAD and elevated Pb concentra-
tion in the body [73]. Therefore, it has been hypothesized 
that ALAD-2 may reduce harmful effects by conferring a 
protective effect by sequestering circulating Pb, thus pre-
venting toxic effects [74]. However, recent evidence suggests 
that the ALAD1-2 genotype may be associated with a higher 
risk of long-term Pb toxicity than the ALAD1-1 genotype. 
The ALAD1-2 heterozygosity was significantly more com-
mon in autistic children than in controls, indicating that 
children with the ALAD2 variant were approximately 1.67 
times more likely to be autistic [75]. Intriguingly, the mater-
nal ALAD2 variant was associated with higher placental Pb 
levels [76]. The effects of higher placental Pb levels related 
to the ALAD2 variant on the fetus are yet to be explored.

In human subjects with low-level Hg exposure, a spe-
cific variant (A814C) in exon 4 of the human CPOX gene 
(CPOX4) encoding an N272H substitution is linked with 
anomalous urinary porphyrin efflux and increased neuro-
behavioral deficits. Studies suggest that this variant encodes 
an enzyme with a lower affinity for coproporphyrinogen-
III [71]. This gene product preferentially converts the 
upstream penta-carboxylporphyrin to ketoisocopropor-
phyrin. Hg-exposed subjects carrying the CPOX4 variant 
exhibit increased levels of penta-carboxylporphyrin due to 

inhibition of the penta- to the tetra-decarboxylation step of 
UROD, with elevated excretion of tetra-carboxyl porphyrins 
and atypical ketoisocoproporphyrin [77].

Taken together, characteristic changes in urine porphyrin 
levels of Hg toxicity include elevated levels of tetra- and 
penta-carboxylporphyrin and the appearance of an atypi-
cal metabolite pre-coproporphyrin [78]. Additionally, in 
subjects harboring CPOX4, atypical porphyrin ketoisoco-
proporphyrin is also increased [77]. Pb toxicity can lead to 
the elevation of urine coproporphyrin [70, 79], erythrocyte 
Zn protoporphyrin, and urinary ALA without any increase in 
urine porphobilinogen [80, 81]. Interestingly, blood lead lev-
els have been shown to negatively corelate with low serum 
Zn levels in school chidren [82].

Can Heavy Metal‑Induced Toxicity Explain 
Sex Differences in Autism Spectrum 
Disorder?

Meta-analysis of prevalence studies demonstrated a male-
to-female ratio close to 3:1 in ASD [83]. A perfect patho-
genic model proposed for ASD should be able to explain this 
male preponderance. This could be explained by the pres-
ence of sexual dimorphism in terms of higher body burdens 
of heavy metals or increased susceptibility to the effects of 
exposure. In addition, influences of gonadal hormones, epi-
genetic modifications, and sex chromosome activation may 
be involved in gender differences in exposure outcomes [84].

Heavy metals appear to exhibit gender-specific effects 
that could be explained by lesser glutathione availabil-
ity, lesser sulfate-based detoxification capacity, potentiat-
ing effects of testosterone, and greater neuroinflammatory 
response in males [85]. According to large-scale epidemio-
logical studies, males have greater mean blood Pb levels 
than females. However, the differences in blood Pb levels 
are not significant at birth or early in life. Surprisingly, the 
differences intensified around the age of 12 years, corre-
lating with puberty. Furthermore, males appear to be more 
susceptible to the impact of prenatal and postnatal Pb expo-
sure. Postnatal and early childhood exposure was associated 
with attention span and cognitive development with males 
being more adversely affected with lower cognitive function 
scores [84, 86].

Evidence supporting potential sexual dimorphism asso-
ciated with prenatal and early postnatal exposure to Hg is 
sparse. The results show that sex differences in Hg metabo-
lism are only noticeable at high Hg concentrations. Males 
seem more prone to deficits in motor functions and cogni-
tive and neurobehavioral performance when exposed to Hg. 
Unlike Pb, however, most of these studies have been car-
ried out in people exposed to relatively greater levels of Hg. 
Therefore, it is uncertain if the dimorphism in neurotoxicity 
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persists at lower exposure levels [86]. Furthermore, Hg 
exposure at the age of nine years was linked to poorer mental 
agility and worse neurobehavioral development, short-term 
memory, visual memory processes, and sequential organiza-
tion in Spanish children. This association has been altered 
by gender and specific genetic variants in BDNF, APOE, 
and GSTP1 [87].

