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Abstract
Alzheimer’s disease (AD) is a highly heterogenous neurodegenerative disease, and several omic-based datasets were gener-
ated in the last decade from the patients with the disease. However, the vast majority of studies evaluate these datasets in 
bulk by considering all the patients as a single group, which obscures the molecular differences resulting from the hetero-
geneous nature of the disease. In this study, we adopted a personalized approach and analyzed the transcriptome data from 
403 patients individually by mapping the data on a human protein-protein interaction network. Patient-specific subnetworks 
were discovered and analyzed in terms of the genes in the subnetworks, enriched functional terms, and known AD genes. We 
identified several affected pathways that could not be captured by the bulk comparison. We also showed that our personalized 
findings point to patterns of alterations consistent with the recently suggested AD subtypes.

Keywords  Alzheimer’s disease · Subnetwork discovery · Personalized networks · Transcriptome data · Disease subtypes · 
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Introduction

Alzheimer’s disease (AD) is a long-term, progressive neu-
rodegenerative disease, and it is the most common type of 
dementia. It causes the death of brain cells and shrinkage 
of brain tissues, which can cause memory loss, cognitive 
decline, disorientation, behavioral disorders, and, in more 
severe cases, death [1]. The number of AD patients is 
expected to exceed 100 million by 2050, with the effect of 
increasing life expectancy [2]. Lifelong care and therapy 
requirements for these patients place a significant financial 
burden on the family and society [3]. Therefore, uncovering 
the disease-associated molecular mechanisms that were not 
yet fully elucidated would have a significant contribution to 
developing novel treatment options.

In the pathophysiology of AD, there are several known 
physiological abnormalities in the brain tissues especially at 
hippocampus, entorhinal cortex, and neocortex [4]. Extracel-
lular amyloid-beta (Aβ) plaques are one of the hallmarks of 
AD. Aβ peptides are products of the proteolytic process of 

amyloid precursor protein (APP), which is crucial for sev-
eral biological activities like intracellular transport, sign-
aling, neuronal development, and homeostasis [5]. In AD, 
the accumulation of Aβ plaques causes serious metabolic 
disorders and neurotoxicity, and, eventually, leads to neu-
ronal cell death [6]. Another hallmark of AD is intracellular 
neurofibrillary tangles (NFTs) [7]. Tau is an essential protein 
for maintaining microtubule stability by tubulin assembly, 
and, thus, regulates normal functioning of neurons. Post-
translational modifications in tau proteins lead to NFTs [8], 
which form aggregates that promote synaptic and neuronal 
dysfunction by damaging dendritic spines and impair axonal 
functions [9]. The other major characteristic of disease is 
neuroinflammatory response. Pathological alterations in AD 
state are detected by tissue-resident immune cells, microglia, 
and perivascular macrophages. They produce cytokines and 
chemokines that exacerbate inflammation and, eventually, 
result in neurodegeneration and neuronal loss [10]. Like 
microglia, astrocytes also release cytokines after exposure to 
Aβ and misfolded proteins, hence they aggravate the neuro-
inflammatory response. In addition, astroglial atrophy occurs 
in AD, leading to the destruction of synaptic transmission, 
which contributes to cognitive impairment [11].

In order to understand the complex molecular mecha-
nisms and reveal the heterogeneous nature of the diseases, 
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various methods and data sources are employed. Transcrip-
tomics, one of the omics technologies, is widely used in 
disease diagnosis and for the elucidation of molecular mech-
anisms by enabling the extraction of important genes and 
pathways in complex systems [12]. Williams and colleagues 
conducted a study with transcriptome data from the prefron-
tal cortex region of AD patients. They revealed that synaptic 
function-associated genes were downregulated while genes 
connected to immune response were upregulated in AD. 
Genes encoding postsynaptic receptors, transporters, and 
enzymes mediating glutamatergic and GABAergic transmis-
sion were also downregulated [13]. In another study, Li et al. 
performed a meta-analysis by combining six transcriptome 
data and found candidate biomarker genes for AD. These 
genes were substantially downregulated and strongly linked 
with neuropathology. Also, their pathway analysis showed 
that the most affected pathways were related to nitric oxide 
and reactive oxygen species, NF-κB, and mitochondrial 
dysfunction [14]. In those studies and several other studies 
that use transcriptome data to investigate AD, the samples 
from patients are grouped together and compared with the 
control samples as a group, ignoring individual molecular 
differences between patients.

Differentially expressed genes (DEGs) alone are often 
insufficient to identify complicated molecular interactions. 
Subnetwork discovery tools, or, in other words, active mod-
ule identifiers, are frequently employed in systems medicine 
to reveal potential molecular mechanisms of disease from 
protein-protein interaction networks. They mainly integrate 
the molecular profiles and knowledge of biological networks 
with different strategies and algorithms. Among the many 
tools mentioned in the literature for this purpose, DOMINO 
was shown to perform better in a benchmarking study [15] 
since it aims to eliminate non-specific over-represented Gene 
Ontology (GO) terms for the genes in the discovered subnet-
work. It generates multiple modules, which are biologically 
rich and functionally distinct. Although it was published 
recently, it has been used in several studies as a subnetwork 
discovery tool [16, 17].

