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Abstract
Maple syrup urine disease (MSUD) is caused by severe deficiency of branched-chain α-keto acid dehydrogenase complex 
activity, resulting in tissue accumulation of branched-chain α-keto acids and amino acids, particularly α-ketoisocaproic acid 
(KIC) and leucine. Affected patients regularly manifest with acute episodes of encephalopathy including seizures, coma, 
and potentially fatal brain edema during the newborn period. The present work investigated the ex vivo effects of a single 
intracerebroventricular injection of KIC to neonate rats on redox homeostasis and neurochemical markers of neuronal 
viability (neuronal nuclear protein (NeuN)), astrogliosis (glial fibrillary acidic protein (GFAP)), and myelination (myelin 
basic protein (MBP) and 2′,3′-cyclic-nucleotide 3′-phosphodiesterase (CNPase)) in the cerebral cortex and striatum. KIC 
significantly disturbed redox homeostasis in these brain structures 6 h after injection, as observed by increased 2’,7’-dichloro-
fluorescein oxidation (reactive oxygen species generation), malondialdehyde levels (lipid oxidative damage), and carbonyl 
formation (protein oxidative damage), besides impairing the antioxidant defenses (diminished levels of reduced glutathione 
and altered glutathione peroxidase, glutathione reductase, and superoxide dismutase activities) in both cerebral structures. 
Noteworthy, the antioxidants N-acetylcysteine and melatonin attenuated or normalized most of the KIC-induced effects on 
redox homeostasis. Furthermore, a reduction of NeuN, MBP, and CNPase, and an increase of GFAP levels were observed at 
postnatal day 15, suggesting neuronal loss, myelination injury, and astrocyte reactivity, respectively. Our data indicate that 
disruption of redox homeostasis, associated with neural damage caused by acute intracerebral accumulation of KIC in the 
neonatal period may contribute to the neuropathology characteristic of MSUD patients.
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GFAP	� Glial fibrillary acidic protein
GPx	� Glutathione peroxidase
GR	� Glutathione reductase
GSH	� Reduced glutathione
GSSG	� Oxidized glutathione
HO-1	� Heme oxygenase-1
icv	� Intracerebroventricular
KIC	� α-Ketoisocaproic acid
MDA	� Malondialdehyde
MEL	� Melatonin
MCT/SLC16A1	� Monocarboxylate transporter
MSUD	� Maple syrup urine disease
MBP	� Myelin basic protein
NAC	� N-Acetylcysteine
NeuN	� Neuronal nuclear protein
Nrf2	� Nuclear factor erythroid 2-related factor 

2
PBS	� Phosphate-buffered saline
PND	� Postnatal day
RNS	� Reactive nitrogen species
ROS	� Reactive oxygen species
SOD	� Superoxide dismutase
TCA​	� Trichloroacetic acid

Introduction

Maple syrup urine disease (MSUD) (MIM 248600) is 
an autosomal recessive inherited disorder, with a world-
wide incidence of 1:185,000 live births. It is caused by 
defects of the branched-chain α-ketoacid dehydrogenase 
(BCKDH, EC 1.2.4.4) complex, leading to accumula-
tion in tissues and biological fluids of the branched-chain 
α-keto acids (BCKA), α-ketoisocaproic acid (KIC), α-keto-
β-methylvaleric acid, and α-ketoisovaleric acid, and the 
equivalent amino acids leucine, isoleucine, and valine [1, 
2]. MSUD is classified into four genetic variants, the clas-
sic, the intermediate, the intermittent, and the thiamine-
responsive forms [1]. The classical form is the most severe, 
presenting during the neonatal period, sometimes called 
neonatal MSUD [3, 4].

Patients with classical neonatal MSUD usually manifest 
with nonspecific signs of metabolic intoxication, such as irri-
tability, somnolence, anorexia, vomiting, dehydration, and 
ketoacidosis, which is followed by neurological symptoms, 
such as lethargy, coma, apnea, opisthotonos, and cytotoxic 
cerebral edema. Later in infancy or childhood, they develop 
physical and psychomotor delay with intellectual disability 
and movements disorders such as dystonia and tremor [1, 2]. 
Neuropathological findings comprise hypomyelination and 
cytotoxic edema in various brain areas, including the basal 
ganglia and cerebral cortex [5–7], and brain atrophy [8, 9]. 
Noteworthy, MSUD is considered an intoxicating inherited 

disorder in which KIC and leucine are the main neurotoxic 
metabolites, once augmented plasma concentrations of these 
compounds are associated with the appearance or worsening 
of the neurological symptoms that take place during crises 
of metabolic decompensation accompanied by excessive 
proteolysis [1, 2]. Although various mechanisms have been 
proposed to explain the cerebral damage in MSUD, the exact 
underlying pathophysiological mechanisms are still poorly 
known.

Regarding the BCKA, intracerebroventricular (icv) 
administration of KIC to adult (60-day-old) or young 
(30-day-old) rats was shown to cause learning deficits and 
behavioral changes [10]. KIC icv injection was also shown 
to induce oxidative damage to biomolecules [11], decrease 
of brain-derived neurotrophic factor and nerve growth factor 
levels [12], as well as of the activities of the respiratory chain 
complexes I and II-III [13] in different cerebral regions. KIC 
was also shown to alter the levels of interferon-γ and tumor 
necrosis factor-α [14].

Furthermore, in vitro exposition of brain to the BCKA, 
particularly to KIC, caused lipid oxidative damage and 
impairment of the antioxidant defenses [15, 16], as well as 
inhibition of α-ketoglutarate dehydrogenase and pyruvate 
dehydrogenase activities [17, 18]. KIC also reduced oxygen 
consumption in state 3 respiration and disrupted mitochon-
drial membrane potential [19]. Another work showed that 
the BCKA accumulating in MSUD inhibit CO2 formation 
and increase lactate release in the brain of young rats [20].