Some studies reported evidence supporting the presence 
of sexual dimorphism in the glutathione system, although 
most studies indicated the lack of sex-specific differences 
[88]. A Jamaican study found that ASD patients with GSTP1 
Ile105Val genotype Ile/Ile correspond to higher blood Hg 
concentrations compared to genotype Ile/Val. GSTP1 
encodes a glutathione S-transferase enzyme that catalyzes 
the formation of glutathione conjugates. This finding sug-
gests that defects in GSTP1-mediated detoxification of Hg 
play a potential role in the pathogenesis of autism [89]. 
Sexual dimorphism in the glutathione system appears to be 
affected by several confounding variables, including age and 
brain region [88].

The Usefulness of Porphyrins as Biomarkers 
in ASD

Certain porphyrin metabolites appear as candidate biomark-
ers with relatively low sensitivity but nearly 100% speci-
ficity [29]. Moreover, the urine porphyrin levels positively 
correlated with the severity of autism [28, 42, 44]. For 
instance, pentacarboxyporphyrin, precoproporphyrin, and 
coproporphyrin levels are higher in severe cases with ASD 
compared to mild cases [28, 42]. Correspondingly, subjects 
with Asperger syndrome, who are usually mildly affected, 
with better language and cognitive skills did not show sig-
nificant differences in urine porphyrin levels compared to the 
control group. Moreover, abnormal porphyrin levels were 
reported to be significantly higher in chidren with autistic 
disorder associated with epilepsy [41].

As the name implies, ASD is a spectrum disorder with 
significant heterogeneity of clinical features and underlying 
pathogenic mechanisms. This explains why the biomarkers 
yield less sensitivity and higher specificity. For instance, 
ASD subjects with a pathogenic mechanism apart from 
heavy metal toxicity or reduced capacity to detoxify heavy 
metals may yield negative test results for urine porphyrin 
assessment. The primary goal of such a test is to accurately 
identify a subset of individuals with shared pathogenicity, 
predict prognosis, and attempt metal-type-targeted therapy. 
Prospective follow-up studies are needed to evaluate the use 
of urine porphyrin biomarkers to predict prognosis.

Urine porphyrin levels appear to be a good biomarker 
to monitor response to therapy. The differences in urine 

porphyrin biomarkers between chelated ASD subjects and 
non-chelated ASD subjects were statistically significant [37, 
38]. Importantly, the test can be performed on an untimed 
spot urine sample, a convenient, non-invasive sampling strat-
egy. This is particularly beneficial as children with ASD can 
be hypersensitive to venipuncture procedures. On the other 
hand, the test is relatively inexpensive.

Shared Pathogenic Mechanisms in Porphyria 
and ASD

Despite the presence of porphyria in ASD as reported 
consistently by many study groups, genetic porphyrias co-
occurring with ASD have not been common with only a 
single case report of an ASD patient with acute intermittent 
porphyria (AIP) reported in the online literature [90]. How-
ever, porphyria is a commonly underdiagnosed entity due to 
non-specific symptoms [68].

There are striking similarities between the symptomatol-
ogy of porphyria and ASD such as abdominal pain [91, 92], 
vomiting [91, 92], constipation [91, 92], seizures [10, 91, 
93], and behavioral changes [91, 94, 95]. Even more strik-
ing are the biochemical similarities; porphyrinuria [31, 33, 
34, 44, 45], increased oxidative stress [96, 97], mitochon-
drial dysfunction [96, 98], hyperhomocysteinemia [99–101], 
functional vitamin B6 deficiency [102–104], hyperoxalemia 
and hyperoxaluria [104, 105], and hypomagnesemia [64, 
106]. Both porphyria and ASD exhibit enhanced pyridoxal 
5′-phosphate-dependent tryptophan-kynurenine metabolism, 
probably mediated by substrate availability, at the expense 
of the tryptophan-serotonin-melatonin pathway [103, 
107]. Increased oxidative stress in porphyria is evident by 
increased malondialdehyde [108] and may be partly pro-
duced by increased δ-aminolevulinic acid levels [109]. The 
presence of mitochondrial dysfunction in porphyria is sup-
ported by reduced total cellular ATP levels [110], reduced 
oxygen consumption rate [96], and reduced expression of 
mitochondrial respiratory chain proteins [108, 110].

