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Abstract
CNS (central nervous system) trauma, which is classified as SCI (spinal cord injury) and TBI (traumatic brain injury), is 
gradually becoming a major cause of accidental death and disability worldwide. Many previous studies have verified that 
the pathophysiological mechanism underlying cell death and the subsequent neuroinflammation caused by cell death are 
pivotal factors in the progression of CNS trauma. Simultaneously, EVs (extracellular vesicles), membrane-enclosed particles 
produced by almost all cell types, have been proven to mediate cell-to-cell communication, and cell death involves complex 
interactions among molecules. EVs have also been proven to be effective carriers of loaded bioactive components to areas 
of CNS trauma. Therefore, EVs are promising therapeutic targets to cure CNS trauma. However, the link between EVs and 
various types of cell death in the context of CNS trauma remains unknown. Therefore, in this review, we summarize the 
mechanism underlying EV effects, the relationship between EVs and cell death and the pathophysiology underlying EV 
effects on the CNS trauma based on information in published papers. In addition, we discuss the prospects of applying EVs 
to the CNS as feasible therapeutic strategies for CNS trauma in the future.
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Introduction

CNS trauma, which is a serious organ injury, has become 
very common throughout the world in recent years. The 
National SCI Statistical Center reported that nearly 0.935 
million people are newly diagnosed with traumatic CNS 
injury each year, and the incidence of this disease is increas-
ing every year. Additionally, the morbidity rate of CNS is 
extremely high. Therefore, lifelong follow-up care is needed, 
and this is accompanied by considerable emotional and 
financial costs [1, 2]. CNS trauma is divided into SCI and 
TBI according to the clinical needs of the patient. Generally, 
CNS trauma progresses two stages. Stage one is character-
ized by primary injuries, which occur in a short window of 
time by external violence and can directly damage the struc-
ture of neuronal tissue and the vasculature [3, 4]. Stage two 
is characterized by secondary injuries caused by the hypoxia, 
oedema or ischaemia caused by the primary injuries. Sec-
ondary injuries cause more serious damage due to cell death 
and the release of inflammatory factors [2]. Alleviating the 
inflammatory response and preventing cell death are of great 
importance to minimize injuries to the brain and spinal cord 
tissue. Therefore, it seems critical to focus on pathobiologi-
cal change during the secondary injury phase.

EVs are cell-derived lipid bilayer-encapsulated particles 
that are produced by nearly all cell types and transport bioac-
tive components to target cells [5]. Based on their biogen-
esis and size, EVs include MVs (50–1000 nm), apoptotic 
bodies (ApoBDs) (1000–5000 nm) and exosomes (30–100 
nm) [2, 5, 6]. MVs are released by “donor” cells through 
outward membrane budding, while exosomes are formed 
in the endolysosomal pathway and in multivesicular bodies 
(MVBs) before fusing with the plasma membrane, which 
subsequently releases them [7–9]. Apoptotic bodies, which 
originate from apoptotic cells, are shed from cells in the 
same manner as MVs [5]. As carriers that mediate com-
munication among cells, EVs can be loaded with various 
contents, such as proteins, lipids and nucleic acids [7]. EVs 

are abundant in all bodily fluids, including blood, urine and 
cerebrospinal fluid (CSF), and are of great significance for 
regulation signalling among cells [1]. Because of the ability 
of EVs to cross the blood–CNS barrier, they have become 
alternatives to therapies based on cells for improving the 
microenvironment after CNS trauma [10].

In recent years, cell death has become a hotspot in the 
field of biomedical research as an important mechanism in 
all kinds of organ injuries. Previously, it was believed that 
there were two types of cell death, namely, necrosis and 
apoptosis [11]. Previous studies have demonstrated that 
apoptosis is the main form of cell death induced by CNS 
trauma [11, 12]. However, because of the limited under-
standing of programmed cell death, few studies have focused 
on the role of cell death in the context of CNS trauma. 
Recently, new types of programmed cell death have been 
identified, including autophagy, necroptosis, ferroptosis 
and pyroptosis. Increasing evidence over the past 10 years 
has revealed that cell death is an important process in the 
secondary injury phase in CNS trauma [3, 13, 14]. These 
studies revealed that cell death may be a pivotal cause of 
exacerbated secondary injury in CNS trauma. Additionally, 
many small molecules have been implicated in cell death 
and function as upstream or downstream signalling factors 
that regulate the cell microenvironment. EVs carry active 
contents such as RNA and protein that control signalling 
pathways, but few studies have discussed the roles of EVs 
in mediating cell death in CNS trauma circumstances. Thus, 
this review mainly summarizes the relationships between 
cell death and EVs in the context of CNS trauma for the 
purpose of evaluating the therapeutic potential of EVs and 
providing a feasible method for TBI and SCI treatment.