On the other hand, several studies revealed that in vivo 
and in vitro exposition of rat brain to the BCAA induce 
oxidative stress through lipid peroxidation, DNA, and pro-
tein damage, and altered activities of antioxidant enzymes 
[21–24]. BCAA also decreased CO2 production and the 
activities of creatine kinase, and respiratory chain complexes 
II–III, III, and IV [18, 25, 26]. Of note, lipid and protein oxi-
dative damage was found in the plasma of MSUD patients 
[27–30], corroborating the investigations with the chemical 
animal models of this disease. Noteworthy, all these previ-
ous studies designed to clarify MSUD pathogenesis were 
performed in the brain of young or adult rats, whereas the 
onset of the neurological findings in MSUD patients is usu-
ally manifested in the first few days of life. Therefore, fur-
ther studies using neonatal brain are necessary to clarify the 
pathophysiology of the brain damage in this disease.

Therefore, since to the best of our knowledge, there 
were no reports on the deleterious effects of KIC on brain 
functioning in early days of development, the present work 
evaluated the ex vivo effects of intracerebral administra-
tion of KIC to neonate rats on redox homeostasis, as well 
as on neuropathological landmarks in the cerebral cortex 
and striatum. The antioxidants N-acetylcysteine (NAC) and 
melatonin (MEL) were used in some experiments to evaluate 
their neuroprotective effects on redox homeostasis.
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Material and Methods

Animals and Reagents

A total of 84 1-day-old (neonate) Wistar rats from Centro de 
Reprodução e Experimentação de Animais de Laboratório 
(CREAL) at the Federal University of Rio Grande do Sul 
(UFRGS), Porto Alegre, Brazil, were used in this work. 
The newborn rats were kept with their dam on a 12:12-h 
light/dark cycle at temperature of 22 ± 1 °C. Free water and 
commercial chow with 20% (w/w) protein were available 
to dams.

All reagents were purchased from Merck (St. Louis, MO, 
USA). On the day of the experiments, KIC, MEL, and NAC 
solutions were made, and the pH adjusted to 7.4.

icv Injection of KIC

A schematic representation of the experimental design is 
shown in Fig. 1. Neonate rats were submitted to an icv injec-
tion of KIC (1 μmol/g body weight, dissolved in 0.01 M 
phosphate-buffered saline (PBS), pH 7.4, in a volume of 
0.5 μL/g body weight), or an equal volume of 0.01 M PBS, 
pH 7.4 (control), into the cisterna magna, as previously 
described [31, 32]. After recovering in a heating pad at 37 
°C, neonate animals returned to their dam until euthanasia 
that was immediately followed by the various analyses. In 
some experiments, neonatal rats were pre-treated with two 
intraperitoneal injections (volume of 2 μL/g body weight) of 
NAC (300 mg/kg and 400 mg/kg, respectively) or MEL (40 
mg/kg, each) 24 and 1 h prior to KIC icv administration [32, 
33]. The animals were then euthanized at 6 h after KIC icv 
infusion to evaluate redox homeostasis parameters and heme 
oxygenase-1 (HO-1) protein immunocontent, at postnatal 
day (PND) 7 to determine oxidative stress measures, or at 
PND 15 for the immunofluorescence analyses. It is stressed 

that the neonates were randomly distributed into the vari-
ous experimental groups, the researchers that conducted the 
experimental procedures did not know which solution was 
administered to the animals (PBS, KIC, NAC, or MEL), 
and the groups were not identified during the analyses. The 
sample size and power calculations for the biochemical 
assays, Western blotting, and immunofluorescence analysis 
utilized the software Minitab 16, and considered the follow-
ing parameters: standard deviation of 10%, power of 0.9, 
difference of 25%, and 2 or 3 levels (experimental groups). 
These parameters were based on previous reports from our 
and other research groups [32, 34, 35].

Parameters of Redox Homeostasis

Preparation of Tissue Homogenates

The animals were euthanized by decapitation, the brain 
removed, and the cerebral cortex and striatum dissected. 
These cerebral structures were then homogenized (1:10) 
in 20 mM sodium phosphate buffer, pH 7.4, with 140 mM 
KCl, centrifuged at 800 g and the supernatants used for the 
determination of redox homeostasis parameters, excepting 
for the nitrate and nitrite levels that were measured with the 
forebrain supernatants.

2',7'‑Dichlorofluorescein (DCFH) Oxidation

Reactive oxygen species (ROS) production was measured by 
DCFH oxidation, as described by LeBel et al. [36]. Tissue 
homogenates were incubated for 30 min at 37 °C with the 
cell-permeant diacetate form (DCF-DA), which is cleaved 
to generate DCFH that is oxidized by ROS to form the fluo-
rescent product DCF. Fluorescence was measured in a Spec-
tramax M5 at 480 nm (excitation) and 535 nm (emission). A 
standard curve was carried out with DCF (0–10 μM) and the 
data expressed as μmol DCF per milligram protein.