Although many studies have been conducted to under-
stand the molecular mechanism of AD [18–20], its causes 
and complex mechanism still remain unclear. Due to the 
heterogeneous nature of the disease, putting all the data in 
the same pool and evaluating them as a whole may lead to 
missing key points. In this study, we used transcriptome 
data from the ROSMAP cohort [21], arguably the larg-
est RNA sequencing dataset for AD, and adopted a per-
sonalized approach to evaluate all 403 AD samples indi-
vidually, aiming to explore important genes and unknown 
mechanisms of disease pathology. To this end, we mapped 
each patient data separately on a human protein-protein 
interaction network to identify patient-specific subnet-
works, which were separately investigated by functional 

enrichment analysis and in terms of known AD genes. 
Our patient-specific personalized approach captured sev-
eral AD-related dysregulations that could not be identified 
by bulk comparisons of AD and control samples, offering 
a promising approach towards unraveling undiscovered 
molecular features of AD.

Methods

Fig. 1 provides the personalized methodology we followed 
in this study to investigate the molecular mechanisms of AD.

Transcriptome Datasets

Transcriptome data from the Religious Orders Study and 
Rush Memory and Aging Project (ROSMAP) [21], arguably 
the most comprehensive study conducted within the scope 
of AD in terms of the number of AD patients covered, was 
used in this study. The dataset includes RNA-sequencing 
data from the dorsolateral prefrontal cortex (DLPFC) region 
of the brains of 658 participants. The samples in the dataset 
were grouped as disease or control based on the CERAD 
score, a semiquantitative measure of neuritic plaques in 
brain. This led to 404 Alzheimer’s disease patients (CERAD 
scores 1 and 2, corresponding to definite and probable AD) 
and 165 controls (CERAD score 4, corresponding to no AD). 
Raw datasets of these 569 participants were downloaded 
from the Synapse database (accession code: syn3388564) in 
the fastq file format. Low-quality reads were trimmed with 
Trimmomatic (version 0.39) [22], and the reads were aligned 
to the reference human genome (hg38) by the STAR algo-
rithm (version 2.7.8a) [23]. To obtain the raw read counts, 
FeatureCounts (version 2.0.2) [24] was used and raw read 
counts were normalized by the DESeq2 package [25] in R. 
Principal component analysis (PCA) was performed with the 
normalized data of 569 samples (404 AD and 165 control) 
in R to detect outlier samples that are clearly separated from 
the rest of the samples in a group when the samples were 
mapped on a two dimensional plot based on the variations 
in their gene expression profiles. The expression data was 
centered and scaled before PCA. Two samples were consid-
ered as outliers and excluded from the cohort: one was from 
AD and the other was from the control group (sample IDs: 
500_120515 and 380_120503). All further analyses in the 
study were performed with 403 AD and 164 control sam-
ples. To eliminate confounding effects of age, sex, and PMI 
(postmortem interval), a mixed linear model was applied to 
the log2-transformed normalized data by lm() function in R. 
The detailed demographic information of participants can 
be found in Table 1.
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Statistical Analysis

We adopted a personalized approach in this study where 
each sample from the AD group was compared to the con-
trol group to detect DEGs in each patient. To this end, we 
used a ranking-based approach as follows: (i) for the selected 
patient, the expression value of each gene of the patient was 
combined with the expression values of that gene in the con-
trol group, leading to a list of 165 values (1 value from the 
patient, 164 values from the control group), (ii) the expres-
sion values in the list were ranked from the smallest value to 
the largest value for each gene, (iii) a gene was considered 
to be downregulated for that patient if it was within the first 
5th percentile in the ranked list while it was considered to be 
upregulated if it was within the last 5th percentile, and (iv) 
the procedure from (i) to (iii) was repeated for each patient. 
We also calculated Benjamini-Hochberg corrected p-values 

with one-sample t-test for each gene in each AD sample, and 
used this as additional cut-off (p-value < 0.01) in identifying 
DEGs for each sample (Fig. 1). We observed that the genes 
identified by our ranking-based approach had significant 
p-values in most cases. We confined our analysis to protein-
coding genes in the transcriptome dataset. In the bulk analy-
sis where all AD samples as a group were compared with all 
control samples as a group for protein-coding genes, limma 
[26] package was used, and the cut-off value was chosen as 
0.05 for Benjamini-Hochberg corrected p-values.

Subnetwork Discovery from Protein‑Protein 
Interaction Data

Human protein-protein interaction (PPI) network was down-
loaded from BioGRID [27] (version 4.4.207). It consists 
of physical, chemical, and genetic interactions between 
human proteins and interactions between human proteins 
and proteins of other organisms. Only physical interactions 
between human proteins were retained, and other interac-
tions were excluded. Also, self-loops and duplicated edges 
were removed from the network. In its final form, the PPI 
network included 19,634 proteins and 678,802 interactions.