Mechanisms

Biogenesis of EVs

EVs are membrane-enclosed particles that are derived from 
the cell membrane. Based on their biogenesis and size, EVs 
are divided into MVs, exosomes and ApoBDs. EV bio-
genesis pathways also vary depending on the cell type that 
produces the EVs [6]. MVs are derived from all types of 
cells by direct blebbing of the cell plasma membrane [15] 
(Fig. 1). MVs are formed through various processes, such as 
phospholipid redistribution [4]. In MV biogenesis, plasma 
membrane molecules are rearranged; thus, the lipid and pro-
tein composition and  Ca2+ level are changed [6]. Increased 
levels of  Ca2+ catalysed by proteases promote the rearrange-
ment of asymmetric membrane phospholipids; as a result, 
the membrane physically bends, and the underlying actin 
cytoskeleton is changed, leading to membrane budding and 
MV formation [6]. Cargoes located at the plasma membrane 
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sites of MV budding are characterized by their respective 
plasma membrane anchors and higher order complexes [6]. 
MV release involves complex signalling pathways. By acti-
vating the ARF-PLD (phospholipase D)-ERK (extracellular 
signal-regulated kinase) pathway, myosin light chain kinase 
(MLCK) is phosphorylated and triggers the liberation of 
MVs carrying ARF6 (ADP-ribosylation factor 6), MHC-I, 
β1-integrin, VAMP3 (vesicle-associated membrane protein 
3) and MT1MMP (membrane-type I matrix metalloprotein-
ase) [4, 7]. Additionally, recent studies have revealed a new 
way in which MVs are released after the ESCRT-I subunit 
tumour susceptibility gene 101 (TSG101) is recruited to 
the plasma membrane [16, 17]. After ARRDC1 (Arrestin 
1 domain-containing protein 1) is ubiquitinated by direct 
contact with the VPS4 ATPase with WWP2 (an E3 ubiqui-
tin ligase), TSG101 binds to ARRDC1, and then, MVs that 
contain TSG101, ARRDC1 and other cellular proteins are 

released from cells [16, 17]. The release of MVs is likely 
fast, as the cargoes are intrinsic to the plasma membrane 
site where the MVs are formed, and subsequent MV release 
directly follows their generation and fission [6].

Exosomes, small membrane vesicles derived from most 
cells, but largely associated with endothelial cells, den-
dritic cells (DCs), epithelial cells (ECs) and lymphocytes, 
are formed via the endolysosomal pathway [18]. Exosomes 
are formed through inward budding of the cell membrane 
and are released via fusion between multivesicular bodies 
(MVBs) and the plasma membrane, at which point they are 
called multiple intraluminal vesicles (ILVs) in MVBs [7, 
18] (Fig. 1). Exosomes are ILVs in the extracellular space. 
In the first step, endosomes are formed through invagination 
of the plasma membrane. This type of endosome is named 
an early endosome [19]. Early endosomes are capable of 
fusing with endocytic vesicles from the Golgi complex to 

Fig. 1  Mechanism of EV biogenesis. MVs are generated by the direct 
outward budding and fission of the plasma membrane. The first step 
of exosome formation is invagination of the plasma membrane to 
form early endosomes, and then, the Golgi complex can accumulate 
some exosomal proteins. Early endosomes fuse with vesicles derived 
from the budding of the Golgi complex to form late endosomes. 