Alanine-glyoxylate aminotransferase (AGT) is a 
pyridoxal-5′-phosphate-dependent enzyme involved in the 
metabolism of glyoxylate [111]. Depletion of pyridoxal-5′-
phosphate may cause hyperoxalemia and hyperoxaluria due 
to reduced activity of AGT. Defects in porphyrin metabolism 
can affect the transsulfuration pathway of sulfur amino acid 
metabolism leading to hyperhomocysteinemia [99]. This 
interrelationship could be partly explained by the knowledge 
of cofactors and regulation of cystathionine beta-synthase 
(CBS), catalyzing the first committed step. Haem, the syn-
thetic product of porphyrin metabolism, is also a cofactor 
for the cystathionine beta-synthase enzyme [112]. Vitamin 
B6 is a cofactor for delta-aminolevulinic acid synthase 1 
(ALAS1), the rate-limiting step of haem biosynthesis, and 
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CBS and cystathionine-gamma lyase (CGL) in the trans-
sulfuration pathway. CBS has a lower affinity for pyridoxal 
5′-phosphate compared to ALAS1 and other pyridoxal 
5′-phosphate-dependent enzymes in the tryptophan-kynure-
nine pathway and therefore is at a disadvantage when pyri-
doxal 5′-phosphate is decreased [112]. The plausible meta-
bolic consequences of abnormal porphyrin metabolism in 
ASD are illustrated in Fig. 1.

CBS activity can be also reduced in haem deficiency, 
interfering with pyridoxal 5′-phosphate binding and pro-
moting CBS degradation [112]. Therefore, hyperhomocyst-
einemia in porphyria patients is most likely to occur from 
decreased hepatic CBS and CGL activity due to low haem 
availability, as well as possible relative/absolute vitamin B6 
deficiency caused by ALAS1 induction [99]. Considering 
the evidence at hand, deciding whether atypical porphyrin 
excretion in ASD is a cause or consequence is premature. 
The link between sulfur amino acid metabolism and por-
phyrin metabolism is further corroborated by a study dem-
onstrating that compared to unaffected controls, compound 
heterozygotes for ALAD 177CG and RFC1 80AG variants 
were nearly four times more likely to be autistic. RFC1 
encodes a reduced folate carrier involved in the folate trans-
port, which is linked to the remethylation pathway of the 
methionine cycle [75]. Moreover, the same research group 
demonstrated that a significant lowering of plasma reduced 
glutathione and glutathione redox ratio in ASD children with 

ALAD2 allele compared to controls [75]. Despite adult acute 
porphyrias predominantly affecting females, pediatric-onset 
acute hepatic porphyria shows a male predominance [91], 
corresponding with the male predominance well-established 
in ASD [4].

Significance of Abnormal Thiol and Selenol 
Metabolism

Even though the underlying pathogenic mechanism of 
abnormal porphyrin metabolism is yet to be uncovered, 
the present understanding of metabolic interrelationships 
provides intriguing clues to a possible connection between 
abnormal thiol and selenol metabolism. Altered sulfur 
metabolism has received much attention due to consistently 
reported abnormalities corroborated by meta-analyses. Sub-
jects with ASD have lower levels of methionine, cysteine, 
vitamin B12, folate, and S-adenosylmethionine to S-adeno-
sylhomocysteine ratio [101]. In addition, the total thiol con-
centrations, median reduced thiol ratios, and mean native 
thiol were significantly lower. In contrast, median oxidized 
thiol ratios, redox potential, and median disulfide concentra-
tions were considerably higher in children with ASD than in 
healthy controls [113].

Interestingly thiol groups in free cysteine, cysteine resi-
dues of proteins, selenol groups of seleno-cysteine, and 

Fig. 1  Hypothesized mecha-
nism for abnormal porphyrin 
metabolism and its metabolic 
consequences in ASD. Heavy 
metals may block several steps 
in haem biosynthesis resulting 
in porphyrinuria. Overconsump-
tion of pyridoxal 5'-phosphate 
(PLP) by induced ALAS1 and 
PLP-dependent enzymes in the 
tryptophan-kynurenine pathway 
leads to reduced activity of 
other PLP-dependent enzymes, 
hence abnormal homocysteine, 
oxalate, and melatonin levels. 
(ALAS1; delta-aminolevulinic 
acid synthase 1, ALAD; 
delta-aminolevulinic acid 
dehydratase, PBGD; porpho-
bilinogen deaminase, UROS; 
Uroporphyrinogen-III synthase, 
UROD; Uroporphyrinogen 
decarboxylase, CPOX; Oxygen-
dependent coproporphyrinogen-
III oxidase, PPOX; Protopor-
phyrinogen oxidase. FECH; 
Ferrochelatase)
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seleno-cysteine residues of selenoenzymes and other seleno-
proteins are critical targets of Hg toxicity. The binding of Hg 
compounds to thiol and selenol groups depletes these sub-
stances and inhibits antioxidant enzymes, which are essential 
to mitigate oxidative damage [114]. Moreover, the effects 
of heavy metals on enzymes involved in thiol and selenol 
metabolism are brain region-specific especially affecting the 
hypothalamus and brainstem structures [115]. The sulfur-
containing ligands exhibit protective and reactivation effects 
toward the enzyme inhibition [116].