Fig. 1   Schematic representation of the experimental design showing 
the procedures performed in Wistar rats from postnatal day 1 (PND 
1) to postnatal day 15 (PND 15). HO-1, heme oxygenase-1; icv, 

intracerebroventricular; ip, intraperitoneal; KIC, α-ketoisocaproic 
acid; MEL, melatonin; NAC, N-acetylcysteine; PND, postnatal day; 
PBS, phosphate-buffered saline
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Nitrate and Nitrite Levels

Reactive nitrogen species (RNS) levels were evaluated by 
the determination of the nitric oxide derivatives nitrate 
(NO3

−) and nitrite (NO2
−), according to the method 

described by Navarro-Gonzálvez et  al. [37]. Tissue 
homogenates were deproteinized by a solution of 75 mM 
ZnSO4, centrifuged, and the supernatant neutralized with 
a solution of 55 mM NaOH. Then, all nitrates were con-
verted to nitrite by the addition of copper-coated cadmium 
granules. Next, an aliquot of the samples was treated with 
the Griess reagent and incubated for 10 min at room tem-
perature in the dark. The absorbance was determined in a 
Spectramax M5 microplate reader at 505 nm. A standard 
curve was performed with sodium nitrite (2.5–100 μM). 
Results were expressed as μmol nitrates and nitrites per 
milligram protein.

Malondialdehyde (MDA) Levels

MDA levels were determined by measuring thiobarbi-
turic acid reactive substances, according to the method 
of Yagi [38]. After pre-incubation, tissue homogenates 
were incubated for 1 h at 100 °C in the presence of 10% 
trichloroacetic acid (TCA) and 0.67% thiobarbituric acid. 
The resultant pink color was extracted with butanol and 
separated by centrifugation. The fluorescence of the 
organic phase was measured at 515 nm (excitation) and 
553 nm (emission). A standard curve was made by using 
1,1,3,3-tetramethoxypropane. Results were expressed as 
nmol MDA per milligram protein.

Carbonyl Content

In order to determine the carbonyl content, tissue homoge-
nates were treated with 2,4-dinitrophenylhydrazine (10 
mM) and incubated for 1 h in the dark at room tempera-
ture. Proteins were precipitated with 20% TCA, the sedi-
ment obtained after centrifugation was washed with a mix-
ture of ethanol:ethyl acetate (1:1, v/v) and resuspended in 
6 M guanidine. The carbonyl content was spectrophoto-
metric determined at 365 nm in a Spectramax M5 [39]. 
Results were expressed as nmol carbonyl content per mil-
ligram protein.

Reduced Glutathione (GSH) Levels

Tissue homogenates reacted with o-phthaldialdehyde (1 
mg/mL) and were incubated for 15 min at room tempera-
ture in the dark. Next, the fluorescence was determined in 
Spectramax M5 microplates at 350 nm (excitation) and 

420 nm (emission) [40]. GSH levels were calculated from 
a standard curve of GSH (0.001–1 mM) as nmol GSH per 
milligram protein.

Glutathione Peroxidase (GPx) Activity

GPx activity was determined in tissue homogenates by the 
method of Wendel [41], using tert-butyl hydroperoxide 
as substrate. The decrease of NADPH absorbance at 340 
nm was monitored in a Spectramax M5. GPx activity was 
expressed as unit per milligram protein.

Glutathione Reductase (GR) Activity

GR activity was measured in tissue homogenates accord-
ing to the method described by Carlberg and Mannervik 
[42], using oxidized glutathione (GSSG) and NADPH as 
substrates. This enzymatic activity was determined by moni-
toring the decrease of NADPH absorbance at 340 nm in a 
Spectramax M5. GR activity was expressed as unit per mil-
ligram protein.

Superoxide Dismutase (SOD) Activity

SOD activity was measured in tissue homogenates accord-
ing to the method of Marklund [43], which is based on the 
autoxidation of pyrogallol that can be measured by deter-
mining the absorbance at 420 nm in a Spectramax M5. A 
standard curve was made with commercially purified SOD 
(S8408, Merck) to calculate the SOD activity. The results 
were expressed as unit per milligram protein.

Western Blotting

For the determination of HO-1 protein immunocontent, 
animals were euthanized by decapitation; the cerebral cor-
tex was dissected, homogenized, and centrifuged; and the 
supernatants were prepared for the analyses, as described 
by Seminotti et al. [33]. The primary antibody anti-HO-1 
(1:500, Abcam ab13248) was used and the results expressed 
as a ratio comparative to β-actin (1:20000, Merck A1978).

Neurochemical Markers

The neurochemical markers were measured by immuno-
fluorescence. A transcardiac perfusion with 0.9% saline 
containing 0.16% sodium citrate was first carried out in the 
anesthetized rats and followed by a second perfusion with 
4% paraformaldehyde, after which the brain was removed 
and coronal slices (35 μm) prepared using a Vibratome 
(VT1000S; Leica, Nussloch, Germany). Three transverse 
brain slices containing the cerebral cortex and striatum 
were obtained from each animal and the immunostaining 
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procedures were performed according to Seminotti et al. 
[33]. An overnight incubation at 4 °C with the following pri-
mary antibodies were then performed: mouse anti-neuronal 
nuclear protein (NeuN) (1:400, Millipore #MAB377), rabbit 
anti-glial fibrillary acidic protein (GFAP) (1:500, Thermo 
Fisher # MA5-12,023), mouse anti-myelin basic protein 
(MBP) (1:500, Merck #AMAb91064), and rabbit anti-2′,3′-
cyclic-nucleotide 3′-phosphodiesterase (CNPase) (1:500, 
Cell Signaling #D83E10). Next, a 90-min incubation at room 
temperature with a secondary mouse or rabbit antibody was 
carried out (1:500, Thermo Fisher Scientific). Slices were 

then assembled with fluoroshield (Merck) and the images 
were captured by an Olympus FV300 confocal microscope 
using 488 and 546 nm wavelengths. NeuN-positive cells and 
the fluorescence intensity of GFAP, MPB, and CNPase were 
assessed in three randomly chosen fields per slice.