Subnetwork discovery was performed with the DOMINO 
algorithm [29]. To this end, for each patient, subnetworks were 
created for the upregulated and downregulated DEGs sepa-
rately. The DOMINO analysis was performed with version 

Fig. 1   Workflow of the method applied individually for each AD 
patient in this study. 1 Differentially expressed gene (DEG) list was 
created for each patient (n = 403) separately based on two different 
tests: ranking-based approach and one-sample t-test. 2 Dysregulated 
subnetworks were discovered for each patient separately by map-

ping DEGs on the human protein-protein interaction network using 
the DOMINO algorithm and 3 functional enrichment analysis was 
applied to the genes in each subnetwork to identify dysregulated 
molecular processes

Table 1   Demographic information of the control and AD groups 
from the ROSMAP cohort included in this study

AD Control

Subject number 403 164
Male/female 137/266 67/97
Age (mean ± std.) 87.4 ± 3.8 85.0 ± 5.6
PMI (postmortem interval) 7.5 ± 5.1 7.2 ± 4.4
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0.1.1 without changing the default parameters. A comparison 
of the results with an alternative subnetwork discovery algo-
rithm (KeyPathwayMiner, KPM) [28, 30] was also provided. 
For the KPM analysis, standalone version 5.0 was used with 
greedy algorithm and Individual Node ExceptionS (INES) 
model. The maximum number of unchanged genes allowed 
in a discovered subnetwork was set to 8 through the parameter 
K. Both algorithms were run with the same DEG lists and the 
same PPI network as input.

Enrichment Analysis

Functional enrichment analysis was applied to the genes in 
each discovered subnetwork via the R package of g:Profiler 
[31, 32], with default correction type (g:SCS) and 0.05 p-value 
cut-off. Since DOMINO produces multiple modules with dif-
fering sizes, enrichment analysis was applied to the modules 
with the number of included genes greater than or equal to 10. 
Significantly enriched terms coming from the multiple mod-
ules of a given sample were combined for final analysis.

Selecting AD‑Associated Genes and AD‑Related 
Functional Terms

To evaluate the results obtained from subnetwork discovery 
and enrichment analysis, AD-associated gene lists and func-
tional terms were identified. Four different AD-associated 
gene lists were used: (i) a list compiled from three differ-
ent GWAS studies that were conducted to identify AD risk 
genes [33–35], (ii) a list including the genes linked with 
the term “KEGG:05010 Alzheimer’s disease,” obtained 
via g:Profiler, (iii) a list created by searching for the term 
“Alzheimer’s disease” in the GeneCards database, and (iv) a 
manually curated list of AD-associated genes, termed Alzg-
set, compiled by extensive scanning of 823 published genetic 
association studies in PubMed [36]. There are 117 genes in 
GWAS, 353 genes in KEGG, 191 genes in GeneCards, and 
430 genes in Alzgset lists. These AD-associated gene lists 
can be accessed from Supplementary File 3.

Functional terms from KEGG, WikiPathway, and GO 
reflecting biological/neuronal processes known to be asso-
ciated with AD, representing the pathophysiology of the dis-
ease and found in the enrichment results of the subnetworks, 
were determined. While selecting these terms, we have also 
benefited from a recent study by Morgan et al. [37]. Selected 
AD-related terms are given in Supplementary File 2.

Results and Discussion

In this study, we aimed to elucidate the molecular mecha-
nisms of AD by adopting a personalized approach. RNA-seq 
data of 403 AD patients from the ROSMAP cohort were 

used for this purpose. The very beginning step of this study 
is the detection of upregulated and downregulated DEGs 
for each patient separately. By following our personalized 
approach (see “Methods,” “Statistical Analysis” section), we 
created upregulated and downregulated DEG lists for each 
patient (Fig. 1). For comparison, the ranges of the number of 
upregulated and downregulated DEGs are shown in Fig. 2A 
with a violin plot.

To reveal the affected mechanisms, subnetwork discov-
ery was performed through the DOMINO algorithm from 
the human protein-protein interaction network by using 
upregulated and downregulated DEGs separately for each 
patient. As a result of its design, DOMINO produces multi-
ple distinct modules, each of which has a different number of 
genes. It did not discover any modules for the downregulated 
DEGs of 23 patients and the upregulated DEGs of 9 patients. 
There was only one patient with no modules. Genes from 
these discrete modules were combined when reporting the 
total number of genes in the subnetworks. Fig. 2B shows 
violin plots of the number of genes in the upregulated and 
downregulated subnetworks discovered by DOMINO.

To see how many AD-related genes were present in 
the discovered subnetworks, the top 500 mostly encoun-
tered genes in the subnetworks were identified separately 
for upregulated and downregulated subnetworks, and their 
intersections with four different AD-associated gene lists 
were determined (Fig. 2C). In constructing the top 500 gene 
list, the genes were scored based on the number of patient-
specific subnetworks they appeared, and the genes with the 
same score as the 500th gene were also taken into account. 
While the intersections with GWAS and GeneCards lists 
were low in general, the highest intersections were observed 
with the KEGG list. As a comparison, we repeated patient-
specific subnetwork discovery analysis with an alternative 
algorithm, KeyPathwayMiner [28] (Supplementary File 
6). In agreement with a recent benchmarking analysis that 
showed superiority of DOMINO over KeyPathwayMiner 
and other subnetwork discovery algorithms [15], DOMINO 
is more powerful in (i) generating subnetworks more consist-
ent in size across the patients, (ii) capturing AD-associated 
genes, and (iii) capturing AD-related functional terms (Sup-
plementary File 6).

