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Abstract
Aromatic l-amino acid decarboxylase deficiency (AADC-DY) is caused by one or more mutations in the DDC gene, resulting 
in the deficit in catecholamines and serotonin neurotransmitters. The disease has limited therapeutic options with relatively 
poor clinical outcomes. Accumulated evidence suggests the involvement of neurodegenerative mechanisms in the etiology 
of AADC-DY. In the absence of neurotransmitters’ neuroprotective effects, the accumulation and the chronic presence of 
several neurotoxic metabolites including 4-dihydroxy-L-phenylalanine, 3-methyldopa, and homocysteine, in the brain of 
subjects with AADC-DY, promote oxidative stress and reduce the cellular antioxidant and methylation capacities, leading to 
glial activation and mitochondrial dysfunction, culminating to neuronal injury and death. These pathophysiological processes 
have the potential to hinder the clinical efficacy of treatments aimed at increasing neurotransmitters’ synthesis and or function. 
This review describes in detail the mechanisms involved in AADC-DY neurodegenerative etiology, highlighting the close 
similarities with those involved in other neurodegenerative diseases. We then offer novel strategies for the treatment of the 
disease with the objective to either reduce the level of the metabolites or counteract their prooxidant and neurotoxic effects. 
These treatment modalities used singly or in combination, early in the course of the disease, will minimize neuronal injury, 
preserving the functional integrity of neurons, hence improving the clinical outcomes of both conventional and unconven-
tional interventions in AADC-DY. These modalities may not be limited to AADC-DY but also to other metabolic disorders 
where a specific mutation leads to the accumulation of prooxidant and neurotoxic metabolites.
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Abbreviations
AADC  Aromatic L amino acid decarboxylase
AAV  Adeno-associated virus
ALA  α-Lipoic acid
ALS  Amyloid lateral sclerosis
AD  Alzheimer’s disease
BBB  Blood-brain barrier
BHMT  Betaine-homocysteine methyltransferase
CAT   Cysteine aminotransferase
CBS  Cystathionine β-synthase
COMT  Catechol-O-methyl-transferase
CSE  Cystathionine γ-lyase
EP  Epinephrine
DAMPs  Damage-associated molecular pattern

DHLA  Dihydrolipoic acid
DOPAL  3,4-Dihydroxyphenylacetaldehyde
DT  Deficient
DY  Deficiency
EPO  Erythropoietin
GDNF  Glial-derived neurotrophic factor
GFAP  Glial fibrillary acidic protein
GSH  Glutathione
GSSG  Oxidized glutathione
HCA  Homocysteic acid
Hcy  Homocysteine
5-HIAA  5-Hydroxyindoleacetic acid
H2S  Hydrogen sulfide
5-HT  Serotonin
5-HTP  5-Hydroxytryptophan
HMGB  High mobility group protein box
HVA  Homovanillic acid
icv  Intracerebroventricular
L-dopa  3,4-Dihydroxy-L-phenylalanine
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MAO  Monoamine oxidase
MAT  Methionine adenosyl transferase
mDNA  Mitochondrial DNA
MHPG  Methoxy-4-hydroxyphenylglycol
3-MP  3-Mercaptopyruvate
MS  Methionine synthase
MST  3-Mercaptopyruvate sulfurtransferase
MT  Methyl transferase
MTHF  N-5-methyl tetrahydrofolate
NAC  N-acetyl-cysteine
NaHS  Sodium hydrogen sulfide
NEP  Norepinephrine
NMDA  N-Methyl-D-aspartate
Nrf2  Nuclear factor erythroid-2-related factor2
6-OHDA  6-Hydroxydopamine
3-OMD  3-O-methyldopa
PD  Parkinson’s disease
ROS  Reactive oxygen species
SAH  S-adenosylhomocysteine
SAM  S-adenosylmethionine
SN  Substantia nigra
SOD  Superoxide dismutase
(TGF)-α  Transforming Growth Factor
Trx  Thioredoxin
VD3  Vitamin D3

Pathophysiology of AADC‑DY

Aromatic l-amino acid decarboxylase deficiency (AADC-
DY) is a rare autosomal recessive neurometabolic disorder 
caused by one or more mutations in the DDC gene, lead-
ing to a deficit in the AADC, the final enzyme in the bio-
synthesis of the monoamine neurotransmitters, known to 
catalyze the decarboxylation of l-3,4-dihydroxyphenylala-
nine (L-dopa) to dopamine and of L-5-hydroxytryptophan 
(5-HTP) to serotonin [1]. The deficit in dopamine synthe-
sis can affect the three main brain dopaminergic pathways: 
the nigro-striatal pathway, the meso-limbic pathway, and 
the meso-cortical pathway, leading to motor and cognitive 
dysfunctions [2], whereas serotonin deficit has a significant 
impact on neurodevelopment with adverse effects on mood 
and behavior [3].

The affected individuals often present with high lev-
els of metabolites upstream from the metabolic defect 
such as L-dopa, 3-O-methyldopa (3-OMD), and 5-HTP, 
and decreased levels of metabolites downstream from the 
metabolic defect, including homovanillic acid (HVA), 
3-methoxy-4-hydroxyphenylglycol (MHPG), norepineph-
rine (NEP), epinephrine (EP), and 5-hydroxyindoleacetic 
acid (5-HIAA). As a result, AADC-deficient (DT) subjects 
experience neurodevelopmental delay, movement disor-
ders; including oculogyric crises, hypotonia, dystonia, and 

hypokinesia; and autonomic dysregulations including sleep 
disorder and mood disturbances [4, 5]. These clinical symp-
toms are often manifested during the first months of life, 
although there is a considerable variability in the clinical 
presentation and severity of symptoms, depending in part 
to the degree of the impact of the enzyme deficiency on 
the synthesis of each of the 4 neurotransmitters, serotonin, 
dopamine, and its catecholamine derivatives, NEP and EP 
[4]. The disease has a high prevalence in Taiwan due to the 
Chinese DDC founder mutation [6].

Treatment of AADC‑DY

The treatment modalities of AACD-DY, either the conven-
tional or the unconventional, follow closely that of Parkin-
son’s disease (PD), a disease involving a selective loss of 
nigrostriatal dopaminergic neurons, where disease progres-
sion and cell death leads to the loss of brain AADC enzyme 
activity [7].

Dopamine agonists are the first line of treatment of 
AADC-DT patients, with the objective to increase brain 
monoamine neurotransmitter production, and more com-
mon are the ergot-derived dopamine agonists such as bro-
mocriptine and pergolide [8]. Although these drugs have 
been shown to improve some of the clinical symptoms of 
the AADC-DY, they are known to cause fibrotic reactions 
at the level of heart, lung, and retroperitoneal space; also, 
such reactions are less likely with the non-ergot-derived 
dopamine agonists [9]. Bromocriptine, the most prescribed 
dopamine agonist, is an antidiabetic drug able to reduce 
plasma glucose and hepatic glucose productions [10]. Stud-
ies in rodents show that these effects of bromocriptine are 
accompanied by a concurrent significant reduction in the 
serotonergic and noradrenergic activities, indicated by 
reduced levels of the metabolites 5HIAA, MPG, and HVA 
in the ventromedial hypothalamus [11]. Therefore, the use of 
bromocriptine in AADC-DT subjects, who have neurotrans-
mitters’ deficit and are often hypoglycemic, would likely 
be contraindicated. Similarly, the treatments with L-dopa 
and 5-HTP are contraindicated since AADC-DT subjects are 
unable to metabolize the high level of endogenous L-dopa 
and 5-HTP due to AADC enzyme deficiency, leading to poor 
clinical responses [4, 8].

An additional treatment modality for AADC-DY is the 
use of monoamine oxidase (MAO) inhibitors, with the 
objective to minimize dopamine and serotonin breakdowns. 
This regimen is often combined with dopamine agonists 
and or pyridoxine/pyridoxal phosphate, the AADC enzyme 
cofactor. Anticholinergics, melatonin, benzodiazepines, 
and α2-adrenergic agonists are among less common modali-
ties to treat the AADC-DY clinical symptoms [4, 8, 12]. 
Although these different regimens either singly or combined 
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have shown some clinical efficacy, most have unwanted side 
effects and the overall clinical outcomes of these limited 
treatment modalities remain poor [12, 13]. The non-pharma-
cological treatment of AADC-DT subjects includes ongoing 
physical, occupational, and speech therapies [8].

The newer treatment of AADC-DY has the objective to 
correct the AADC-related genetic defect, increasing brain 
dopamine production, using the recombinant adeno-associ-
ated viruses (AAV), the vector for the delivery of the func-
tional DDC gene. Gene transfer in AADC-DY is based on 
earlier studies in PD patients receiving bilateral intraputa-
menal infusion of the non-pathogenic, low immunogenic 
AAV2 vector containing the human (h) DDC gene as a mean 
to enhance the AADC enzyme activity in the post-synaptic 
cells that express dopamine receptors, thus promoting the 
local metabolism of the administered L-dopa [14]. These 
studies reported improvements in the mean scores on the 
Unified Parkinson’s Disease Rating Scale [15, 16], as well as 
increases in the short- and long-term AADC enzyme activi-
ties [16].