Through ESCRT-dependent or ESCRT-independent pathways, car-
goes are selectively sorted into ILVs, and then, late endosomes turn 
into MVBs. MVBs either fuse with lysosomes to degrade or fuse 
with the plasma membrane to release ILVs, which finally come into 
exosomes. ApoBDs are formed although membrane blebbing from 
apoptotic cells
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become recycling endosomes or late endosomes [7]. Recy-
cled endosomes restore recycling contents and are involved 
in the process of recycling [20]. Via the collection of ILVs 
generated from endosomal membrane inwards budding, late 
endosomes can store proteins, nucleic acids and other active 
contents, followed by turning into MVBs [7]. Two endpoints 
determine the fate of MVBs: (1) they are sent to the lyso-
some for degradation with all components of the lysosome, 
and (2) they fuse with the plasma membrane of the cell to 
release their contents (exosomes) into the extracellular space 
[21]. However, it remains unknown which factors influ-
ence the outcome of MVBs. Regarding the regulation of 
exosomes, many studies have shown that exosome formation 
and release are closely related to the ESCRT (endosomal 
sorting complex required for transport) pathway [7, 21, 22]. 
ESCRT is an endosomal sorting complex, and four different 
ESCRT complexes have been identified to date. ESCRT-0 is 
capable of recognizing ubiquitinated proteins on the outer 
endosomal membrane [4]. ESCRT-I, ESCRT-II and ESCRT-
III are capable of continuously recognizing monoubiquit-
inated transmembrane proteins and can induce these proteins 
to integrate into membrane domains, producing ILVs [23]. 
This cargo-sorting process of ILVs is mediated by endoso-
mal sorting complexes. The completion of the process is 
followed by the dissociation of the ESCRT machinery from 
the MVB membrane, and the dissociated ESCRT machin-
ery re-engages to conduct another round of protein sorting 
[23]. In addition, a study showed that MVB trafficking and 
MVB fusion with the cell membrane may be regulated by 
multiple Rab guanosine triphosphatase (GTPase) proteins 
and by cytoskeletal and molecular motor properties [24]. 
In addition to ESCRT-dependent pathway, distinct selec-
tive machinery in the ESCRT-independent pathway has 
been identified in multiple studies. The latter mechanism 
is mediated by the sphingolipid ceramide, which is gener-
ated during the hydrolysis of sphingomyelin by nSMase2 
(neutral sphingomyelinase 2) [25]. However, the details of 
this regulatory process are poorly understood, and relevant 
studies need to be conducted.

ApoBDs are activated in cells undergoing apoptosis and 
facilitates the disintegration of cells into distinct membrane-
enclosed vesicles with organelles [26] (Fig. 1). In contrast 
to MVs and exosomes, ApoBDs are assembled only dur-
ing programmed cell death and are much larger than MVs 
and exosomes (1000–5000 nm) [26]. The morphological 
hallmarks of apoptotic cells are cytoplasmic cell shrinkage, 
plasma membrane budding, extracellular PS (phosphati-
dylserine) membrane exposure, chromatin condensation 
and DNA fragmentation, and throughout this process, the 
plasma membrane remains intact [27]. ApoBDs have been 
closely associated with membrane blebbing. However, it 
remains unclear whether ApoBDs are derived through mem-
brane blebbing in apoptotic cells. Moreover, actin–myosin 

interactions may be involved in membrane blebbing [27], 
and some apoptosis-relevant proteins, such as caspase-9 
and proapoptotic BH3-only proteins, may affect ApoBD 
formation because ApoBDs are associated with apoptosis. 
Finally, phagocytic cells engulf and eliminate ApoBDs in 
an orderly fashion to prevent apoptotic cell debris from 
damaging peripheral cells or tissues [28]. The discovery of 
ApoBDs revealed that apoptosis is not only a process of pro-
grammed cell death but also a mechanism underlying com-
munication among cells. Recent studies have suggested that 
apoptotic vesicles derived from dying cells may be among 
the main regulators of the immune response [28–30]. This 
finding helps explain inflammation induced after cell death. 
Research on ApoBDs is greatly needed to expound on the 
inflammatory effects related to apoptosis.

Active Contents in EVs

The biogenesis of EVs suggests that they are not simply a 
simple lipid bilayer corpuscle but are loaded with a vari-
ety of molecules. Initially, it was believed that EV release 
partially constituted the mechanism by which unnecessary 
material was eliminated from cells. However, recent stud-
ies have shown that EVs promote communication among 
cells, which explains the action of the compounds loaded 
into EVs [6, 24, 31]. Generally, all EVs carry different pro-
teins, lipids and nucleic acids. Because different cell types 
comprise specific contents, they induce a specific response 
when communicating with other cells [7].

EV proteins are capable of participating in EV biogenesis, 
sorting EV cargo, controlling EV release and promoting EV/
recipient cell interactions. Common proteins loaded into EVs are 
related to biogenesis and release mechanisms [7]. As described 
in previous studies, MVs released through the ARF-PLD-ERK 
pathway specifically carry ARF6, β1-integrin, VAMP3 and 
MT1MMP, while recruitment of the ESCRT-I subunit TSG101 
to the plasma membrane through its binding to a tetrapeptide 
protein within the Arrestin 1 domain-containing protein 1 
(ARRDC1), resulting in the release of MVs containing TSG101 
and ARRDC1. In addition, tetraspanins (CD63, CD53, CD37, 
CD81 and CD9), membrane proteins most abundant in EVs, 
clearly mediate ESCRT-independent pathway activation [32]. 
Rab GTPases are critical proteins that control the release of EVs, 
and a recent study showed the negative regulation of Rab 11 via 
transfection with plasmid DNA encoding genes that block EV 
secretion [32, 33].