Determination of Protein Concentrations

Protein concentrations were measured by the method of 
Lowry and collaborators [44] with bovine serum albumin 
as standard.

Fig. 2   Effects of an intracerebroventricular (icv) administration of 
KIC (1 μmol/g) to neonate rats on redox homeostasis in the cerebral 
cortex 6 hours after injection. 2′,7′-Dichlorofluorescein (DCFH) 
oxidation (A), malondialdehyde (MDA) levels (B), carbonyl forma-
tion (C), reduced glutathione (GSH) levels (D), and glutathione per-
oxidase (GPx) (E), glutathione reductase (GR) (F), and superoxide 

dismutase (SOD) (G) activities were determined. Values are mean 
± standard deviation of six independent experiments (N) expressed 
as μmol/mg protein, nmol/mg protein or U/mg protein. **P < 0.01, 
***P < 0.001 compared to control (Student’s t test for unpaired 
samples)
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Statistical Analysis

The normality of data distribution was initially assessed 
using the Shapiro-Wilk test, which showed a normal distri-
bution pattern. Thus, the statistical analyses were one-way 
analysis of variance (ANOVA) followed by Tukey’s post hoc 
test when more than two groups were compared, whereas 
Student’s t test for unpaired samples was used to compare 
two groups. Results were expressed as mean ± standard 
deviation and differences rated significant when P < 0.05. 
All analyses were made in the GraphPad Prism 9.0 software.

Results

Markers of Redox Homeostasis

Cerebral cortex and striatum of neonate rats were assayed to 
determine a large spectrum of redox homeostasis parameters 
6 h after KIC icv injection (1 μmol/g) or at PND 7.

Fig. 3   Effects of an intracerebroventricular (icv) administration of 
KIC (1 μmol/g) to neonate rats on redox homeostasis in the striatum 
6 hours after injection. 2′,7′-Dichlorofluorescein (DCFH) oxidation 
(A), malondialdehyde (MDA) levels (B), reduced glutathione (GSH) 
levels (C), and glutathione peroxidase (GPx) (D), glutathione reduc-

tase (GR) (E), and superoxide dismutase (SOD) (F) activities were 
determined. Values are mean ± standard deviation of five to six inde-
pendent experiments (N) expressed as μmol/mg protein, nmol/mg 
protein, or U/mg protein. *P < 0.05, **P < 0.01, ***P < 0.001 com-
pared to control (Student’s t test for unpaired samples)

Fig. 4   Effects of an intracerebroventricular (icv) administration of 
KIC (1 μmol/g) to neonate rats on nitrate and nitrite concentrations 
in the forebrain 6 h after injection. Values are mean ± standard devia-
tion of six independent experiments (N) expressed as μmol/mg pro-
tein. No significant differences were detected (Student’s t test for 
unpaired samples)
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icv Administration of KIC to Neonate Rats Disrupts Brain 
Redox Homeostasis

We initially observed that icv KIC administration caused 
significant increases of DCFH oxidation (t(10) = 4.329, P 
< 0.01), MDA levels (t(10) = 4.769, P < 0.001), and car-
bonyl content (t(10) = 3.458, P < 0.01), besides a decrease 
of GSH levels (t(10) = 11.72, P < 0.001), and GR activ-
ity (t(10) = 3.649, P < 0.01) in the cerebral cortex of the 
neonate rats 6 h after icv injection. In contrast, SOD and 
GPx activities were not changed by this treatment (Fig. 2). 
Furthermore, increased DCFH oxidation (t(9) = 3.449, P 
< 0.01) and MDA levels (t(10) = 13.72, P < 0.001), and 
decreased GSH concentrations (t(10) = 2.4, P < 0.05) were 
observed in the striatum of neonate rats following KIC 
treatment (Fig. 3). Increased activities of GPx (t(10) = 
7.641, P < 0.001), GR (t(10) = 6.389, P < 0.001), and 
SOD (t(10) = 3.235, P < 0.01) were also found in the stria-
tum 6 h after KIC injection (Fig. 3). Finally, we found 
that nitrate and nitrite concentrations were not changed 
in the forebrain of neonate rats 6 h after the administra-
tion of the metabolite (Fig. 4). Taken together, these data 
clearly reveal that a single icv in vivo KIC injection causes 

short-lived oxidative stress in the brain of neonate rats 
probably secondary to increased ROS formation.

We also measured the effects of icv KIC injection to the 
neonate rats on redox homeostasis parameters in cerebral 
cortex and striatum at PND 7. We observed that KIC only 
significantly elevated SOD activity (t(8) = 6.392, P < 0.001) 
in cerebral cortex, with no alterations of DCFH oxidation, 
MDA and GSH concentrations, as well as of GPx and GR 
activities (Fig. 5). Regarding the striatum, we found that all 
antioxidant enzymes had their activities increased by this 
treatment (GPx: t(8) = 9.987, P < 0.001; GR: t(8) = 2.483,  
P < 0.05; SOD: t(8) = 4.249, P < 0.01), without any change 
in DCFH oxidation, MDA, and GSH levels (Fig. 6).