The studies of AAV2 vector-mediated intraputamenal 
hDDC gene transfer in AADC-DY were conducted by Hwu 
and colleagues [17, 18] in Taiwan, reporting improvements 
in motor functions and increase in brain dopamine levels, 
indicated by enhanced putamen’s uptake of the AADC tracer 
6-[(18) F]fluorodopa on PET imaging; these improvements 
were sustained at a 5-year follow-up [19]. A modification 
to the AAV2-mediated gene transfer in AADC-DT subjects 
was carried out by Pearson et al. [20], selecting the mid-
brain, instead of putamen, as the anatomical site, based on 
the notion that dopaminergic neurons in the midbrain and 
their axonal projections remain intact in the AADC-DT sub-
jects [21]. The investigators reported increased dopamine 
in the site of gene delivery, in both putamen and caudate 
nucleus due to anterograde axonal transport via the intact 
nigrostriatal pathway, and improvements in both motor and 
non-motor functions. Based on these clinical outcomes, the 
AAV2-mediated functional hDDC gene transfer has been 
recently approved in Europe for the treatment of ≥ 18-month-
old subjects with confirmed AADC-DY based on clinical, 
molecular, and genetic tests [22]. Nevertheless, the shape of 
the skull bones, if unsuitable for stereotactic surgery, and a 
pre-existing immunity to AAV2 limit the applicability of the 
AAV2-mediated gene transfer for AADC-DY treatment [18].

Accumulated Metabolites Induce 
Neuroinflammation

Among the underlying pathologies, which are overlooked 
in AADC-DY, are oxidative stress and inflammation, two 
processes that can lead to neuronal injury and death. In 
the following paragraphs, we describe the role of various 

metabolites and their potential to induce, either singly or 
in a synergistic manner, oxidative stress, glial activation, 
and neuroinflammation, thus promoting neuronal injury and 
death. We will highlight the similarities between those and 
mechanisms involved in other neurodegenerative diseases. 
This new concept of AAD-DY as a neurodegenerative dis-
ease would likely open a path to novel treatment strategies, 
that when used early in the course of the disease, would 
likely minimize neuronal injury, preserving the functional 
integrity of neurons, hence improving the clinical outcomes 
of both conventional and unconventional AADC-DY inter-
ventions. The effects of accumulated metabolites and the 
pathways to neuroinflammation are depicted in Fig. 1.

Among metabolites known to be upregulated in AADC-
DY are L-dopa and its major metabolite 3-OMD, which is 
produced by the enzymatic action of catecholamine-o-meth-
yltransferase (COMT) enzyme. The increase in the levels 
of the two metabolites is the result of the lack of feedback 
inhibition, which is normally exerted by the end-product, 
dopamine, on tyrosine hydroxylase enzyme. Since dopamine 
is not produced, a high level of L-dopa accumulates, which 
is subsequently metabolized to 3-OMD, in a reaction that 
consumes the methyl donor, s-adenosylmethionine (SAM). 
The accelerated rate of o-methylation leads to the enhanced 
production of s-adenosylhomocysteine (SAH) which is rap-
idly converted to homocysteine (Hcy) and adenosine.

3‑Methyldopa (3‑OMD)

The major metabolite, 3-OMD, is produced from L-dopa in 
many organs including the brain, peripheral tissues, and the 
blood [25]. Comparing the level of 3-OMD and L-dopa, the 
CSF level of 3-OMD in AADC-DT subjects is many times 
higher than that of L-dopa [4, 24]. CSF levels of L-dopa in 
AADC-DT subjects range between 2 and 549 nm (reference 
range < 25 nm) whereas 3-OMD levels range between 54 and 
4293 nm (reference range < 100 nm) [42]. There are several 
reasons for the higher CSF levels of 3-OMD compared to 
the levels of L-dopa.

The 1st reason is related to the differences in the biologi-
cal half-life of the two metabolites. The half-life of L-dopa 
is about 1 h, that of 3-OMD is 15 h [43]. As a result, the 
ratio of 3-OMD to L-dopa concentration can be as high as 
14:1 [44], leading to brain 3-OMD accumulation in AADC-
DT subjects, with the potential to exert oxidative stress and 
cytotoxicity [45]. In PD patients, treated with L-dopa, the 
high concentration of plasma 3-OMD [46, 47] and the ratio 
of 3-OMD to L-dopa correlate with both dyskinesia [48] 
and poor response to L-dopa therapy [49]. In addition, the 
high CSF levels of 3-OMD correlate with the wearing-off 
phenomenon post-L-dopa therapy in PD [50], suggesting 
an association between 3-OMD levels and motor dysfunc-
tion. Although 3-OMD is a marker of AADC-DY diagnosis 
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[51, 52], there are no studies investigating the relationship 
between 3-OMD or 3-OMD/L-dopa and the heterogeneity 
in the AADC-DY clinical presentation; or heterogeneity in 
response to treatment, whether conventional or post-AAV2-
mediated gene transfer.

The 2nd reason for the higher CSF 3-OMD levels in 
AADC-DY is related to COMT enzyme characteristics, the 
activity of which is substrate-dependent. COMT activity is 
enhanced due to the excess L-dopa availability [23], lead-
ing to accelerated o-methylation rate of L-dopa to 3-OMD, 
through consumption of SAM. Although L-dopa initially 
increases SAM levels due to augmented expression and 

activity of methionine adenosyl transferase (MAT) [23], 
the enzyme that produces SAM, the significant increase in 
the rate of o-methylation subsequently decreases SAM lev-
els and increases brain SAH [25, 26]. The SAM/SAH ratio 
is known to be an indicator of cellular methylation corre-
lating with glutathione/oxidized glutathione (GSH/GSSG) 
ratio [53], an indicator of cellular antioxidant capacity and 
redox homeostasis, associated with neurodegeneration 
[54]. The increased rate of o-methylation can also accel-
erate dopamine methylation rate by COMT enzyme and 
the formation of the metabolite 3-methoxytyramine [23], 
which has low biological activity as a result of reduced 
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binding affinity to dopamine D2 receptors [55]. Methylated 
dopamine can reduce the efficacy of AADC-DY treatments 
targeted to enhance dopamine function.

The 3rd reason for the higher 3-OMD levels may be 
related to the differential transport of L-dopa and 3-OMD 
across the blood–brain barrier (BBB). Like in the CSF, 
the level of 3-OMD in the plasma of AADC-DT subjects 
is high, approximating 2312% of the normal median range 
[24]. Both L-dopa and 3-OMD can cross the BBB into the 
CNS via a facilitated transport mechanism which is shared 
with other amino acids [56]. This bidirectional transport is 
inequal between L-dopa and 3-OMD, as 3-OMD is able to 
compete with the CNS uptake of L-dopa at the BBB [57].

In vivo studies show that a single intracerebroventricu-
lar (icv) injection of 3-OMD decreases dopamine turnover 
rate in the rat striatum and inhibits dopamine transporter and 
uptake in the brain striatal membrane, and 3-OMD adminis-
tration for 5 days significantly reduces catecholamine levels 
and impairs locomotor activities [45]. These adverse effects 
have been attributed to the 3-OMD ability to exert oxidative 
stress and cytotoxicity [45]. 3-OMD is also able to enhance 
the L-dopa prooxidant and cytotoxic effects [45]. Therefore, 
the high 3-OMD level and accumulation in the AADC-DT 
brain have the potential to interfere with dopamine synthesis 
and/or function, and reduce the efficacy of treatment modali-
ties aiming to enhance dopamine production and function. 
Therefore, 3-OMD has the potential to contribute neuronal 
injury and death, both directly and through enhancing L-dopa 
adverse effects, as described in the following paragraphs.

4‑Dihydroxy‑L‑Phenylalanine (L‑dopa)

The effects of L-dopa on dopaminergic neurons have been 
extensively studied in relation to PD. L-dopa, the precursor 
of dopamine, in combination with carbidopa, which prevents 
peripheral breakdown of L-dopa by AADC enzyme, is a 
common treatment modality in PD, aiming to restore brain 
dopamine levels. However, long-term L-dopa administra-
tion and the resulting high brain L-dopa levels were thought 
to play a role in neuronal injury in PD [58], and concerns 
have been raised on the contribution of chronic high levels 
of L-dopa to PD progression [59]. Studies in experimental 
models of PD report several protein expression profile differ-
ences and increased ratio of post-translational protein modi-
fications in the dopamine depleted side of the brain when 
compared to the corresponding intact side [60]. In addition, 
proteomic studies in animal model of PD show the sensitiv-
ity of dopamine-depleted striatum to the first ever L-dopa 
exposure, causing irreversible rapid post-translational 
modification-based changes to several proteins involved in 
chronic L-dopa adverse effects [61].