Hg is a well-known toxic heavy metal that occurs in 
several forms, i.e., metallic Hg, Hg vapor, mercurous ions, 
mercuric ions, and organo-Hg compounds (e.g., methyl-Hg). 
Food contaminated with Hg, dental amalgams, Hg-contain-
ing cosmetics, and Hg-containing paints are some of the 
common sources of Hg exposure in humans [117]. The most 
toxic form, methyl-Hg, is readily absorbed via biological 
membranes such as gut and placenta due to its lipophilic 
nature [118]. It is easily complexed with cysteine to produce 
an abnormal amino acid analogous to methionine. Methyl-
Hg competes with amino acids for transport via specialized 
amino acid transporters at the placenta and blood-brain bar-
rier and accumulates in the brain [86]. These harmful actions 
of Hg are mitigated by glutathione, a naturally occurring 
chelator, that serves as the major detoxification mechanism 
of heavy metals (e.g., Hg and Pb) [75].

Interestingly pre-coproporphyrin and penta-carboxyl-
porphyrin levels have shown a positive correlation with 
plasma-oxidized glutathione levels in subjects with ASD 
[42]. Depletion of thiols such as glutathione may predis-
pose to increased susceptibility to heavy metal toxicity and 
resultant atypical urine porphyrin profile in subjects with 
ASD. The deficiency of thiols may reduce biliary and renal 
excretion of heavy metals, increasing their toxicity. Whole 

blood Hg levels were significantly higher in ASD patients 
compared to healthy subjects. The Hg level in hair was sig-
nificantly lower in healthy subjects, whereas there was no 
difference in the urinary Hg level. This could be attributed 
to the evidence of an impairment in the detoxification and 
excretory mechanisms in ASD [119].

Cellular accumulation of oxalate (which is associated 
with abnormal haem metabolism, as discussed above) [96, 
105] may also contribute to mitochondrial dysfunction and 
oxidative stress [120]. A significant proportion of cellular 
oxalate binding appears to occur in the mitochondria and 
the oxalate binding increases with thiol depletion [121]. 
Additionally, oxalate-induced mitochondrial dysfunction in 
circulating monocytes appears to alter plasma cytokine and 
chemokine levels [122]. In light of these findings, oxalate 
appears to connect many dots in the intricate pathogenic 
mechanism of ASD.

A metabolic Approach to the Treatment 
of ASD Associated with Porphyrinuria

Several chelating agents are used in clinical practice to man-
age heavy metal poisoning; dimercaprol, penicillamine, 
sodium calcium edetate, ethylenediaminetetraacetic acid 
(EDTA), succimer, etc. These agents bind to heavy metals 
(Pb, Hg, As) and facilitate renal excretion. Sulfhydryl moiety 
is responsible for the chelation of the metal ion forming a 
metal-sulfur linkage (Fig. 2) [123–127]. However, based on 
a Cochrane systematic review, there is no evidence that mul-
tiple rounds of oral DMSA would have an impact on ASD 
symptoms. On the other hand, chelation therapy is associ-
ated with serious adverse effects such as hypocalcemia, renal 
impairment, and even death. Therefore, the risks of using 

Fig. 2  Chemical structures of 
metal chelating agents and their 
metal complexes. EDTA; ethyl-
enediaminetetraacetic acid



3859Molecular Neurobiology (2024) 61:3851–3866 

1 3

chelation for ASD treatment currently outweigh the proven 
benefits [128].