Dysregulated Genes and Pathways Uncovered 
by the Patient‑Specific Subnetworks Spotlight 
a Wide Range of AD‑Related Mechanisms

To determine which pathways are associated with the dis-
covered subnetworks, an enrichment analysis was carried 
out using the genes of each patient-specific subnetwork. 
Combining the enrichment results of the downregulated 
DOMINO subnetworks gives 15,451 unique terms while 
16,286 unique terms were obtained from the combination 
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of the enriched terms of the upregulated subnetworks. 
Then, majority voting was applied to the enrichment results 
to identify the number of patients found to be significantly 
associated with a given functional term. Supplementary File 
1 provides enrichment results of the upregulated and down-
regulated subnetworks.

We calculated the prevalence of the enrichment terms 
and genes among patients to summarize the large number of 
results we generated. While doing this, the number of occur-
rences of a term or gene was divided by the total number of 
patient subnetworks and then multiplied by 100. Based on 
the prevalence rates of each identified term in the upregu-
lated and downregulated results, a heatmap was produced 
(Fig. 3). The terms considered were grouped into seven 

categories as follows: mitochondria, immune response, cell 
death, calcium ion balance, synaptic activities, endoplasmic 
reticulum, and fatty acid metabolism.

Mitochondria

The first obvious difference is in the mitochondria-associ-
ated terms. Mitochondria is an essential component of neu-
rons because they both produce ATP and buffer calcium ion 
concentration at the synaptic region [38]. Impaired energy 
metabolism observed in AD state is an indication of dis-
rupted mitochondrial activities. Moreover, damaged mito-
chondria has a higher potential of producing reactive oxygen 
species (ROS), and less efficient in ATP production. This 

Fig. 2   A Violin plots showing the range of the number of downregu-
lated and upregulated DEGs for each AD patient from ROSMAP 
cohort. B Violin plots of number of genes in the downregulated and 

upregulated subnetworks discovered by DOMINO. C The top 500 
genes in the upregulated and downregulated subnetworks were inter-
sected with the AD-related gene lists
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Fig. 3   Comparison of the percent prevalence rates of AD-related functional terms from KEGG, WikiPathway, and GeneOntology annotations 
based on the enrichment results of the upregulated and downregulated subnetworks
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increases oxidative stress, which further impairs mitochon-
drial functions [39]. Fig. 3 shows that altered ATP-related 
functions are primarily associated with the downregulated 
subnetworks. The enrichment results of downregulated 
subnetworks contain more mitochondria-related terms than 
upregulated ones, and their prevalence rates are higher (for 
detailed results, see Supplementary File 1). This indicates 
that there is a suppression of genes that control the mito-
chondrial activity in AD. The two genes mostly encountered 
in the downregulated subnetworks are TBRG4 and COX4I1. 
The mitochondria-localized protein TBRG4 (transforming 
growth factor beta-regulator 4) is a member of FASTK fam-
ily. This family is involved in mitochondrial RNA process-
ing, regulation of the mitochondrial mRNA stability, and 
modulation of mitochondrial respiration. TBRG4 deficiency 
promotes apoptosis and elevates the generation of ROS [40]. 
Mitochondrial cytochrome c oxidase (COX, complex IV) 
is involved in the mitochondrial respiratory chain as the 
final electron acceptor. It has 13 subunits. COX4 is one of 
the subunits, and the most common isoform of COX4 is 
COX4I1. Its deficiency elevates ROS levels and impairs ATP 
production [41].

Immune Response

Immune response is another important mechanism in AD. 
The related enriched terms are more prevalent in the upreg-
ulated subnetworks than the downregulated ones. In AD 
case, accumulated or misfolded proteins in the extracellular 
matrix like Aβ bind to pattern recognition receptors (PRRs) 
on microglia and astrocyte and activate them. This activa-
tion is predominantly initiated by toll-like receptors (TLRs) 
[42]. Activation of different types of TLRs triggers cytokine 
signaling networks, causing the release of various cytokines 
like TNF-α, IL-6, and TGF-β, which have proinflammatory 
effect [43]. The predominance of pathways related to these 
mechanisms in upregulated subnetworks is consistent with 
the disease pathology.

Cell Death Mechanism

Another striking difference in our results is in the terms 
related to cell death. Cell death mechanism is a highly con-
trolled process required for healthy growth and tissue home-
ostasis. Several pathway alterations in the AD brain cause 
mitochondrial dysfunction, stress on the endoplasmic reticu-
lum, and disruption of the normal functioning of cell death 
mechanisms, inducing the apoptotic process [44]. A high 
rate of neuronal death is seen in various parts of the brain, 
especially in the entorhinal cortex, hippocampus, amygdala, 
and cerebral cortex [45]. When the terms of upregulated and 
downregulated networks are compared, it is observed that 
the terms related to cell death like “apoptosis”, “apoptotic 

process”, and “apoptosis modulation and signaling” are pre-
dominant in the upregulated networks.