L‑dopa Autooxidation

L-dopa can exert neurotoxicity via several mechanisms. 
Undergoing autoxidation, L-dopa is able to generate 
hydroxyl and superoxide radicals, semiquinones, and qui-
nones [62]. A recent rodent study shows that oral administra-
tion of 100 mg/kg L-dopa for 30 days significantly enhanced 
oxidative stress in rat striatum, indicated by a reduced GSH/
GSSG ratio [63]. L-dopa also increased the level of malon-
dialdehyde [63], a marker of lipid peroxidation, and led to a 
significant increase in glial fibrillary acidic protein (GFAP) 
immune expression. GFAP, a cytoskeletal intermediate fila-
ment, has long been used as an astrocyte-specific marker 
of cell activation and proliferation. However, astrocyte 

Fig. 1  Adverse effects of upregulated metabolites in the brain of 
AADC-DT subjects. The deficit in dopamine to exert inhibitory 
effect on tyrosine hydroxylase enzyme leads to the accumulation of 
brain L-dopa and subsequent activation of the COMT enzyme [23], 
enhancing 3-OMD [4, 24], which in turn leads to the increase in the 
rate of o-methylation with the subsequent reduction in SAM and the 
accumulation of Hcy, SAH [25, 26], and HCA [27]. These processes 
enhance excitotoxity and reduce the level of the antioxidant precur-
sor, cysteine [28]. In addition, metabolite-induced oxidative stress 
and excitotoxicity, singly or in synergy, reduce the activity of BCE 
[29], CSE [30], and MST [31] enzymes, as well as reduce the activity 
of the cofactor Trx in neurons [32], all of which are involved in the 
production of antioxidants and neuroprotective agents such as H2S, 
GSH, ALA, and SOD. The metabolite-induced prooxidant environ-
ment and the reduced cellular antioxidant capacity leads to glial acti-
vation [33–36], mitochondrial dysfunction [37], and neuroinflamma-
tion, promoting neuronal injury and death. Oxidative stress brought 
about L-dopa and Hcy has the potential to upregulate the KP pathway 
[38, 39], with the generation of QA which exerts neurotoxic effects 
via both increase in glutamate release and stimulation of NMDA 
receptors [40]. These many adverse effects of metabolites, combined 
with their ability to inhibit AADC enzyme activity [41], would have 
the potential to impede the clinical efficacy of treatments aiming to 
enhance neurotransmitters’ synthesis and or functions. The red high-
lights present the upregulated and the green highlights present the 
downregulated metabolites and products. The brown highlights pre-
sent the enzymes, and the yellow highlights present the cofactors. 
Abbreviations: AADC, aromatic L amino acid decarboxylase; Ado, 
adenosine; ALA, α-lipoic acid; CAT, cysteine aminotransferase; 
CBS, cystathionine β-synthase; COMT, catechol-O-methyl-trans-
ferase; CSE, cystathionine γ-lyase; Cys, cysteine; Cyst, cystathio-
nine; DA, dopamine; DHLA, dihydrolipoic acid; DOPAL, 3,4-dihy-
droxyphenylacetaldehyde; Glu, glutamine; GSH, glutathione; HCA, 
homocysteic acid; Hcy, homocysteine; H2S, hydrogen sulfide; 5-HT, 
serotonin; 5-HTP, 5-hydroxytryptophan; Ketog, ketoglutarate; KP, 
kynurenine pathway; L-dopa, 3,4-dihydroxy-L-phenylalanine; MAO, 
monoamine oxidase; MAT, methionine adenosyl transferase; Met, 
methionine; 3-MP, 3-mercaptopyruvate; MS, methionine synthase; 
MST, 3-mercaptopyruvate sulfurtransferase; MT, methyl transferase; 
MTHF, N-5-methyl tetrahydrofolate; 3-MT, 3-methoxytyramine; 
NMDAR, N-methyl-D-aspartate receptor; 3-OMD, 3-O-methyldopa; 
Os-Inf, oxidative stress-inflammation; QA, quinolinic acid; Qnes, 
quinones; SAH, s-adenosylhomocysteine; SAM, s-adenosylmethio-
nine; SOD, superoxide dismutase; Tr, tryptophan; TrH, tryptophan 
hydroxylase; Trx, thioredoxin; Tyr, tyrosine; TyrH, tyrosine hydroxy-
lase

◂
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proliferation is not a universal response to all damages and 
can occur in the absence of disease and depends on the 
context of inflammation and neurodegeneration [64]. His-
tological examination of the striatal tissues showed L-dopa-
induced microglial activation, neurons exhibiting degenera-
tive changes and apoptotic cell death [63]. Similar results 
were reported in in vitro studies showing a relationship 
between L-dopa-induced oxidative stress and mitochondrial 
dysfunction, cell apoptosis, and reduction in neuronal cell 
survival [59, 65–71] in time- and dose-dependent manners 
[65, 72]. These adverse effects are enhanced in the presence 
of 3-OMD [45].

Several in vitro studies report protective effects of sub-
toxic concentrations of L-dopa in neurons cocultured in the 
presence of glial cells [73, 74]. The neuroprotective effects 
of L-dopa in neurons-glial coculture were thought to be 
related to the L-dopa’s ability to induce the release of GSH, 
the glial major cellular antioxidant enzyme [74], an effect 
that seems to be independent of dopamine production [75]. 
The release of glial GSH is attributed to the ability of a com-
pound to auto-oxidize [69]. As auto oxidizable compounds, 
subtoxic concentrations of both L-dopa [73] and dopamine 
[76] are able to induce GSH release from glial cells. How-
ever, L-dopa loses this ability in the absence of AADC 
enzyme [69] and in the presence of high levels of 3-OMD 
[74] and transition metals [77], suggesting that AADC-DT 
neurons are highly prone to injury. In young children, the 
under-developed excretory system can lead to accumula-
tion of the transition metals, especially in under-developed 
countries due to higher daily exposure [78], a fact that could 
increase L-dopa neurotoxicity in AADC-DT children living 
in these regions. Furthermore, dopaminergic neurons and 
their projection targets are especially vulnerable to L-dopa 
cytotoxicity, since these neurons are known to possess rela-
tively low glia cells’ density [79].

One could argue that the observed cytotoxicity may be 
attributed to 3-OMD and or dopamine rather than L-dopa. 
Although 3-OMD does not undergo autooxidation [69], it 
is still capable of inducing oxidative stress [45]. Similar to 
L-dopa, dopamine undergoes autooxidation, with the gener-
ation of reactive quinones [80]. L-dopa also undergoes enzy-
matic degradation by MAO with the generation of hydrogen 
peroxide and hydroxyl radicals [81]. Nevertheless, L-dopa 
cytotoxicity seems to be dopamine [75], 3-OMD- [67], and 
MAO- [65] independent, since it is apparent in the presence 
of the AADC inhibitor, NSD-1015, the COMT inhibitor, 
Ro 41–0960, and the MAO inhibitor, deprenyl, respectively. 
Therefore, despite the relatively short biological half-life, 
the chronic presence of L-dopa in the brain of AADC-DT 
subjects has the potential for significant neurotoxicity, 
independent of 3-OMD, but in synergy with it. In addition, 
L-dopa-induced prooxidant environment is enhanced in the 
absence of dopamine, as it is the case in AADC-DY, since 

dopamine is known to upregulate GSH synthesis, as well as 
enhance GSH trafficking from glial cells to neurons [82].

Mechanisms Involved in Neuroinflammation

Glial Activation

Chronic oxidative stress brought about by L-dopa and 
3-OMD, and by homocysteine (Hcy) (discussed in the follow-
ing paragraphs), can injure neurons, triggering the recruitment 
and activation of the microglia, the resident innate immune 
cells of the brain, which are known to normally regulate sev-
eral physiological processes required for proper neuronal sur-
vival and brain function. Microglial activation has the poten-
tial for secreting a wide array of proinflammatory mediators 
including cytokines, chemokines, reactive oxygen–nitrogen 
species, and excitotoxins, such as glutamate, resulting in a 
vicious cycle of neuroinflammation, culminating to neuronal 
cell death, with dopaminergic neurons to be especially suscep-
tible to neurotoxicity [33, 34]. These pathological processes 
play major roles in many pathophysiological processes that 
underly PD [83–85], Alzheimer’s disease (AD) [86, 87], and 
amyloid lateral sclerosis (ALS) [88, 89].

Microglial activation is sustained by a self-feedback loop 
involving the proinflammatory mediator, the high-mobility 
group protein box-1 (HMGB1), assisting with the transcrip-
tion of proinflammatory genes [90]. In addition, there is a 
crosstalk between microglia and astrocytes, the other type 
of glial cells. Astrocytes proliferation and activation can be 
induced through proinflammatory cytokines secreted from 
the activated microglia [35, 36], further fueling the cascade 
of neuroinflammation. Therefore, microglia and astrocytes’ 
activation and the intimate crosstalk among the two are 
fundamental events in neuroinflammation. The damaged 
neurons can further activate glial cells by releasing ATP 
and other damage-associated molecular patterns (DAMPs) 
such as HMGB1 and nucleotides. Interacting with pattern 
recognition receptors, DAMPS can further perpetuate the 
cycle of inflammation [91].