NAC and MEL Prevent the Alterations Induced by an icv 
Administration of KIC on Redox Homeostasis in Cerebral 
Cortex and Striatum of Neonate Rats

Next, we evaluated whether the antioxidants NAC and MEL 
(intraperitoneal injections 24 and 1 h before KIC adminis-
tration) could prevent the alterations of the various redox 
homeostasis parameters caused by KIC administration 6 h 
after the injection. We found that MEL normalized DCFH 

Fig. 5   Effects of an intracerebroventricular (icv) administration of 
KIC (1 μmol/g) to neonate rats on redox homeostasis in the cerebral 
cortex at postnatal day (PND) 7. 2′,7′-Dichlorofluorescein (DCFH) 
oxidation (A), malondialdehyde (MDA) levels (B), reduced glu-
tathione (GSH) levels (C), and glutathione peroxidase (GPx) (D), 

glutathione reductase (GR) (E), and superoxide dismutase (SOD) (F) 
activities were evaluated. Values are mean ± standard deviation of 
five to six independent experiments (N) expressed as μmol/mg pro-
tein, nmol/mg protein, and U/mg protein. ***P < 0.001 compared to 
control (Student’s t test for unpaired samples)
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Fig. 6   Effects of an intracerebroventricular (icv) administration of 
KIC (1 μmol/g) to neonate rats on redox homeostasis in the striatum 
at postnatal day (PND) 7. 2′,7′-Dichlorofluorescein (DCFH) oxidation 
(A), malondialdehyde (MDA) levels (B), reduced glutathione (GSH) 
levels (C), and glutathione peroxidase (GPx) (D), glutathione reduc-

tase (GR) (E), and superoxide dismutase (SOD) (F) activities were 
evaluated. Values are mean ± standard deviation of five independent 
experiments (N) expressed as μmol/mg protein, nmol/mg protein, and 
U/mg protein. *P < 0.05, **P < 0.01, ***P < 0.001 compared to 
control (Student’s t test for unpaired samples)

Fig. 7   Effects of the antioxidants N-acetylcysteine (NAC) and mela-
tonin (MEL) on the alterations of redox homeostasis parameters 
caused by an intracerebroventricular (icv) administration of KIC (1 
μmol/g) to neonate rats in the cerebral cortex 6 h after the injection. 
2′,7′-Dichlorofluorescein (DCFH) oxidation (A), malondialdehyde 
(MDA) levels (B), and reduced glutathione (GSH) levels (C) were 
determined. Animals received two intraperitoneal injections of NAC 

(300 mg/kg and 400 mg/kg) or MEL (40 mg/kg) 24 and 1 h prior to 
KIC icv administration. Values are mean ± standard deviation of four 
to six independent experiments (N) expressed as μmol/mg protein and 
nmol/mg protein. *P < 0.05, **P < 0.01 compared to control. #P < 
0.05, ##P < 0.01 compared to KIC (one-way ANOVA, followed by 
post hoc Tukey’s range test)
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oxidation, MDA levels, and GSH concentrations, whereas 
NAC totally prevented GSH decrease and the increase of 
MDA levels in the cerebral cortex (Fig. 7) (DCFH: F(3,16) 
= 7.359, P < 0.01; MDA: F(3,12) = 5.555, P < 0.05; GSH: 
F(3,16) = 7.861, P < 0.01). Furthermore, MEL fully pre-
vented DCFH oxidation, MDA, and GR activity increase, 
but did not change KIC-elicited increase of GPx, and exac-
erbated KIC-induced increase of SOD activity in the stria-
tum. In turn, NAC normalized GPx activity, exacerbated 
KIC-induced SOD activity increase and did not change 
KIC-induced alterations on DCFH oxidation, MDA levels 
and GR activity (Fig. 8) (DCFH: F(3,12) = 6.313, P < 0.01; 
MDA: F(3,10) = 18.67, P < 0.001; GPx: F(3,17) = 94.67, P < 

0.001; GR: F(3,16) = 23.55, P < 0.001; SOD: F(3,15) = 57.63, 
P < 0.001).

icv Administration of KIC to Neonate Rats Induces HO‑1 
Production in Cerebral Cortex

To find out a possible signaling mechanism involved in 
the KIC-induced oxidative stress, we measured HO-1 
protein levels, an enzyme with cytoprotective effects on 
oxidative stress by degrading free heme [45], in cerebral 
cortex of the KIC-treated neonate rats 6 h after injec-
tion. Figure 9 shows that the levels of HO-1, which are 
controlled by the nuclear factor erythroid 2-related factor 

Fig. 8   Effects of the antioxidants N-acetylcysteine (NAC) and mela-
tonin (MEL) on the alterations of redox homeostasis parameters 
caused by an intracerebroventricular (icv) administration of KIC 
(1 μmol/g) to neonate rats in the striatum 6 h after the injection. 
2′,7′-Dichlorofluorescein (DCFH) oxidation (A), malondialdehyde 
(MDA) levels (B), reduced glutathione (GSH) levels (C), and the 
activities of glutathione peroxidase (GPx) (D), glutathione reductase 
(GR) (E), and superoxide dismutase (SOD) (F) were determined. 

Animals received two intraperitoneal injections of NAC (300 mg/
kg and 400 mg/kg) or MEL (40 mg/kg) 24 and 1 h prior to KIC icv 
administration. Values are mean ± standard deviation of three to six 
independent experiments (N) expressed as μmol/mg protein, nmol/mg 
protein, or U/mg protein. *P < 0.05, **P < 0.01, ***P < 0.001 com-
pared to control. ##P < 0.01, ###P < 0.001 compared to KIC (one-way 
ANOVA, followed by post hoc Tukey’s range test)
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2 (Nrf2), were markedly increased after KIC administra-
tion (t(10) = 9.064, P < 0.001).