Endoplasmic Reticulum (ER)

ER and Golgi apparatus-associated pathways are also among 
the pathways where the differences were observed. ER is a 
membranous organelle with very basic functions such as 
folding of protein molecules, transport of synthesized pro-
teins to the Golgi with vesicles, and regulation of calcium 
homeostasis in the cell [46]. In the ER, a subpopulation of 
cytosolic proteins, integral membrane proteins, and secre-
tory proteins are all synthesized. Ribosomes on the cytosolic 
face of the ER produce proteins that are taken up into the 
ER lumen for processing [47]. Before being exported from 
the ER, proteins are folded, assembled, and undergo post-
translational modifications. Misfolded proteins are either 
corrected in the ER or, if not corrected, are discovered by 
the ER and sent to the cytosol for degradation [48]. Buildup 
of misfolded proteins and disruption of intracellular Ca2+ 
homeostasis cause ER stress, resulting in neuronal dys-
function and, eventually, cell death [49]. Our results show 
that the terms “ER lumen”, “protein processing in the ER”, 
“response to ER stress”, and “protein folding in the ER” 
dominantly take place in the downregulated subnetworks, 
consistent with the AD pathology.

Dysregulated Genes in AD

It is also important to identify candidate genes in terms of 
revealing mechanisms of the disease and drug development. 
To this end, the genes in the four lists of known AD genes 
mentioned in the “Methods” section (Supplementary File 
3) were ranked according to their prevalence in the patient-
specific subnetworks obtained by combining the up- and 
downregulated subnetworks, and the interaction map was 
created by selecting the first 50 genes (Fig. 4A). Here we see 
HSPA5 and HSP90AA1 from the heat shock protein family 
in the first row. In the third place is the COX4I1 gene, the 
most common isoform of one of the subunits of the Cox 
involved in the mitochondrial respiratory chain. In order to 
identify novel genes that are not yet associated with AD 
but may be involved in the disease mechanism, the inter-
action map of the first 50 non-AD genes and the first 30 
known AD genes that were most frequently involved in the 
subnetworks was visualized (Fig. 4B). We use the terms 
“non-AD genes” to refer to genes not included in the list 
of known AD genes (Supplementary File 3). The non-AD 
gene XPO1 stands out as the gene with the highest interac-
tion in this network. It encodes the protein that mediates 
leucine-rich nuclear export signal (NES)-dependent protein 
transport. XPO1 inhibitors are not only anticancer and anti-
viral focused compounds, but they are also candidates for the 
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treatment of neurodegenerative diseases. In preclinical mod-
els of inflammatory demyelination and axonal injury, XPO1 
inhibition slowed the progression of the disease [50]. One 
other gene in Fig. 4B is CIT, citron rho-interacting serine/

threonine kinase. It specifically targets the Rho-Rac binding 
proteins. In AD, Rho-Rac1-GTPase signaling dysregulation 
promotes the degeneration of synapses, APP processing, and 
increases the phosphorylation of tau [51]. The third most 

Fig. 4   Genes were ranked based 
on their numbers of appearance 
in the discovered subnetworks, 
and A protein-protein interac-
tions between the top 50 known 
AD genes were visualized. B 
Protein-protein interactions 
between top 50 non-AD genes 
and top 30 known AD genes 
were visualized. Inner circle 
in B belongs to the known AD 
genes and outer circle belongs 
to non-AD genes. Colors of 
genes in both A and B change 
based on the degrees of the 
genes in the graphs
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interacting gene is OCIAD1, ovarian cancer immunoreac-
tive antigen domain containing 1. It can decrease oxidative 
phosphorylation by interacting with electron transport chain 
proteins and found to be neurodegeneration related factor for 
AD in a study. It was shown that OCIAD1 disrupts mito-
chondrial functions, which causes neuronal vulnerability and 
synaptic damage, and thus contributes to neurodegeneration 
in AD [52].

Personalized Approach can Capture Many Specific 
AD Mechanisms that are Missed by the Bulk 
Approach

To understand whether our patient-specific personalized 
approach has an advantage over the conventional bulk-com-
parison approach, which is the standard in the literature, we 
performed a bulk analysis by comparing all control samples 
with all AD samples, and obtained 2073 DEGs. Then, as 
in the patient-specific analysis, subnetwork discovery was 
performed with these DEGs by using DOMINO, and enrich-
ment analysis was applied to the genes in the discovered sub-
network. DOMINO and g:Profiler analyses were performed 
using the same parameters as in the patient-specific analysis.

The enriched terms for the bulk subnetwork included 
many terms related to mitochondrial functions, respira-
tion, and ATP synthesis, which are very important for AD 
(Supplementary File 4). Likewise, these terms are also fre-
quently encountered in the patient-specific analysis results. 
Regarding synaptic functions, which are also important for 
AD pathology, there are only few terms in the bulk result, 
and these are related with “presynapse”, “synapse”, “post-
synapse”, and “synaptic vesicle”. On the other hand, terms 
that allow us to learn more and in-depth information about 
synapses are found only in the patient-specific results. Fig. 5 
shows some of the terms included only in the enrichment 
results of the patient-specific analysis.