Astrocytes are one of the most numerous glial cells in 
the CNS. Astrocytes’ reactivity is highly heterogenous and 
depends on the type of stimuli with the potential of two dis-
tinct functional phenotypes termed A2 as anti-inflammatory 
and neuroprotective, and A1 as proinflammatory [36, 64]. 
The A2 can upregulate neurotrophic factors and thrombos-
pondins, able to promote neuronal growth and support syn-
aptic repair [92]. A2 reactive astrocytes also produce anti-
oxidative molecules in response to oxidative stress able to 
protect dopaminergic neurons [93], and have the potential 
for preventing glutamate excitotoxicity by taking up the glu-
tamate released into the synaptic cleft [94].
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IL-1α and TNFα, secreted from activated microglia, 
induce the cytotoxic A1 reactive astrocytes’ phenotype [35, 
36]. A1 astrocytes lose the ability to promote neuronal sur-
vival, outgrowth, and synaptogenesis, and upregulate proin-
flammatory factors, IL-1α, IL-1β, and TNF-α [36], leading 
to the amplification of the microglia-driven inflammatory 
responses, which when combined with the astrocytes’ loss of 
glutamate-removing activity [95], would promote a  neuro-
toxic environment. The reduced astrocytic glutamate uptake 
is the result of increased glutamate derived from activated 
microglia, which downregulates the expression of astro-
cytic glutamate transporters [96]. Therefore, the increase 
in inflammatory mediators and glutamate acts in concert to 
perpetuate neuronal cell death. Furthermore, astrocytes have 
the capacity to protect neurons against oxidative damage 
due to the preferential activation in astrocytes of the nuclear 
factor erythroid-2-related factor 2 (Nrf2), a transcription 
factor that governs an array of detoxifying and antioxidant 
enzymes [97]. However, reactive astrocytes may lose the 
ability to protect neurons due to Nrf2 downregulation [98].

The A1 phenotype is abundant in many neurodegenera-
tive diseases such as PD, AD, and ALS, contributing to 
death of neurons and oligodendrocytes [36]. The role of 
astrocytes in the context of neuroinflammation in AADC-
DY is specifically important since striatal astrocytes express 
dopaminergic receptors and D4-mediated signal transduction 
in response to dopamine [99]. The dysfunction of astrocytes 
combined with the absence of dopamine neuroprotective 
effects [82, 100] would have deleterious effects on dopamin-
ergic neurons in AADC-DY. In addition, striatal astrocytes 
act as a reservoir, taking up the excess L-dopa [101]. How-
ever, the activated astrocytes may have an impaired ability to 
take up the excess L-dopa, similar to the loss of glutamate-
removing activity [95].

Mitochondrial Dysfunction

As dynamic organelles, mitochondria adapt to physiologi-
cal or environmental changes in cellular requirements, 
by processes of transport, biogenesis, fusion, fission, and 
mitophagy, the latter refers to the removal of damaged mito-
chondria through autophagy, which involves the two pro-
teins, Parkin and Pink1 [102]. The reciprocal interactions 
between these processes are integral to mitochondrial home-
ostasis [103], and the increase in oxidative stress is able to 
adversely affect the different functions of mitochondria [37].

In microglia, oxidative stress–induced microglial activa-
tion leads to mitochondrial dysfunction. Fragmented mito-
chondria released from microglia are able to not only trigger 
A1-inflammatory-astrocytes’ activation [104], but also exac-
erbate the pro-inflammatory microglial M1 phenotype [105] 
and the release of neurotoxic cytokines, further enhancing 
the ROS formation [106].

Mitochondria are essential for ATP production through 
oxidative phosphorylation, involving a subset of the mito-
chondrial DNA (mtDNA). Compared to other cell types, 
neurons are more dependent on mitochondrial oxidative 
phosphorylation to fulfill their energy demands. This pro-
cess generates reactive oxygen species (ROS). Neurons have 
limited capacity to upregulate glycolysis or to counteract 
oxidative damage. The generated ROS has the potential to 
damage mtDNA [107], resulting in mitochondrial dysfunc-
tion and dopaminergic neuronal cell loss [108]. A correla-
tion between altered mitochondrial dynamics and neurode-
generation has been observed in PD and AD [109].

Functional astrocytes have the ability for reducing neu-
ronal-derived ROS via enhancing the production of antioxi-
dant molecules [93], as well as internalizing and degrading 
dysfunctional mitochondria [110], in order to protect neu-
rons and maintain the quality of mitochondria for bioener-
getic functions. However, reactive astrocytes may lose the 
capacity to reduce oxidative stress due to Nrf2 downregu-
lation [98], and have impaired mitophagy capacity due to 
inflammation-induced Parkin downregulation [111].

Neuroinflammation in AADC‑DY

Although the above pathological processes have not been exam-
ined in relation to AADC-DY, the neuronal injury and death 
may contribute to the neuroimaging abnormalities observed 
in AADC-DT subjects, such as cerebral [4] and cortical [112] 
atrophy, demyelination [113], and degenerative changes of 
white matter [4]. Furthermore, brain magnetic resonance 
imaging of 12 AADC-DT subjects showed hypomyelinations, 
reduced volume of caudate nucleus, and decreased density of 
the white matter fiber tracts [114]. Oxidative stress and micro-
glial activation are known to also adversely affect BBB integrity 
[115, 116], especially in the presence of high Hcy levels [117].

Inflammation-induced loss of astrocytes’ neuroprotec-
tive functions can also adversely affect the BBB integrity, 
since astrocytes regulate brain microvascular permeability 
via astrocyte-endothelial communication and the release 
of regulatory factors, such as transforming growth factor 
(TGF)-α and glial-derived neurotrophic factor (GDNF); 
these factors are able to influence the permeability of tight 
junction in endothelial cells [118]. The increase in BBB per-
meability can result in the infiltration of systemic inflam-
matory mediators and immune cells into the CNS, further 
promoting microglial activation and neuronal cell death. The 
increase in striatal BBB permeability has been thought to 
underly PD disease progression [119], and could similarly 
be involved in the pathophysiology of AADC-DY.

It is noteworthy that the AAV2 vector used for the 
transfer of the functional hDDC gene has high degree 
of tropism to neurons, and low degree of tropism to 
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microglia and astrocytes [120]. It remains an open ques-
tion to whether the introduction of a functional copy of 
the hDDC gene to putamen and or midbrain of AADC-DT 
subjects would influence the activation state of glial cells 
and hence the cascade of neuroinflammatory processes.

Additional L‑dopa Neurotoxic Effects

L‑dopa‑Induced Excitotoxicity

L-dopa can also induce glutamate excitotoxity in a 
Ca(2 +)-dependent, autooxidation-independent manner, 
although the timeline for neuronal injury and death due 
to L-dopa-induced glutamate excitotoxity is delayed when 
compared to the timeline of neuronal injury and death due 
to L-dopa autooxidation [100]. Studies show that ischemia-
induced elevation of endogenous L-dopa increases gluta-
mate release in rat striatal neurons, an effect that is Ca(2 +) 
dependent and dopamine independent [100], suggesting 
that elevation of endogenous L-dopa has the potential to 
exert neurotoxicity similar to the elevation due to L-dopa 
administration [121, 122]. The Ca(2 +)-induced enhanced 
glutamate release and the activation of the postsynaptic 
N-methyl-D-aspartate (NMDA) and non-NMDA receptors 
[123, 124] lead to caspase-3-activation [125] and neuronal 
cell death, a common pathway involved in the pathophysi-
ology of many neurodegenerative disorders. Therefore, 
both L-dopa autooxidation and L-dopa excitotoxicity may 
work in concert to contribute to neurodegeneration.

The L-dopa-induced glutamate-related excitotoxity 
inhibits the AADC enzyme both in the striatum and in 
substantia nigra (SN) [41], and therefore, can adversely 
affect the clinical outcomes of AAV2-mediated hDDC gene 
therapy in AADC-DY. This notion is further supported by 
the results of a study showing that the central inhibition of 
the AADC enzyme by NSD-1015 amplifies the endogenous 
L-dopa-induced glutamate release and striatal neuronal cell 
death [100]. This is because dopamine negatively controls 
glutamate release and therefore dopamine depletion would 
have the potential to enhance glutamate release [100, 126]. 
The results collectively suggest that the L-dopa-induced 
glutamate excitotoxicity (as well the Hcy-induced gluta-
mate excitotoxity described in the following paragraphs) 
is likely to be potentiated, playing a role in dopaminergic 
neuronal injury and death in AADC-DY.

L‑dopa‑Induced Protein Misfolding

An additional mechanism contributing to L-dopa cytotoxic-
ity stems from structural similarities between L-dopa and 
the amino acid tyrosine. Due to these structural similarities, 

L-dopa can replace tyrosine in the polypeptide chain of pro-
teins in the brain, promoting protein misfolding and protein 
aggregation with an adverse effect on mitochondrial function 
[127]. The glial dysfunction and the impaired mitophagy 
[111] can lead to the accumulation of misfolded proteins, 
enhancing neurodegeneration. The aggregation of misfolded 
brain proteins is the underlying cause of neuronal damage in 
several neurodegenerative disorders [128], and likely con-
tribute to neurodegeneration associated with AADC-DY.

L‑dopa‑Induced Serotonergic Dysfunction

The dense serotonergic fibers projecting to the striatum are 
capable of a high affinity L-dopa uptake and conversion to 
dopamine [129]. Because of the dopaminergic lesions in PD, 
the serotonergic neurons are the main cells to use the exog-
enous L-dopa for dopamine synthesis in the striatum and SN 
[130]. Studies in a rodent model of PD show that high levels 
of brain L-dopa can also adversely affect the serotonergic 
neurons, with the reductions in both serotonin and dopa-
mine in different parts of the brain, including striatum and 
SN [131], resulting in serotonin and 5-HIAA depletion and 
behavioral and cognitive dysfunctions [132]. Similarly, the 
chronic administration of L-dopa has been thought to exert 
toxicity toward serotoninergic neurons, hence contributing 
to physiological dysfunction in PD patients [133].