Several other supplements that can enhance natural chela-
tion detoxification pathways, such as taurine, methionine, 
cysteine, alpha-lipoic acid and dihydrolipoic acid (DHLA), 
glutathione, and N-acetylcysteine (a precursor of glu-
tathione), have received attention in addressing metal toxici-
ties [116, 129]. Some of these agents, such as oral N-acetyl 
cysteine and oral alpha-lipoic acid are proposed as poten-
tial metabolic therapies that can be used in ASD associated 
with mitochondrial dysfunction [130]. Liposomal (absorbed 
better) and transdermal glutathione have shown benefits in 
improving plasma cysteine and reduced glutathione levels in 
subjects with ASD [131]. Evidencing metal chelation prop-
erty, these compounds contain sulfhydryl moiety (Fig. 3), 
which can effectively chelate heavy metal ions of Hg and 
Pb. Notably, both reduced and oxidized forms of alpha-
lipoic acid are known to chelate metal ions. At the same 
time, DHLA is a potent antioxidant in the body that can 
recycle other antioxidants like glutathione and ascorbic acid 

[132, 133]. Glutathione, N-acetylcysteine, and alpha-lipoic 
acid chelate heavy metals by forming a metal-sulfur linkage 
[134, 135] (Fig. 4). Additionally, alpha-lipoic acid can ame-
liorate mitochondrial dysfunction and increase ATP synthe-
sis in cells with defective porphyrin metabolism [110]. The 
naturally occurring compounds with chelation properties are 
generally associated with minimal side effects and hence 
appear to be a good alternative to chelating agents associ-
ated with severe adverse effects such as DMSA. Moreover, 
calcium and iron supplementation attenuate Pb accumula-
tion, while dietary deficiencies are reported to enhance Pb 
absorption. This forms the basis for using calcium and iron 
supplementation to manage Pb poisoning [136].

Nevertheless, the action of glutathione on brain Hg levels 
depends on the form of Hg. For instance, glutathione plays a 
crucial role in methylmercury transport into the brain. Wata-
nabe et al. demonstrated that the transport of methylmercury 
into the brain is accelerated by glutathione, but retarded by 
the surplus glutathione. It was further suggested that meth-
ylmercury is transported into the brain after being converted 

Fig. 3  Naturally occurring com-
pounds possessing metal chela-
tion and antioxidant properties

Fig. 4  Metal complexes formed 
by some natural chelators. 
Letter M in chemical structures 
indicates a heavy metal iron. 
DHLA, dihydrolipoic acid
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to methylmercury-cysteine by gamma-glutamyl transpepti-
dase [137]. Conversely, elemental mercury uptake by the 
brain is increased by depletion of glutathione in rats [138]. 
DMSA, 2,3-dimercaptopropane-1-sulfonic acid (DMPS), 
glutathione, vitamin C, lipoic acid alone, or in combination 
were able to reduce kidney Hg levels but unable to reduce 
elementary Hg content of the brains of rats exposed to Hg 
[139, 140]. On the other hand, sulfhydryl compounds appear 
to have non-chelation functions such as free radical scaveng-
ing ability and protective effects against uroporphyrinogen-
decarboxylase inhibition [141] that may be more relevant in 
the subset of ASD with abnormal porphyrinuria.

A study revealed that thiamin and thiamin monophos-
phate (TMP) concentrations are not significantly different 
from healthy subjects, while thiamin pyrophosphate (TPP) 
levels were decreased by 24% in children with ASD [142]. 
Moreover, dysautonomia associated with abnormal eryth-
rocyte transketolase has been observed in two ASD indi-
viduals, indicating abnormal thiamin homeostasis. [143]. 
The use of thiamin in the treatment of ASD has mainly 
been due to its function as a cofactor in the citric acid cycle 
enzymes [130]. In one pilot study, two months of thiamine 
tetrahydrofurfuryl disulfide (TTFD) supplementation has 
shown clinical improvement in eight out of the ten children 
with ASD as measured by Autism Treatment Evaluation 
Checklist (ATEC), with an increase in urinary Cd and Pb 
observed in two children and one child, respectively [144]. 
Concomitant thiamine administration with chelators such 
as EDTA enhanced the efficacy by potentiating urinary Pb 
excretion, reducing tissue Pb including brain Pb, and restor-
ing Pb-induced biochemical alterations, suggesting a prom-
ising role of thiamine as a complementary agent to heavy 
metal chelators [145]. Thiamin interacts with the pyrimidine 
ring, forming a readily excretable metal Pb-thiamine com-
plex [146]. Facilitation of cellular penetration by EDTA and 
increasing effective chelation of intracellular bound Pb is 
another proposed mechanism [145]. Interestingly, thiamin is 
also a sulfur-containing molecule similar to most metal che-
lators. Importantly thiamin is a safe nutritional supplement 
with no adverse effects [130] but many beneficial metabolic 
effects in ASD.