Another striking difference is that inflammation or 
immune system-related terms, which have a central place in 
AD pathology [53], were not identified in the bulk analysis 
enrichment results. In the patient-specific enrichment results, 
on the other hand, there are many terms related to inflam-
mation and immune response like “immune response”, 
“immune system process”, “cytokine-mediated signaling 
pathway”, and “inflammatory response”. The terms related 
to the ER also differ between the two approaches. The bulk 
analysis results have only a few terms from Reactome Data-
base reflecting ER-golgi transmission; on the other hand, 
our personalized analysis results contain many terms related 
to endoplasmic reticulum and its functional processes like 
“Protein processing in endoplasmic reticulum”, “response 
to endoplasmic reticulum stress”, and “endoplasmic retic-
ulum lumen”. In addition, there are a limited number of 
terms in the bulk analysis enrichment results that reflect the 

mechanism of cell death, and these are only terms related 
to the autophagy mechanism. However, as it is known, the 
predominant cell death mechanisms in AD are apoptosis and 
necrosis [54], and the terms related with these processes 
appear in the patient-specific results such as “apoptotic pro-
cess” and “apoptosis”. These mechanisms are triggered by 
the activation of caspase cascade, TNF, and TLR pathways 
[54]. Although personalized analysis results, especially 
upregulated ones, include different terms reflecting cell 
death mechanisms, there is no term referring to these mech-
anisms in the bulk analysis results. Another issue where 
differences are captured is the terms related to the SMAD 
protein. These proteins are activated by TGF-β binding to 
cell wall receptors and then move from the cytoplasm to the 
nucleus to activate or suppress transcription [55]. Abnormal 
localization of phosphorylated SMAD proteins in AD affects 
TGF-β signaling pathway, impairing the neuroprotective 
functions of this mechanism [56]. While the terms related 
to SMAD were observed in the patient-specific results, no 
terms were found in the bulk analysis results.

Protein homeostasis is essential for normal functioning 
of the cells. Ubiquitin-proteasome system (UPS) and the 
ubiquitin-like protein (UBL) conjugation pathways are cru-
cial for maintaining this homeostasis [57]. Ubiquitin is a 
member of UBL family and it is an important component 
of the UPS, which degrades more than 80% of normal or 
misfolded cellular proteins [58]. In the AD brain, abnormal 
UPS activity, ubiquitin accumulated plaques, and tangles are 
observed. Also proteasomal activity decreases especially in 
hippocampus [59]. Although there are many terms related 
to these mechanisms and proteins in the patient-specific 
results such as “ubiquitin-dependent protein catabolic pro-
cess” and “protein ubiquitination”, there is no related term 
in the bulk analysis. Another UBL where the difference is 
observed between the two approaches is small ubiquitin-like 
modifier (SUMO), and its related terms. SUMO is a group of 
proteins that are attached to or detached from proteins dur-
ing post-translational modifications, and this phenomenon 
is called SUMOylation. It plays important roles in many 
cellular processes and regulation of biological functions of 
proteins [60]. In AD, dysregulations occur in SUMOylation 
[61], but only one term reflecting these alterations is found 
in the bulk analysis result, while many SUMO-related terms 
are found in the sample-based enrichment results (Fig. 5). 
The same observation holds also for NEDD8, another UBL 
member whose activity is deregulated in AD [62].

The phosphatidylinositol 3-kinase (PI3K)/AKT signal-
ing pathway is another pathway where the differences are 
noticeable between the bulk and patient-specific results. 
The PI3K/AKT signaling pathway regulates a wide range 
of processes in the brain, including motility, intracellu-
lar trafficking, cell proliferation, growth, differentiation, 
and more complex procedures like dendrite and axon 
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extension. It also has essential role in maintaining syn-
aptic plasticity and memory process [63]. An abnormal-
ity in PI3K/AKT signaling can increase the activity of 
GSK-3β, which is a crucial molecule in the downstream 
of the pathway, and cause hyperphosphorylation of Tau, 
which causes the formation of NFTs [64]. Neurons can be 
protected against Aβ-induced toxicity by activating PI3K/
AKT signaling pathway [65]. The terms reflecting these 
pathways and the proteins that are central for a thorough 
understanding of the molecular mechanism underlying 
AD are present in the patient-specific results, but they are 
absent in the results of the bulk analysis. These altogether 
show that our personalized approach can reveal different 
aspects of each patient, and the unobtrusive points in the 
bulk analysis are made visible with the patient-specific 
analysis.

PPI‑Based Personalized Results Highlight 
Differences in the Subtypes of AD

It is a known fact that AD is a heterogeneous disease and 
has subtypes. Not all patients show the same pathological 
findings, and the disease progresses by different mechanisms 
[66]. Therefore, we also evaluated our patient-centered per-
sonalized results by referring to the subtyping suggested in 
a recent study by Neff et al. [67]. In that study, they used 
the Mount Sinai Brain Bank (MSBB) dataset to subgroup 
AD patients and validated these results with the ROSMAP 
dataset, where our personalized subnetworks are based. They 
identified 5 molecular subtypes, which they called blue, 
green, red, turquoise, and yellow under three major classes. 
There are 123 patients in the blue subtype, 96 patients in 
green, 80 in red, 56 in turquoise, and 35 in yellow subtype. 