It is unknown whether the high levels of endogenous 
L-dopa found in AADC-DY undergo uptake into seroton-
ergic neurons like the exogenous administrated L-dopa 
does, but if that is the case, then it can exert adverse effects 
on serotonergic neurons like it does in dopaminergic neu-
rons, influencing their long-term survival. L-dopa adverse 
effects in serotonergic neurons would be enhanced due to 
serotonin depletion in AADC-DY since serotonin is known 
to exert antioxidant and neuroprotective effects [134, 135]. 
Furthermore, striatal astrocytes express serotonergic recep-
tor 5-HT1A, a key mediator of serotonergic signaling in the 
CNS, and stimulation of these receptors activates Nrf2 in 
astrocytes, with the end results of upregulating the astro-
cytic antioxidant and neuroprotective capacities [136]. 
However, in AADC-DY, this neuroprotective pathway may 
be impaired due to glial dysfunction and serotonin deficit, 
negatively impacting neuronal survival.

L‑dopa‑Upregulation of Kynurenine Pathway

L-dopa oxidation has the potential to also upregulate the 
kynurenine pathway (KP), the major pathway in tryptophan 
catabolism, culminating in the generation of metabolites 
such as quinolinic acid [38, 39], known to exert neurotoxic 
effects via both increase in glutamate release and stimulation 
of NMDA receptors [40], further fueling oxidative stress and 
mitochondrial dysfunction [137]. Although high 5-HTP may 
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contrast some of the L-dopa prooxidant effects [138], 5-HTP 
is known to dose-dependently inhibit AADC enzyme activ-
ity [139], and therefore could interfere with treatments aim-
ing to increase dopamine and serotonin productions.

Quinones, the byproducts of L-dopa oxidation, can inac-
tivate tryptophan hydroxylase, the rate-limiting enzyme in 
serotonin synthesis, adversely influencing serotonin pro-
duction. The quinones exert these adverse effects through 
both modification of the cysteinyl residues within trypto-
phan hydroxylase, and via converting tryptophan hydroxy-
lase to a redox-cycling quinoprotein; the latter is able to 
fulfill the role of a radical with neurotoxic properties [140]. 
Furthermore, quinones can covalently bind Parkin, inacti-
vating ubiquitin ligase function of Parkin, thus impairing 
mitophagy in dopaminergic neurons [141], suggesting the 
vulnerability of these neurons to quinone toxicity. The data 
cumulatively demonstrate the many pathways through which 
the excess L-dopa is able to exert cytotoxicity, thus promot-
ing neuronal injury and death in AADC-DY.

Homocysteine Neurotoxicity

Homocysteine (Hcy) is a non-protein, sulfur-containing 
amino acid that is generated during methionine transmeth-
ylation via several steps catalyzed sequentially by SAM 
synthetase, methyltransferase (MT), and SAH hydrolase 
enzymes [142]. Higher levels of Hcy have been regarded to 
be involved in the pathology of several disorders including 
neurodegeneration [143, 144]. PD patients show a positive 
correlation between Hcy plasma levels and L-dopa [145] 
and 3-OMD [146] concentrations. The effect of L-dopa on 
Hcy plasma levels in PD subjects is more pronounced under 
folate deficiency [147]. Neither plasma nor CSF levels of 
Hcy have been measured in AADC-DY. However, the excess 
brain L-dopa availability in AADC-DY, and the increase in 
the synthesis of 3-OMD by COMT enzyme, would result in 
the accelerated production of SAH, which would be readily 
converted to Hcy and adenosine by the action of SAH hydro-
lase enzyme, in a folate-dependent reaction, culminating to 
a reduced cerebral methyl donor, SAM, and reduced folate 
as the co-factor [148].

Homocysteine‑Induced Oxidative Stress

Several mechanisms account for the adverse effects of Hcy. The 
subcutaneous administration of Hcy to rats increased both the 
plasma and brain levels of Hcy [149]. In the brain, Hcy exerted 
significant oxidative stress [149] and increased the level of 
inflammatory mediators resulting in mitochondrial dysfunction, 
DNA damage, and neuronal cell death, as measured in the hip-
pocampus/cerebral cortex [150]. Similar adverse effects were 
observed after intracerebral injection of Hcy in mice, showing 

significant increase in lipid peroxidation and neuroinflamma-
tion which were accompanied with reduced GSH levels, culmi-
nating to cortical damage and cognitive deficit [151].

The oxidative stress, inflammation, and mitochondrial 
dysfunction in striatum and cerebellum have been also 
shown under chronic mild hyperhomocysteinemia [152], 
accompanied by a dose-dependent loss of striatal dopamin-
ergic neurons, and motor dysfunction [153]. In PD subjects, 
Hcy plasma levels correlate with cognitive dysfunction [154] 
and Hcy-induced loss of dopaminergic neurons is thought to 
contribute to PD neurodegeneration [153].

It is assumed that Hcy promotes oxidative stress via reac-
tive oxygen species generation upon disulfide bond forma-
tion. However, additional studies show that Hcy, unlike 
other thiol compounds, possess distinctive features enabling 
it to easily forms disulfide bonds with free thiol groups of 
cysteine residues in proteins forming thermodynamically 
stable Hcy-thyl-cysteine able to act as a radical after under-
going hydrogen atom transfer reaction [28]. This reaction 
can lead to the oxidation of DNA and proteins and limit the 
availability of the antioxidant precursor, cysteine.

Hcy reduces catecholamine and serotonin levels in the 
brain and increases MAOB activity [29]. The increase in 
MAOB will lead to accelerated dopamine catabolism to 
3,4-dihydroxyphenylacetaldehyde (DOPAL), a reactive alde-
hyde derivative with cytotoxic effects [155]. The increase 
in MAOB can also reduce the activity of the antioxidant 
enzyme, superoxide dismutase (SOD) [156]. Further-
more, the BBB is especially sensitive to Hcy and even a 
mild increase in Hcy level can compromise BBB integrity, 
independent of Hcy-induced neuroinflammation [157]. Hcy 
neuronal damage is likely to occur in AADC-DY because 
of chronic presence and accumulation due a relatively long 
biological half-life (4 h) [158], with the potential for con-
tributing to both motor and cognitive dysfunctions [29], the 
severity of which would be the function of both Hcy con-
centration and the length of exposure of neurons, especially 
dopaminergic neurons, to the insult.

Homocysteine‑Induced Excitotoxicity

Similar to L-dopa, Hcy can exert excitotoxicity by inter-
action and activation of the NMDA receptors [159, 160], 
an adverse effect that is potentiated in the presence of high 
levels of glycine [159]. Glycine is known to be a NMDA 
receptor agonist [161]. AADC-DT subjects present with 
high CSF levels of glycine [8] with the potential to synergize 
with Hcy, further augmenting excitotoxicity and subsequent 
neuronal injury and death. Hcy activation of NMDA recep-
tors is associated with the induction of seizures in young rats 
[162]. Whether cases of single seizures observed in some 
AADC-DT subjects [13] are related to Hcy excitotoxicity 
warrants further investigations.
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Dopaminergic neurons extend their axons to the striatum, 
releasing dopamine, and striatal astrocytes express dopa-
mine receptors, including D2 receptors [99]. A2 adenosine 
receptors and D2 dopaminergic receptors closely interact in 
an antagonistic manner to modulate glutamatergic transmis-
sion in striatal astrocytes through receptor heteromerization; 
D2 receptors’ activation inhibits glutamate release, while 
activation of A2A receptors abolishes the effect of D2 recep-
tor–mediated inhibition of glutamate release from astrocytes 
[163]. Therefore, the intercellular communication between 
neurons and astrocytes via A2A-D2 heteromer can contrib-
ute to glutamatergic regulation.

Hcy has been shown to inhibit D2-mediated inhibition of 
glutamate release without affecting the functional interaction 
between A2A receptors and D2 receptors [164]. The absence 
of inhibition of glutamate release, due to dopamine deple-
tion in AADC-DY, and the presence of high levels of Hcy 
and adenosine are factors leading to enhanced Hcy-induced 
excitotoxicity with adverse effects on dopaminergic neurons. 
Furthermore, similar to Hcy, high level of adenosine co-
released with Hcy is able to increase SAH [165] and there-
fore can indirectly downregulate transmethylation processes. 
Such adenosine adverse effect is likely to be accentuated in 
the presence of high Hcy levels. Adenosine activation of A2 
adenosine receptors is known to contribute to dopaminer-
gic neurodegeneration, and antagonists to this receptor are 
considered for their beneficial effects in the treatment of PD 
[166]. The results collectively demonstrate the deleterious 
effects of chronic brain exposure to Hcy, a scenario likely to 
exist in AADC-DY.

Reduced Homocysteine Metabolism

Hcy levels are determined by the balance between bio-
synthesis and catabolism; the higher expected Hcy levels 
in AADC-DY can be the result of not only increase in the 
synthesis, but also reduced Hcy catabolism. Hcy is catabo-
lized by two means: remethylation to methionine and trans-
sulfuration to cysteine. Hcy remethylation occurs in both 
folate/vitamin B12-dependent and vitamin B12-independ-
ent mechanisms. The B12-dependent uses N-5-methyl tet-
rahydrofolate (MTHF) as methyl group donor catalyzed by 
methionine synthase (MS) with the aid of vitamin B12 as 
cofactor, whereas the remethylation pathway is independent 
of vitamin B12 and relies on betaine as methyl donor cata-
lyzed by betaine-homocysteine methyltransferase (BHMT) 
enzyme.