Sulforaphane is a sulfur-containing compound found 
in cruciferous vegetables such as cauliflower, broccoli, 
and cabbage. It is a dietary supplement with minimal 
side effects. It has multiple biological effects pertinent 
to ASD, including antioxidant, anti-inflammatory, and 
neuroprotective effects. A systematic review of five clini-
cal trials demonstrated a significant positive correlation 
between sulforaphane use and improvement in ASD 
behavior and cognitive function [147]. Metallothionein, 

a primary antioxidant enzyme involved in the metabolism 
and detoxification of heavy metals, is induced by sul-
foraphane through modulation of the MT gene expression 
[148]. Corroborating these findings, the administration 
of sulforaphane has been found to increase the brain glu-
tathione levels [149].

The presence of hyperhomocysteinemia, hyperox-
alemia/hyperoxaluria, vitamin B6 deficiency, and magne-
sium (Mg) implies that a vitamin B6, Mg, and low oxa-
late diet might be effective. Vitamin B6 will enhance the 
activity of vitamin B6-dependent enzymes such as CBS 
and thereby correct hyperhomocysteinemia. As many 
B6-dependent enzymes use Mg also as a co-factor, vita-
min B6-Mg co-therapy appears to be a good combination 
[102]. On the other hand, vitamin B6 also has non-cofactor 
functions as a metal chelator and potent antioxidant, per-
tinent in ASD [150].

Additionally, lower blood Zn levels [53, 64] and ele-
vated blood Cu/Zn ratios [35] were also found in ASD 
individuals. Therefore, it has been hypothesized that Hg 
toxicity-associated metallothionein dysfunction may be 
one of the contributory factors of Zn deficiency in children 
with ASD [151]. Therefore, Zn deficiency might potenti-
ate the toxic effects of heavy metals even at a low level of 
exposure [65]. Zinc supplementation may be used as a pos-
sible preventative and therapeutic approach to lessen the 
core/co-occurring symptoms associated with ASD [102].

Another promising therapeutic approach in porphy-
rinuria-associated ASD is melatonin which has received 
attention in ASD [152] as well as in porphyria [153] and 
may be mediated by scavenging reactive oxygen species 
and suppression of the key enzyme ALAS1 [153]. Addi-
tionally, melatonin has been shown to reverse Pb-induced 
neurotoxicity in animal models by eliciting its properties 
via antioxidants and other mechanisms [154].

Multiple levels of evidence suggest a possible role of 
heavy metals, impaired detoxification pathways in the 
pathogenesis of autism, impaired porphyrin metabolites 
as potential biomarkers, and chelating agents, thiols, thia-
min, and sulforaphane as potential therapeutic agents. The 
abnormal porphyrin metabolites appear to be candidate 
biomarkers useful in precision medicine in ASD. How-
ever, despite all that attention given to the heterogeneity 
of ASD, many studies compared the effectiveness of the 
heavy metal-targeted interventions between chelated-ASD 
subjects vs. non-chelated-ASD subjects. Future research 
should focus on comparing the efficacy of less invasive 
nutritional approaches in reducing co-symptoms and co-
occurring symptoms in the subgroup of patients with 
increased porphyrin excretion.
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Concluding Remarks

Porphyrin metabolites are potential biomarkers for ASD, 
having relatively low sensitivity but very high specificity. 
Their levels were positively correlated with the severity 
of autism. The low sensitivity is attributed to the high 
heterogeneity of this group of disorders with a broad 
spectrum of underlying pathogenic mechanisms. Heavy 
metal poisoning was proposed as one of the causative 
factors, as heavy metals are known inhibitors of several 
metabolic pathways. An abnormal urinary porphyrin pro-
file was reported to correlate with ASD, and exposure to 
heavy metals may play a role. Several chelating agents 
have been used in clinical practice to manage heavy metal 
poisoning, but the risks of their use outweigh the proven 
benefits. Many supplements with therapeutic benefits in 
ASD, such as N-acetyl cysteine, alpha-lipoic acid, thiamin, 
sulforaphane, melatonin, and zinc appear to have poten-
tial benefits in the subgroup of ASD with abnormal por-
phyrin metabolism. However, more research into the role 
of abnormal porphyrin metabolism in ASD is needed to 
translate scientific evidence into clinical practice.
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