Fig. 5   Illustration of some of the terms included only in the patient-specific upregulated and downregulated enrichment results. Sizes of the 
points change regarding the prevalence rate of the related terms
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In this section, we evaluate the 390 ROSMAP AD samples 
used by Neff et al. and show differences between subtypes by 
calculating prevalence rates of enriched terms and genes for 
each subtype separately for upregulated and downregulated 
subnetworks.

Fig. 6 illustrates how the prevalence rates of the enriched 
terms differ in the subtypes. The results are consistent with 
the fact that there are subtypes of the disease. The evaluation 
of the enrichment results revealed differences between the 
disease subtypes on the basis of biological processes and 
cellular functions, and these are detailed in the subsections 
below for each subtype (Figure 6). Moreover, in order to 
contribute to the elucidation of the molecular mechanism 
of the disease, the genetic alterations that cause these dif-
ferences should also be revealed. For this purpose, first the 
prevalence rates of the genes in the subnetworks of each 
subtype were determined separately. Prevalence rate of a 
gene shows the percentage of patients that include that gene 
in the discovered subnetwork for a given subtype. Next, 
previously used known AD genes were compared with the 
genes in the subnetworks of each subtype, and the genes that 
had the highest prevalence rate were selected when com-
pared to the other subtypes. This provides a different way 
of analyzing the differences between the disease subtypes. 
The prevalence rates of AD-related genes in discovered sub-
networks for each subtype are given in Supplementary File 
5. Each subtype will be discussed separately in the context 
of subtype-specific enrichment results and genes that differ 
from other subtypes.

Blue Subtype

For the downregulated processes, for example, the patients 
in the blue subtype have a low prevalence rate in the terms 
related to immune response and cell death. However, the 
prevalence rates of the terms related with mitochondria, syn-
apse, and calcium are high compared to the other subtypes in 
the blue subtype (Fig. 6). For the upregulated processes, the 
blue subtype shows very high prevalence rates in the terms 
related to cell death and immune system. There is also a 
slight upregulation of fatty acid metabolism. High levels of 
oxidative stress and ongoing bioenergetic disruption activate 
the apoptotic pathway, impair mitophagy, and ultimately 
cause the death of neuronal cells [68], which explains why 
there is an increase in immune response and cell death while 
there is a decrease in mitochondrial activity. Unlike other 
subtypes, the genes most frequently involved in the blue 
subtype are SLC6A3 and SNCA. The SLC6A3 gene, which 
is present in 23% of the subnetworks, is the most prominent 
gene. This gene encodes dopamine transporter (DAT) pro-
tein, which has often been associated with neuropsychiatric 
diseases. Abnormality in regulations of dopamine levels is 
associated with depression, bipolar disorder, and Parkinson’s 

disease. Since low levels of dopaminergic neurotransmitters 
are linked to AD [69], the function and significance of this 
gene can be further examined in terms of AD. Another gene 
is SNCA, which is found in 21% of subnetworks in the blue 
subtype. Although the function of α-synuclein encoded by 
SNCA is not exactly known, it is considered to be involved 
in the regulation of dopamine release and transport, the 
fibrillation of tau, neuroprotection by decreasing caspase 
activity [70].

Green Subtype

In the green subtype, cell death and immune response, 
which do not have high prevalence rates in other subtypes, 
are downregulated. Moreover, unlike the other subtypes, 
the rates of synapse-related terms in the green subtype are 
higher in the upregulated subnetwork results. At the same 
time, the prevalence rate of terms related to mitochondria is 
high (Fig. 6). For the green subtype, PSMC5 and PSMB6 
genes, which encode subunits of the proteasome complex, 
draw attention with 13% prevalence rate in subnetworks. As 
mentioned earlier, the proteasome is a large, highly complex 
protein machinery that is responsible for protein degrada-
tion. In a study by Drummond et al., it was observed that 
phosphorylated tau has a significant interaction with PSMC5 
and some other 19S subcomplex proteins [71].

Red Subtype

In the red subtype, while endoplasmic reticulum and fatty 
acid metabolism-related terms are downregulated, cell 
death-related terms are upregulated (Fig. 6). Polyunsatu-
rated fatty acids (PUFAs) play critical roles in brain devel-
opment and maintenance, and their deficiency or abnormal-
ity is associated with neurological problems such as AD, 
bipolar disorders, and major depression [72]. Linoleic acid 
(LA), docosahexaenoic acid (DHA), and eicosapentaenoic 
acid (EPA) levels are decreased in the AD brain. Although 
fatty acid metabolism is not affected in each subtype, these 
results show that it plays an active role in some subtypes of 
the disease (Fig. 6). The first AD-related gene identified in 
the red subtype, with a prevalence rate of 38%, is HSPA5. It 
encodes the binding immunoglobulin protein (BiP), which 
is a member of the HSP70 chaperon family. It can initiate 
the unfolded protein response (UPR) when the amount of 
unfolded/misfolded protein in the ER exceeds the capacity of 
the protein folding machinery [73]. The other notable gene 
is TP73, which has 29% prevalence rate in the red subtype 
and encodes the p73 protein. It is a transcription factor that 
is essential for neuronal development, stem cell renewal, 
differentiation, cell death, and proliferation [74]. Happloin-
sufficieny of p73 can induce aberrant hyperphosphorylation 
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Fig. 6   Comparison of percent prevalence rates of selected AD-related 
functional terms from KEGG, WikiPathway, and GeneOntology data-
bases across five AD subtypes reported by Neff et al. [67] for down-
regulated and upregulated subnetworks. The functional terms were 
grouped into eight molecular systems, known to be altered in AD. 