Hcy transsulfuration is catalyzed by the two vitamin 
B6-dependent enzymes, the cystathionine β-synthase (CBS) 
and cystathionine γ-lyase (CSE), as well a third enzyme, 
3-mercaptopyruvate sulfurtransferase (MST). CBS is 
expressed mainly in glial/astrocyte lineage [167], whereas 
CSE [168] and 3-MST [169] catalyze Hcy metabolism 

mainly in neurons. The first step is the condensation between 
Hcy and serine by CBS produces cystathionine, which is fur-
ther hydrolyzed by the CSE enzyme to produce cysteine and 
α-ketobutyrate [142, 170]. Cysteine is a precursor, critical 
for the synthesis of the antioxidant GSH and for the synthe-
sis of H2S, a signaling molecule able to exert neuroprotec-
tive effects via multiple biological mechanisms including 
antioxidative, anti-inflammatory, and antiapoptotic [171].

The high Hcy levels, brought about by the accelerate rate 
of L-dopa-induced o-methylation, are able to diminish CBS 
enzyme activity [29] as well as reduce the level of the methyl 
donor, SAM, known to be the allosteric activator of the CBS 
enzyme [30], hence resulting in further Hcy accumulation. 
Hcy catabolism is also hampered due to dopamine and sero-
tonin depletion since both neurotransmitters are known to 
upregulate CBS expression [172]. Therefore, factors such 
as depleted neurotransmitters, reduced SAM [8], high Hcy 
and adenosine levels, and depletion of cerebral folate due to 
L-dopa-induced oxidative stress [173] all have the potential 
for interfering with CBS enzyme activity and remethylation 
cycle, thus impairing Hcy catabolism in AADC-DY. This 
scenario is especially relevant to the brain due to the absence 
of BHMT enzyme [174], and brain dependency on folate/
vitamin B12-pathway for Hcy remethylation, rendering the 
brain vulnerable to increased Hcy levels.

The physiological levels of CSE enzyme are especially 
low in the brain; in fact, CSE levels in the brain are > 100 
folds lower than that in the liver [175] and more than 40-fold 
higher cystathionine levels are reported in the brain com-
pared to other human tissues [176]. Low physiological levels 
of CSE enzyme in the brain combined with oxidative stress 
induced by L-dopa, 3-OMD [177], and Hcy [29] could sig-
nificantly reduce CSE activity, resulting in Hcy accumula-
tion, and subsequent reduction in the production of cysteine 
and its neuroprotective metabolites, GSH and H2S.

Homocysteine Downregulation of Cellular 
Antioxidant Status

AADC-DY-related deficits in dopamine and serotonin and 
the reduced activities of CBS and CSE enzymes [172], 
combined with reduced level of SAM [178], all are fac-
tors that could adversely affect H2S production and 
therefore, the antioxidant capacity of the brain, an organ 
known to be especially sensitive to oxidative stress [179]. 
CBS and CSE enzymes can both produce H2S directly 
from cysteine or through catalysis of the condensation of 
cysteine + cysteine and Hcy + cysteine. In addition, CSE 
can produce H2S directly from Hcy or through cataly-
sis of the condensation of Hcy + Hcy [180]. The reac-
tions catalyzed by both CBS and CSE are all vitamin 
B6-dependent [180]. In normal physiological state, CBS 
is the major enzyme in the production of H2S [181], which 
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takes place mainly in astrocytes [182]. However, in the 
presence of high brain Hcy, as it is likely to be the case 
in AADC-DY, CSE becomes the principal enzyme for 
the H2S generation through CSE catalysis of Hcy + Hcy 
condensation [183]. Therefore, the physiologically low 
brain CSE levels and the reduced CSE activity in AADC-
DY would interfere with H2S formation, promoting an 
environment of low antioxidant capacity, where the cyto-
toxicity of L-dopa is potentiated [68]. This prooxidant 
environment is further enhanced by the ability of Hcy to 
interact with H2S, forming Hcy-persulfide, thus reducing 
H2S bioavailability [184]. The disturbances in the H2S 
levels have been shown in many neurodegenerative dis-
eases including PD and AD [185], and likely to be a part 
of AADC-DY pathophysiology.

H2S in the brain can be also generated by MST 
enzyme using 3-mercaptopyruvate (3-MP) as substrate, 
with thioredoxin (Trx) and dihydrolipoic acid (DHLA), 
the reduced form of α-lipoic acid (ALA) as cofactors 
[186]. Both Trx and DHLA act as sulfur acceptors for 
MST-bound cysteine persulfide (an intermediate gener-
ated by sulfur transfer from 3-MP to cysteine catalyzed 
by MST) to generate H2S [168, 187]. 3-MP is produced 
by the action of cysteine aminotransferase (CAT) enzyme 
on cysteine in the presence of α-ketoglutarate [180]. How-
ever, the physiological level of MST enzyme in the brain 
is 10 folds lower than the levels in the liver [188], and 
the oxidative stress exerted by the different metabolites 
could further reduce MST activity [31]. The chronic high 
level of L-dopa can also interfere with H2S production 
via reducing the level and the activity of the cofactor Trx 
in neurons [32]. Since H2S negatively regulate Hcy levels 
[189], the reduced production of H2S leads to further Hcy 
accumulation in the brain.

One of the many H2S biological effects in the brain is the 
regulation of the gastric juice, by reducing the gastric PH 
[190]. Most of AADC-DT subjects suffer from gastrointes-
tinal problems, including digestion, diarrhea, constipation, 
reflux, nausea, and vomiting [191]. These clinical symptoms 
may be in part the result of hypochlorhydria due to reduced 
brain H2S production. Furthermore, H2S has been shown to 
regulate glucose homeostasis in a number of organs includ-
ing hepatocytes, skeletal muscles, and the brain [192]. It is 
well known that neurotransmitters such as dopamine and 
serotonin regulate blood glucose [193]. The hypoglycemia 
observed in AADC-DT subjects may be the result of both 
neurotransmitters’ deficiency and H2S dysregulation.

Homocysteine Reduction in Cellular Methylation 
Status

Another consequence of elevated Hcy levels is the accu-
mulation of SAH, since as a result of inefficient removal 

of Hcy through remethylation or degradation to cysteine, 
the equilibrium constant of SAH hydrolase favors SAH 
synthesis rather than hydrolysis (reverse catalysis) [175]. 
SAH elevation is known to disturb cell methylation capac-
ity through the ability to competitively bind the catalytic 
region of most SAM-dependent methyltransferases, inhibit-
ing transmethylation reactions [194], including the forma-
tion of SAM. The results of a combined genetic and dietary 
approach in rats shows an inverse relationship between 
SAM and SAH and a positive relationship between plasma 
Hcy and brain SAH [195]. The increase in SAH seems to 
be a better indicator of cellular methylation capacity than 
decrease in SAM [195]. Therefore, high levels of Hcy and 
SAH may play a role in reduced SAM levels observed in 
AADC-DY [148], suggesting suboptimal cellular antioxi-
dant and methylation capacities.

Brain may be especially sensitive to SAH adverse effects 
since brain has a relatively low SAH hydrolase activ-
ity [175], and BHMT, the alternate Hcy remethylating 
enzyme, is not active in the brain [174]. Hypomethylation 
can adversely affect DNA and proteins, with adverse effects 
including neuronal susceptibility to injury and apoptosis 
[196]. SAM/SAH ratio also correlates with total GSH level 
and GSH/GSSG ratio [53]. The SAM/SAH ratio in plasma 
of healthy individuals is calculated to be 4.9 ± 1.7 (range, 
1.6–9.5) [197], but this ratio is reduced in PD subjects, cor-
relating with cognitive dysfunction [54]. Although this ratio 
is unknown, it is expected to be reduced in AADC-DT sub-
jects as a result of L-dopa-induced reduction in SAM [198] 
and Hcy-induced increase in SAH.

Homocysteine Oxidation‑HCA Generation

In a prooxidant environment, Hcy is prone to undergo oxida-
tion generating 2-amino-4-sulfo-butanoic acid (homocyst-
eic acid, HCA) [27], with enhanced production under folate 
deficiency [199]. HCA is an analogue of glutamic acid, able 
to bind and activate NMDA receptors. Even very low con-
centration of HCA is capable of over-activating the NMDA 
receptors leading to very high brain toxicity [200]. In fact, 
HCA is significantly more neurotoxic than Hcy [201, 202]. 
The icv infusion of HCA to immature rats caused seizures 
recorded in various parts of the brain, including striatum 
[203]. Brain levels of HCA are increased in the rodent model 
of AD, triggering memory deficit [204], and the adminis-
tration of an anti-HCA antibody prevents cognitive impair-
ment [204]. Compounds that reduce HCA to Hcy, such as 
H2S, have been shown to improve cognitive function in AD 
patients [205]. Similarly, ferulic acid, which inhibits HCA 
binding to NMDA receptors, improves HCA-induced cogni-
tive impairment [205]. The data demonstrates the detrimen-
tal effects of HCA in the brain in the presence of high Hcy 
and a prooxidant environment that characterizes AADC-DY.
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We propose that in the absence of AADC enzyme [69], 
and the absence of dopamine [82, 100] and serotonin neu-
roprotective effects [134, 135], the chronic presence of high 
levels of L-dopa, 3-OMD, and Hcy, would act in concert and 
synergy to generate a prooxidative and excitotoxic environ-
ment, resulting in glial activation, mitochondrial dysfunc-
tion, and neuroinflammation, hence marking the onset of 
neurodegeneration in AADC-DY. This hostile environment 
faced with the metabolites-induced suboptimal cellular 
antioxidant capacity would negatively impact neuronal 
survival in general and dopaminergic neurons in particu-
lar. The extent and severity of adverse effects would be in 
turn the function of the levels and duration of exposure to 
the toxic metabolites. This conclusion is supported by the 
results of the clinical outcomes of AAV2-mediated hDDC 
gene therapy to be more favorable in younger AADC-DT 
patients compared to older ones [18, 206], suggesting that 
the relatively shorter duration of the disease in younger sub-
jects may be associated with a less opportunity for the toxic 
metabolites to cause an irreversible neuronal injury, com-
promising neurons’ functional integrity.