Neurochemical Markers Measured 
by Immunofluorescence

We also measured the effects of icv administration of KIC 
(1 μmol/g) to neonate rats on NeuN, GFAP, MBP, and 
CNPase immunofluorescence that indicate neuronal num-
ber, reactive astrogliosis, and myelination, respectively, in 
cerebral cortex and striatum at PND 15.

icv Administration of KIC to Neonate Rats Provokes 
Long‑Term Neuronal Loss, Astrocytic Reactivity, 
and Myelination Impairment at PND 15

Next, we investigated whether an icv administration of 
KIC to neonate rats could alter the immunofluorescence 
staining of neuronal (NeuN), astrocytic (GFAP), and mye-
lin (MPB and CNPase) proteins at PND 15. It was found 
that KIC significantly decreased NeuN (cerebral cortex: 
t(4) = 3.301, P < 0.05; striatum: t(4) = 12.04, P < 0.001) 
(Fig.  10) and increased GFAP (cerebral cortex: t(5) = 
2.829, P < 0.05; striatum: t(5) = 2.087, P < 0.05) (Fig. 11) 
immunofluorescence staining. In addition, MBP (striatum: 
t(6) = 2.026, P < 0.05) (Fig. 12) and CNPase (striatum: t(6) 
= 2.870, P < 0.05) (Fig. 13) staining were significantly 
reduced in the striatum of these animals. These results 
suggest long-term neuronal loss, astrocyte reactivity, and 

myelination injury in the brain following a single admin-
istration of KIC in the neonatal period.

Discussion

MSUD is a severe life-threatening inherited metabolic dis-
ease clinically characterized by neurological symptoms that 
worsen during crises of metabolic decompensation usually 
triggered by infections and other stressful conditions asso-
ciated with fasting. These episodes are accompanied by a 
huge elevation in the levels of the BCKA and BCAA, mainly 
KIC and leucine, which are thought to be the major neuro-
toxic metabolites in MSUD [1, 2, 46]. MSUD children that 
survive the initial episodes of metabolic decompensation 
during the first weeks of life usually present long-term neu-
rological sequelae, such as cortical atrophy and basal ganglia 
alterations, whose pathogenesis is still poorly established 
[8, 47]. In this particular, there is evidence suggesting that 
oxidative stress and neuroinflammation are associated with 
MSUD neurodegeneration [27–30, 48–50]. In line with this, 
various studies found that the metabolites accumulating in 
this disease disturb redox homeostasis and cause mitochon-
drial dysfunction in vivo in brain of young and adult rats 
[11, 13, 18, 22–24, 26]. Furthermore, in vivo icv injection 
of KIC to 30-day-old rats showed to cause oxidative stress 
[11], decrease of neurotrophic factors [12], and of respira-
tory chain complexes activities [13], as well as alterations of 
pro-inflammatory cytokines levels [14] in various cerebral 
regions. It is emphasized that most of these experimental 
works testing the effects of the BCAA and BCKA were car-
ried out using 30-day-old or older rats. Investigating the 
role of these metabolites on neonatal brain seems therefore 
justified since MSUD patients manifest with neurological 
dysfunction in the first days of life.

Thus, the present investigation assessed biochemical 
markers of oxidative stress and neurochemical landmarks 
by immunofluorescence staining aiming to determine the 
number of neurons, astroglial reactivity, and myelination in 
the cerebral cortex and striatum following an acute cerebral 
overload of KIC to neonate rats in an effort to clarify the 
mechanisms responsible for brain injury in MSUD at this 
age. It is stressed that KIC can easily penetrate into the brain 
through the monocarboxylate transporter (MCT/SLC16A1) 
localized in the blood-brain barrier [51–53], being therefore 
able to accumulate in the central nervous system. We found 
that KIC caused short-term oxidative stress, as well as long-
standing neurochemical alterations indicative of neuronal 
loss, astrogliosis, and hypo/demyelination in the brain of the 
treated animals. We also explored whether the antioxidants 
MEL and NAC could be protective against KIC-induced 
oxidative stress in these cerebral structures.

Fig. 9   Effect of an intracerebroventricular (icv) administration of 
α-ketoisocaproic acid (KIC, 1 μmol/g) to neonate rats on heme oxy-
genase-1 (HO-1) immunocontent in cerebral cortex 6 h after injec-
tion. Values are mean ± standard deviation of three to six inde-
pendent experiments (N) expressed as arbitrary units. ***P < 0.001 
compared to control (Student’s t test for unpaired samples)
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We initially found that KIC increased ROS generation 
(DCFH oxidation), induced lipid (MDA levels) and protein 
(carbonyl content) oxidative damage and decreased the GSH 
levels and GR activity in the cerebral cortex of the neo-
nate rats. Similar findings were obtained in the striatum of 
these animals, except that all antioxidant enzymes evaluated 
(GPx, GR, and SOD) had their activities increased. It was 
also seen that nitrate and nitrite values were not changed 
by this treatment, ruling out a possible action of RNS in 
these effects. Noteworthy, since MDA is a lipoperoxidation-
derived aldehyde, increases of its levels are indicative of 
lipid peroxidation, which may lead to severe cell damage, 
particularly to the brain that is rich in polyunsaturated fatty 
acids highly vulnerable to oxidation [54, 55]. With respect to 
the carbonyl groups, they result from the oxidation of amino 
acid side chain residues, indicating protein oxidation that is 
potentially harmful to cellular physiology [56, 57].