Blue, green, red, turquoise, and yellow designate the AD subtypes, as 
named in the original article. Percent prevalence of a term shows the 
percentage of patients whose discovered subnetworks are statistically 
enriched with the genes associated with that term
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of tau and tau kinase activity and thus tau aggregation in 
aging and AD [75].

Turquoise Subtype

In the turquoise subtype, endoplasmic reticulum, mito-
chondria, and synapse-related terms were downregulated, 
while cell death and immune response-related terms were 
upregulated, similar to the majority of the subtypes (Fig. 6). 
Close physical contact exists between mitochondria and ER 
subcompartments, and this may be the reason why they are 
downregulated together in turquoise subtype. These con-
tact sides, called mitochondria-associated ER membranes 
(MAMs), play very critical role in calcium homeostasis, 
lipid synthesis, apoptotic signaling, and autophagy [76]. 
This region is affected by AD pathogenesis [77]. First nota-
ble gene associated with AD for the turquoise subtype is 
MYH8 with a prevalence of 20%. Actin-based motor protein 
MYH8 is involved in the contraction of skeletal muscles as 
well as cell adhesion and migration mediated by integrins 
[78]. In some studies, it was observed that the MYH8 gene 
was downregulated in AD cases and was associated with AD 
[79], [80]. Another gene that stands out in terms of preva-
lence rate is the famous AD-related gene PSEN1 that has 
been studied extensively. It is well known that this gene’s 
mutations contribute to autosomal dominant early-onset Alz-
heimer’s disease [81]. However, it is not predominant in all 
disease subtypes, suggesting that it may not be the defining 
feature in all AD cases.

Yellow Subtype

In the yellow subtype, we observe that the terms associ-
ated with fatty acids and mitochondria are downregulated 
whereas the terms associated with immune response and cell 
death are upregulated (Fig. 6). HSP90AA1 and HSP90AB1 
genes draw attention in the yellow subtype with 29% preva-
lence rate, unlike the other subtypes. Stressful situations 
like heat shock, ischemia, heavy metals, and hypoxia trig-
ger the synthesis of heat shock proteins (HSPs) [82]. They 
are divided into several families, and the molecular chaper-
one HSP90s is one of them. They are able to target specific 

proteins for degradation, suppress protein aggregation, and 
solubilize protein aggregates [83]. HSP family genes are 
among the most prevalent genes for the yellow subtype, 
which motivates further study of these genes in an effort to 
uncover previously unknown aspects of the disease.

A summary of how cellular mechanisms vary between the 
AD subtypes is shown in Fig. 7. The cell death mechanism 
was upregulated in the majority of the subtypes, while it 
was downregulated only in the green subtype. In some AD 
cases, while no apoptotic morphology was observed in any 
part of the brain, it was observed that the cells were swollen 
and DNA fragmentation increased [54]. With the exception 
of the red subtype, cell death and immune response appear 
to act in together. This implies that both mechanisms trigger 
or activate each other.

Conclusion

The disease, described by Alois Alzheimer in 1906, has been 
the subject of many research since then. Despite these stud-
ies conducted from different perspectives, the cause of the 
disease and the underlying molecular mechanisms are not 
yet fully understood. Although there are many studies in 
the literature with transcriptomic data, the majority of these 
studies handled the data of the patients collectively and thus 
could not reveal the differences caused by the heterogeneous 
nature of the disease.

In this study, each patient was separately compared with 
the whole control group, and patient-specific profiles in 
terms of genes and pathways were revealed. Instead of con-
sidering only DEGs in the evaluations, subnetwork discover-
ies were performed, and DOMINO algorithm was employed 
for this purpose. As a result of the evaluation of patient-spe-
cific results, significant alterations were identified in mito-
chondrial activities, immune response, cell death mecha-
nism, and endoplasmic reticulum in AD state. Additionally, 
it was demonstrated that the patient-specific approach cap-
tured many more AD-related dysregulations than the bulk 
analysis, indicating that a personalized approach is a much 
more effective way to decipher previously undiscovered 
features of the disease. It has been shown that molecular 

Fig. 7   A diagram that shows the alterations in five AD subtypes in terms of commonly affected cellular mechanisms, derived from the analysis 
of the prevalent AD-associated functional terms given in Fig. 6



2133Molecular Neurobiology (2024) 61:2120–2135	

1 3

processes can be altered with different strength and even 
in  different direction between the disease subtypes. In 
addition, novel AD genes were highlighted based on their 
interactions with the known AD genes. Our personalized 
approach captured alterations in several molecular processes 
that could not be identified by bulk comparisons of AD and 
control samples. More transcriptomic datasets with high 
number of individual samples are becoming available at an 
increasing speed for Alzheimer’s disease. The patient-spe-
cific approach presented here can be applied to such datasets 
or datasets from other neurological diseases that are het-
erogeneous in nature to extract biological information that, 
otherwise, would remain hidden in the data.
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