AADC‑DY Novel Treatment Strategies

We have extensively discussed several upregulated metabo-
lites in AADC-DY and their synergistic role in inducing 
oxidative stress and neuroinflammation, as well as interfer-
ing with the synthesis of cellular antioxidants. These effects 
of the metabolites combined with the absence of dopamine 
and serotonin antioxidant and neuroprotective effects would 
generate an unreceptive milieu impeding the success of 
AADC-DY treatments aiming to enhance neurotransmitters’ 
synthesis and or function. To improve treatment efficacy, 
either the levels of metabolites should be reduced or alter-
natively the cellular antioxidant capacity be increased by 
either supplementing with compounds that exert antioxidant 
effects or with precursors involved directly or indirectly in 
the generation of cellular antioxidants. These interventions, 
singly or combined, would be more effective if applied early 
in the course of the disease, before irreversible neuronal 
injury occurs. These novel strategies are depicted in Fig. 2.

COMT Inhibitors

Among strategies for reducing the levels of metabolites, 
and restoring the cellular antioxidant and methylation capac-
ities is the use of COMT inhibitors. Although not a part of 
treatment modality in AADC-DY, treatment of PD patients 
with the COMT inhibitor, tolcapone, results in a marked 
reduction in 3-OMD plasma level [207]. COMT inhibitors 
can also contrast the increase in Hcy levels, minimizing the 
related toxicity brought about L-dopa-induced accelerated 

o-methylation [208]. In addition, tea polyphenol, especially 
epigallocatechin-3-gallate (EGCG), and ( +)-catechin are 
effective COMT inhibitors, known to reduce 3-OMD levels 
in rat striatum [209, 210]. Having adequate bioavailability, 
these compounds cross BBB, exerting antioxidant, anti-
inflammatory, and neuroprotective effects, even in low con-
centrations [209, 210]. The data suggests the possible ben-
efits of treatment of AADC-DY with centrally acting COMT 
inhibitors as a mean for reducing 3-OMD and Hcy levels and 
improving both SAM/SAH and GSH/GSSG ratios.

H2S Donors

Alternatively, one can enhance the cellular antioxidant 
capacity to counteract metabolites-induced oxidative stress. 
Rodent studies show that intraperitoneal administration of 
the H2S donor, sodium hydrogen sulfide (NaHS), alleviated 
Hcy-induced toxicity by reducing oxidative damage, neuro-
inflammation, cells apoptosis, neurodegeneration, and cogni-
tive deficit [29, 149, 151]. H2S administration also lowered 
the plasma and brain levels of Hcy, increased the level of 
the endogenous H2S, restored the activities of CBS and CSE 
enzymes, increased catecholamine levels, and improved cog-
nitive and behavioral deficits in Hcy-treated animals [29, 151]. 
NaHS treatment of a 6-OHDA-induced PD model attenuated 
neuronal loss, lipid oxidation, and the accumulation of inflam-
matory markers, and improved movement dysfunction [229]. 
Similar effects have been shown in the MPTP-induced PD 
model, where H2S inhalation prevented movement disorder 
and the degeneration and apoptosis of TH-containing neurons 
[230]. In addition, the inhalation of low H2S levels has been 
shown to increase plasma glucose levels in postpartum rats 
[231], suggesting that such strategy may not only impact neu-
rodegenerative processes, but also improve the hypoglycemia 
often reported in AADC-DT subjects.

Having a relatively high expression in the brain, the 
neuroprotective effects of H2S is attributed to the ability 
to prevent oxidative stress through Nrf2 upregulation [232] 
and preserve mitochondrial function, through upregulat-
ing Parkin activity [233]. H2S donors have been suggested 
as treatment modality for PD [234, 235], where the loss of 
Parkin activity has been documented [236]. These stud-
ies collectively suggest the beneficial effects of H2S as a 
part of AADC-DY treatment modality to enhance cellular 
antioxidant status, prevent mitochondrial dysfunction, and 
minimize neuronal injury.

Sulfur‑Containing Compounds

The increase in H2S production can also be achieved by 
administration of several sulfur-containing compounds 
including SAM, methionine, N-acetylcysteine (NAC), 
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and 3-MP. The administration of SAM, an activator of 
CBS, has the potential for restoring cellular methylation 
status, lowering Hcy levels, improving SAM/SAH ratio, 
and enhancing  H2S production [211]. Although the direct 
effects of SAM supplementation on the brain are not well 
known, SAM is able to cross the BBB with slow accu-
mulation in the CSF [237]. SAM administration to PD 
patients is well tolerated reducing the severity of depres-
sion [238]. Similarly, supplementation with methionine, 
the precursor of SAM, can improve the hypomethylation 
status, reducing Hcy and SAH levels [212], hence lead-
ing to increased H2S production. Supplementation with 
NAC can increase the levels of cysteine, the precursor for 
GSH, and enhance H2S production, while reducing Hcy 
via Hcy + cysteine condensation [212]. In addition, rodent 
studies show the potential of 3-MP to increase H2S; this 

effect is enhanced when 3-MP is administered in combina-
tion with α-lipoic acid (ALA) [213].

The enhancement in cellular antioxidant capacity can 
be also achieved by supplementation with antioxidant 
enzymes including SOD, catalase, and GSH [217], all of 
which fulfill important roles as antioxidants in the brain. 
PD patients, at advanced disease stages, show significantly 
lower SOD level in whole blood and in red blood cells, 
which correlates with disease duration [239]. Similarly, 
GSH level in the brain of PD patients is significantly 
reduced [240]. Studies show that SOD/catalase mimetics 
exert neuroprotective effects in a herbicide-mediated PD 
model [241]. Accumulated evidence supports the supple-
mentation and enhancement of GSH and related antioxi-
dants for improving PD pathology [242].

The ability of bromocriptine and pergolide to improve 
AADC-DY clinical symptoms [8] may stem in part from 

Fig. 2  Strategies to improve the treatment of AADC-DY. The new 
concept of AADC-DY as a neurodegenerative disease offers addi-
tional strategies to treat the disease. In addition to COMT inhibitors 
[207–210], H2S donors [29, 149, 151], sulfur-containing compounds 
(SAM, methionine, N-acetylcysteine, and 3-MP) [211–213], and the 
powerful antioxidant ALA [214–216] are strategies that could restore 
cellular methylation and cellular antioxidant capacities. Other strate-
gies include the use of antioxidant enzymes (GSH, SOD, catalase) 
[217], vitamins such as ascorbate [132, 218, 219], α-tocopherol [45, 
220, 221], and VD3 [222–225]. NMDA receptor antagonists are 
able to reduce glutamate excitotoxicity [41, 100], and erythropoie-
tin is able to exert neuroprotective effects [226–228]. These strategies 
used singly or combined early in the course of the disease will mini-

mize neuronal injury, preserving the functional integrity of the dopa-
minergic and serotonergic neurons. The red highlights present the 
upregulated metabolites. The purple highlights present the pathways 
to neuronal injury and death. The green highlights present the vari-
ous treatment strategies. Abbreviations: ALA, α-lipoic acid; COMTI, 
catechol-O-methyl-transferase inhibitor; EPO, erythropoietin; GSH, 
glutathione; Hcy, homocysteine; H2S, hydrogen sulfide; L-dopa, 
3,4-dihydroxy-L-phenylalanine; Met, methionine; 3-MP, 3-mercapto-
pyruvate; NAC, N-acetyl-cysteine; NMDAR-A, N-methyl-D-aspartate 
receptor-antagonist; 3-OMD, 3-O-methyldopa; SAM, s-adenosylme-
thionine; SOD, superoxide dismutase; VD3, vitamin D3; V-C, ascor-
bate; V-E, α-tocopherol



3009Molecular Neurobiology (2024) 61:2996–3018 

1 3

upregulating SOD [243]. In addition, studies in animal and 
cellular models of PD report that MAO inhibitors exert neu-
roprotective effects in part through increasing SOD and cata-
lase activities in the brain regions containing dopaminergic 
neurons [244]. Furthermore, the clinical efficacy of vitamin 
B6 in AADC-DY treatment is attributed in part from B6 
ability to induce GSH via Nrf2 activation [245]. The clinical 
efficacies of the dopamine-receptor agonists, MAO inhibi-
tors, and vitamin B6 and their potential for increasing anti-
oxidant levels, support the use of antioxidant enzymes and 
their mimetics for improving AADC-DY neuropathology.