Regarding the decreased levels of GSH, the primary 
non-enzymatic antioxidant defense of the central nervous 

system that is critical to the clearance of free radicals 
[58], it is feasible that elevated levels of ROS could oxi-
dize GSH, forming GSSG, but this should be confirmed 
since the oxidized form of GSH was not measured here. 
We might also suggest that the low capacity to prevent 
oxidative damage (GSH decrease) caused by KIC in the 
main structures injured in MSUD, may have contributed 
to lipid and protein oxidation. In turn, the decreased 
activity of GR in the cerebral cortex, which is a crucial 
enzyme to restore GSH concentrations, may also have a 
role in the diminution of GSH levels. Otherwise, we do 
not know yet the exact mechanisms for the increased anti-
oxidant enzyme activities in the striatum following KIC 
injection, but our data showing that this organic acid also 
increased HO-1 protein content suggest that KIC leads to 
the upregulation of antioxidant defense genes possibly in 
an attempt to overcome the redox imbalance generated in 
this cerebral structure, reflecting therefore a cytoprotec-
tive strategy [59, 60].

Fig. 10   Effects of an intracerebroventricular (icv) administration of 
KIC (1 μmol/g) to neonate rats on NeuN immunofluorescence in the 
cerebral cortex and striatum at postnatal day (PND) 15. Images are 
representative of three independent experiments (N). Quantitation of 
NeuN-positive cells was performed on 400× magnification images 
using the mean of three randomly selected fields of each brain struc-

ture per slice. Data were obtained using three slices (containing cer-
ebral cortex and striatum) per rat brain from three animals in each 
experimental group and are expressed as mean ± standard deviation 
of NeuN-positive cells. *P < 0.05, ***P < 0.001 compared to control 
(Student’s t test for unpaired samples)
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With respect to SOD, since this enzyme converts the 
superoxide radical to hydrogen peroxide mainly to preserve 
GSH [61, 62], it is possible that SOD increased activity 
could result from its transcriptional overproduction to com-
bat the increase in the anion superoxide radical [63]. The 
same reasoning could explain GPx activity augment in the 
striatum, to counterattack hydrogen peroxide species.

Since oxidative stress represents an unbalance between 
reactive species generation and antioxidant defenses [63], 
our present findings indicate that KIC induces oxidative 
stress in the brain of neonate rats, which to our mind was 
not yet described at this early development stage.

Our results also revealed that pre-treatment of neonate 
rats with the antioxidants NAC and MEL before KIC injec-
tion prevented or attenuated most of the altered biochemi-
cal markers of redox homeostasis. Therefore, we presume 
that particularly NAC, which is used in other pathologies 
to restore cell redox homeostasis [64–66], could serve as 

an adjuvant therapy to avoid, or ameliorate acute or chronic 
oxidative damage to critical cell macromolecules in MSUD.

In this regard, NAC is an effective antioxidant, neutral-
izing ROS and RNS [67]. This compound has a direct effect 
due to its free thiol group and it is an essential substrate for 
the enzyme γ-glutamylcysteine synthetase in the synthesis 
of GSH [68]. NAC has also anti-inflammatory properties 
by suppressing the nuclear factor κ B (NF-κB), diminishing 
the production of tumor necrosis factor-α, interleukin-1, and 
interleukin-6 (pro-inflammatory cytokines) [69].

MEL, a neurohormone secreted by the pineal gland, acts 
primarily on circadian rhythms [70], but has been shown to 
have neuroprotective effects [71, 72] mainly attributed to its 
antioxidant activity and improvement of mitochondrial func-
tion [70, 73–80]. In this context, MEL was demonstrated to 
mitigate oxidative stress induction by regulating the Nrf2 
signaling pathway [81–83], which is mainly responsible for 
modulating the expression of many antioxidant genes [84].

Fig. 11   Effects of an intracerebroventricular (icv) administration 
of KIC (1 μmol/g) to neonate rats on GFAP immunofluorescence in 
the cerebral cortex and striatum at postnatal day (PND) 15. Images 
are representatives of three independent experiments (N). Quantita-
tion of GFAP ratio intensity was performed on 400× magnification 
images using the mean of three randomly selected fields of each brain 

structure per slice. Data were obtained using three slices (containing 
cerebral cortex and striatum) per rat brain from three to four animals 
in each experimental group and are expressed as mean ± standard 
deviation of GFAP ratio intensity (% of control). *P < 0.05 compared 
to control (Student’s t test for unpaired samples)
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Another interesting observation of this work was that oxi-
dative stress induction following KIC injection at neonatal 
period was much less evident at PND 7, implying a short-
lived effect of this metabolite on brain redox status.

The present data obtained very early during rat devel-
opment, at an age where severe neurological symptoms 
appear in humans, are in agreement with previous results 
that reported increased MDA levels, protein carbonylation, 
DCFH oxidation, DNA oxidative damage, and SOD activ-
ity induced by KIC icv administration in the brain of young 
rats [11, 13], as well as with in vitro studies demonstrat-
ing that KIC disturbs brain redox homeostasis in young rats 
[15], C6 astroglial cells [16], human leukocytes [85, 86], 
and hippocampal neuronal cells [13]. Oxidative damage to 
lipids and proteins has been also shown in plasma of MSUD 
patients [27–30], corroborating with the in vivo and in vitro 
animal studies.

We also evaluated whether the injection of KIC to neonate 
rats could provoke neuronal damage, astrocyte reactivity, 

and myelination injury in striatum and cerebral cortex at 
PND 15 since there is no report on whether an acute intrac-
erebral KIC overload during this period of life could cause 
histopathological alterations along development.

KIC administration led to a long-standing (PND 15) neu-
ronal damage or/and loss (decreased NeuN positive cells) 
and astroglial reactivity (elevation of the astrocytic marker 
GFAP) in the cerebral cortex and striatum, whereas signifi-
cant decreases of the immunoreactivity of the myelin pro-
teins MBP and CNPase, indicating myelination injury, were 
found in the striatum.

It is emphasized that a moderate activation of astrocytes 
usually represents a mechanism of protection to surrounding 
neurons, whereas exacerbated glial reactivity may be delete-
rious to neurons, as evidenced in various neurodegenerative 
pathologies [87–89]. Noteworthy, GFAP, which is the main 
protein constituting astrocyte intermediate filaments, has 
been considered a classic marker of reactive astrocytes [90, 
91]. In this scenario, the present investigation also showed a 

Fig. 12   Effects of an intracerebroventricular (icv) administration 
of KIC (1 μmol/g) to neonate rats on MBP immunofluorescence in 
the cerebral cortex (A) and striatum (B) at postnatal day (PND) 15. 
Images are representatives of four independent experiments (N). 
Quantitation of MBP ratio intensity was performed on 200× magni-
fication images using the mean of three randomly selected fields of 

each brain structure per slice. Data were obtained using three slices 
(containing cerebral cortex and striatum) per rat brain from four ani-
mals in each experimental group and are expressed as mean ± stand-
ard deviation of MBP ratio intensity (% of control). *P < 0.05 com-
pared to control (Student’s t test for unpaired samples)
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decrease of NeuN immunoreactivity in cerebral cortex and 
striatum, suggesting neuronal damage associated with glial 
reactivity in these cerebral structures that are mostly injured 
in MSUD.

In what concerns to myelination, we found a significant 
decrease of the content of sensitive protein markers of the 
myelination status in the striatum. A significant decrease in 
MBP immunoreactivity was observed in the striatum at PND 
15, indicating myelin vulnerability secondary to neonatal 
intracerebral accumulation of KIC. Of note, the MBP is a 
sensitive marker of oligodendrocyte function and myelina-
tion status once it maintains myelin stability and integrity 
[92, 93]. In addition, MBP is involved in the maintenance of 
calcium and cell homeostasis [93]. The immunoreactivity of 
the CNPase protein, which is important in the regulation of 
oligodendrocyte process outgrowth [94, 95], was also sig-
nificantly reduced in the striatum of these animals at PND 
15, further indicating myelin injury in the rats neonatally 
injected with KIC. No significant effect of this treatment 

towards myelination was observed in the cerebral cortex, 
indicating that striatum is more vulnerable to myelin injury 
caused by an acute overload of KIC during the neonatal 
period that possibly mimics a metabolic episode of decom-
pensation in MSUD affected neonates.

The present neurochemical findings corroborate with pre-
vious post-mortem studies carried out in MSUD patients 
showing defective myelination in various brain regions, 
including subcortical areas and basal ganglia [96, 97], as 
well as decrease of oligodendrocyte number in brain white 
matter [97–99], neuronal abnormalities in the cerebral cor-
tex, and astrogliosis in the hippocampus and basal ganglia 
[100].

It should be also emphasized that the development and 
formation of a normal adult brain may be affected by inju-
ries in the early postnatal period that lead to future neuro-
logic symptoms and brain abnormalities. In this particular, 
it is interesting to note that all KIC-injected animals mani-
fested with seizures immediately after its administration and 

Fig. 13   Effects of an intracerebroventricular (icv) administration 
of KIC (1 μmol/g) to neonate rats on CNPase immunofluorescence 
in the cerebral cortex (A) and striatum (B) at postnatal day (PND) 
15. Images are representatives of four independent experiments (N). 
Quantitation of CNPase ratio intensity was performed on 200× mag-
nification images using the mean of three randomly selected fields of 

each brain structure per slice. Data were obtained using three slices 
(containing cerebral cortex and striatum) per rat brain from four ani-
mals in each experimental group and are expressed as mean ± stand-
ard deviation of CNPase ratio intensity (% of control). *P < 0.05 
compared to control (Student’s t test for unpaired samples)
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recovered after approximately 5 min, in contrast to the PBS-
injected rats (controls) that had no seizures at all. These 
observations revealed that our model of MSUD was toxic to 
the animals. Based on the data of the present investigation, 
we postulate that intracerebral toxic levels of KIC at the neo-
natal period may imbalance cellular redox status, disturbing 
cellular functions, and ultimately leading to neuronal loss, 
astrocyte reactivity, and myelination impairment.

We cannot, however, rule out that other pathomechanisms 
of brain damage are caused by increased concentrations of 
KIC or of the other metabolites accumulated in MSUD, 
including mitochondrial dysfunction and increased inflam-
matory response [46], that may also play an important role 
in MSUD neuropathology. In this context, we highlight 
that oxidative stress and neuroinflammation are inter-con-
nected pathogenic processes [101], so that it is feasible that 
increased pro-inflammatory cytokines in the neural cells 
might also contribute to the deleterious effects caused by 
KIC. Indeed, elevation of these inflammatory biomarkers 
was demonstrated in MSUD patients [48, 50] and in animal 
models of this disease [102, 103]. However, further studies 
are required to corroborate this hypothesis.

In conclusion, the findings obtained in this study indicate 
that KIC-induced oxidative stress early during development 
may represent a central deleterious mechanism involved in 
neurological injury in MSUD and that antioxidants may 
represent a potential new therapeutic strategy for patients 
affected by this disease. We emphasize that the main purpose 
of our experimental model using a single icv administra-
tion of KIC was to mimic the acute episodes of metabolic 
decompensation that take place during stressful situations 
in MSUD patients and are accompanied by high elevation 
of the brain levels of the accumulating metabolites, particu-
larly KIC. It is also of note that in the affected patients KIC 
produced peripherally may enter the brain from the systemic 
circulation, being transported through the blood-brain bar-
rier where it accumulates [53]. Furthermore, this organic 
acid can be also produced from leucine and accumulate 
inside the brain cells of MSUD patients, because of the 
deficient activity of the BCKDH complex in this tissue [53].
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