Another powerful antioxidant, the organosulfur com-
pound ALA, is an essential cofactor for several enzymes 
involved in mitochondrial energy metabolism. In vitro stud-
ies show the potential of ALA in protecting primary hip-
pocampal and cortical neurons from HCA-mediated tox-
icity-induced neuronal cell death [214]. In addition, ALA 
reduced microglial activation and neuroinflammation in the 
MPTP-induced PD model [246]. In the 6-OHDA-lesioned 
rats, ALA reduced MDA levels and upregulated GSH activ-
ity in the striatum, thus preventing L-dopa activation of the 
proapoptotic caspase-3 signal in SN, resulting in improved 
neuronal survival [215]. The neuroprotective effects of ALA 
are attributed in part to the ability to downregulate inflam-
matory processes through targeting the proinflammatory 
transcription factor, the nuclear factor-KB pathway [216].

ALA is synthesized de novo in most cells in small 
amounts, using several intermediates including SAM [247] 
and therefore, reduced SAM is one of the many factors that 
may contribute to reduced levels of ALA in AADC-DY. 
In vivo, ALA could be reduced to its dithiol form, dihy-
drolipoic acid (DHLA), and in this form it functions as a 
sulfur acceptor during H2S production catalyzed by MST 
enzyme. Upon completion of this reaction, ALA is concomi-
tantly released with H2S [187]. Therefore, the reduced MST 
activity and Trx levels are additional factors impeding not 
only the H2S production, but also that of ALA in AADC-
DY. ALA is available as dietary supplement, and it is used 
as pharmaceutical drug in some European countries. Use 
of ALA in AADC-DT subjects, early in the course of the 
disease, will exert antioxidant and neuroprotective effects, 
preserving dopaminergic and serotonergic functions.

Vitamins

Metabolite-induced oxidative stress not only could deplete 
the level of cofactors such as folate [173], but it can also 
increase the rate of utilization of the two other antioxidant 
vitamins, ascorbate and α-tocopherol [248], thus adversely 
influencing cellular antioxidant capacity. In vitro studies 
show that ascorbic acid blocks L-dopa-induced reduction in 
the activity of the antioxidant enzyme catalase in mesence-
phalic cells [249], and prevents L-dopa-induced cell toxicity 

in striatal neurons [218]. These results were further corrobo-
rated in in vivo studies showing that ascorbate administra-
tion reduced Hcy, increased the activity of catalase and SOD 
enzymes in the hippocampus [219], and prevented seroto-
nin depletion in the dorsal raphe nucleus, thus minimizing 
L-dopa-induced cognitive dysfunction in rats [132].

Similar results have been reported with α-tocopherol, able 
to reduce L-dopa- and 3-OMD-induced oxidative stress, pre-
venting neuronal injury and motor dysfunction in rats [45]. 
The natural form of α-tocopherol, namely α-tocotrienol is 
multifold more potent than α-tocopherol, able to block neu-
ronal injury resulting from not only oxidative stress, but also 
from Ca(2 +)-dependent glutamate-induced excitotoxicity 
[220]. This potency has been attributed to a faster cellular 
uptake of the former compared to the latter [250]. Treat-
ment of PD patients with the combination of ascorbate and 
α-tocopherol reduced progression of the disease, indicated 
by the extension of the time to L-dopa treatment [221]. In 
addition, a randomized clinical study compared the benefit 
of α-tocopherol and NMDA receptor antagonist, meman-
tine, in reducing the functional decline in patients with mild 
cognitive dysfunction, reporting encouraging results [251].

The other vitamin with the potential benefit in the treatment 
of AADC-DY is vitamin D3 (VD3), with the active metabolite 
being 1,25-dihydroxyvitamin D3. VD3 is a hormone with pleio-
tropic effects; in addition to the classical role in the regulation of 
intestinal, bone, and kidney calcium and phosphorus absorption, 
VD3 exerts antioxidant, anti-inflammatory, and neuroprotective 
effects [222]. Although there are no data on serum level of VD3 
in AADC-DT subjects, PD patients show reduced level of this 
vitamin, and an inverse relationship between VD3 serum level 
and disease severity [252]. VD3 crosses the BBB [253], able to 
influence dopaminergic neurons through binding to and acti-
vation of the VD3 receptor/retinoic X receptor heterodimeric 
complex [254]. VD3 receptors act as a ligand-inducible tran-
scription factors. VD3 belongs to the nuclear hormone receptor 
superfamily [255] with the highest concentrations reported to 
be located in the SN [256], indicating the important function of 
these receptors in dopaminergic neurons.

VD3 treatment protected rats’ nigrostriatal dopamin-
ergic neurons against a partial lesion induced by the uni-
lateral striatal injection of 6-OHDA, administered either 
before or after lesion induction [223]. The treatment pre-
vented lipid peroxidation and the increase in the level of 
proinflammatory mediator TNF-α. VD3 also reversed the 
6-OHDA-induced reduction in the level of dopamine trans-
porter, an indicator of dopaminergic membrane integrity, 
and the level of tyrosine hydroxylase, the rate-limiting 
enzyme in dopamine synthesis, hence protecting dopa-
minergic neurons [223]. The neuroprotective effects are 
attributed in part to VD3’s ability to increase GDNF level 
in the striatum and SN, inhibiting cell apoptosis [224]. The 
results from rodents’ studies agree with those of a clinical 
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trial showing that VD3 supplementation of PD patients 
prevented disease deterioration measured by modified 
Hoehn and Yahr stage and Unified Parkinson’s Disease 
Rating Scale [225]. The accumulated evidence support 
VD3 potential to downregulate pathophysiological pro-
cesses that characterize neurodegeneration, and therefore 
may be of benefit in the treatment of AADC-DY.

NMDA Receptor Antagonists

The increase in the brain levels of metabolites also leads 
to an enhanced glutamate release via both oxidative- and 
Ca(2 +)-dependent pathways as described above. Rodent 
studies show that L-dopa-induced glutamate release and cell 
death are prevented by the administration of NMDA receptor 
antagonists CGP 40116, glycine/NMDA receptor antagonist 
HA-966, memantine, and the antiparkinsonian dugs budi-
pine and amantadine, with a parallel increase in the level of 
the AADC enzyme [41]. Similar results were observed with 
the competitive DOPA antagonist, DOPA cyclohexyl ester 
[100], suggesting the potential beneficial effects of NMDA 
receptor antagonists in the treatment of AADC-DY.

Erythropoietin

An additional compound with possible beneficial effects in 
AADC-DY is the hypoxia-inducible growth factor eryth-
ropoietin (EPO). EPO has a role in hematopoiesis and the 
recombinant human EPO is used for the treatment of ane-
mia. However, EPO and its receptor are also found in the 
brain, regulating cognition, neurogenesis, and neuroplasti-
city, while undergoing upregulation upon increase in oxygen 
demand and brain injury [257]. In vitro studies show that EPO 
reduced L-dopa-induced oxidative stress and caspase-3, and 
improved neuronal cell survival [226]. Furthermore, the sys-
temic administration of the recombinant human EPO crosses 
the BBB, stimulating striatal dopamine release [227]. Similar 
results were observed in the PD model where EPO prevented 
neurodegeneration in the nigrostriatal dopaminergic system, 
improving cognitive function [228]. A clinical study of PD 
patients treated with intranasally administered EPO reports 
encouraging results [258]. Whether such an approach com-
bined with other modalities could improve the neuropathology 
associated with AADC-DY warrants further investigations.

Concluding Remarks

We have extensively discussed oxidative stress in AADC-
DY as an ignition for the downstream pathophysiologi-
cal processes culminating to mitochondrial dysfunction, 

neuroinflammation, and neuronal injury and death. We 
believe that the heterogeneity in the clinical outcomes of 
established treatments and AAV2-mediated hDDC gene 
transfer in AADC-DT subjects may be related in part to the 
progression of the disease where the chronic presence of 
several upregulated metabolites leads to irreversible dam-
age of neurons, compromising their functional integrity.

The new concept of AADC-DY as a neurodegenerative dis-
ease opens a path for additional treatment modalities to reduce 
the levels of the upregulated metabolites, and or minimize the 
downstream pathophysiological processes. This in turn would 
generate a more hospitable environment, where the clinical 
efficacy of AADC-DY treatments, aimed at restoring neuro-
transmitters’ synthesis and or function, would be enhanced. 
These additional treatment modalities include the use of COMT 
inhibitors, antioxidants, and neuroprotective agents such as 
H2S, ALA, EPO, and vitamins; sulfur-containing compounds 
such as SAM, methionine, NAC, and 3-MP, able to restore cel-
lular methylation status and enhance cellular antioxidant capac-
ity; antioxidant enzymes such as GSH, catalase, and SOD; and 
NMDA receptor antagonists with the potential to minimize 
metabolite-induced excitotoxicity. The use of these treatment 
modalities as single or in combination, early in the course of 
the disease, would minimize injury, hence preserving neuronal 
function. These therapies are not limited to AADC-DY but 
can be effective in other pathological states, where a mutation 
has the potential to lead to the accumulation of prooxidants 
and neurotoxic metabolites. Several disorders of vitamin B6 
metabolism fall into this category.
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