Nuclide acids have been proven to be mediators in 
different cell types in recent studies. RNA in EVs has been 
extensively studied because it regulates the expression and 
modification of products after transcription. Cargo RNAs 
in EVs are characterized by different biotypes representing 
the RNA content in the source cell from which they were 
released. EVs preferentially carry small noncoding RNAs, 
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although there are fragments and integrated mRNA, 
ribosomal RNA (rRNA) and long noncoding RNA (lncRNA) 
molecules in EVs [34]. Noncoding RNAs such as siRNAs, 
circular RNAs and microRNAs influence translation after 
transcription, thereby regulating biological behaviour at the 
genetic level. Among these RNAs, microRNAs have been 
the most extensively studied. A previous study showed 
that EVs containing microRNAs were involved in the 
regulation of cell physiological processes such as osteoblast 
differentiation [35]. By targeting the 3′ untranslated region 
(UTR) of specific mRNAs, microRNAs participate in the 
posttranscriptional modification of cells, thereby mediating a 
series of pathological or physiological processes. As a previous 
study described, M1-polarized macrophages accumulate in a 
lesion area and induce blood–spinal cord barrier breakdown, 
oxidative stress and neuroinflammation by secreting exosomal 
miR-155 after SCI [36]. Additionally, it has been reported that 
I/R injury in intestinal epithelial cells induces cortical neuron 
death by releasing paracrine mediators such as exosomal 
miRNAs associated with apoptosis, necroptosis and pyroptosis 
[37]. Thus, pathological or physiological processes in different 
cells may be mediated by secreted EVs containing microRNA. 
In addition, EVs carrying microRNA from different cells are 
neuroprotective, and EVs transport active RNA to nearby or 
distant cells, enabling communication among cells. Moreover, 
RNA contained in EVs is characteristic of the source cell 
type and physiological/pathological state, and some RNAs 
expressed in specific cells show curative or damaging effects 
on injured cells; therefore, EVs may serve as effective 
biomarkers for treating many diseases [34, 36, 38, 39].

Relationships Between EVs and Cell Death

EVs and Autophagy

Autophagy involves the formation of a phagocytic vesicle 
that encapsulates cytoplasmic proteins or organelles and 
then fuses with lysosomes to generate autophagolysosomes 
that degrade the contents in the phagosome, thereby meet-
ing the needs of cells for metabolism and organelle renewal. 
There is a balance between EV secretion and macroau-
tophagy because autophagosomes can fuse with lysosomes, 
which degrades their contents and inhibits the fusion of 
MVBs with autophagosomes necessary for the secretion of 
EVs [40]. Additionally, autophagy is regulated by a vari-
ety of signalling pathways and proteins, and EVs may play 
roles in transporting key signalling molecules to specific 
cells and induce or inhibit autophagy. Autophagy-related 
proteins (ATGs) are important for controlling autophago-
some formation [41]. Two ubiquitin-like (UBL) systems, 
namely, ATG12-ATG5 and ATG8-LC3, regulate autophago-
some initiation and elongation [42]. Shao et al. demonstrated 
that miR-454-3p in glioma cell exosomes may inhibit glioma 

cell proliferation, migration, invasion and autophagy, by 
targeting ATG12, while overexpression of ATG12 partially 
reversed the effects induced by miR-454-3p suppression 
[43]. Additionally, ATG5 has been proven to reduce the exo-
some biogenesis rate in breast cancer cells [44]. ATG4 is a 
protease that hydrolyses the C-terminus of ATG8 to form 
cytosolic LC3 I. Ni et al. demonstrated that exosomes from 
IL-β-treated human primary chondrocytes block autophagy 
in macrophages by inhibiting ATG4B activity, thereby fur-
ther aggravating synovitis in osteoarthritis [45]. Accord-
ing to a recent study, ATG16L1 in combination with other 
ATG proteins confers protection against α-toxin by releasing 
ADAM10 from exosomes (EVs of endosomal cell origin) 
[46]. This recently discovered autophagy mechanism, called 
secretory autophagy, mediates the extracellular release of 
soluble and vesicle-bound substrates via the action of ATG 
[42]. This form of autophagy allows ATG machinery to pre-
vent ADAM10 from accumulating on cells and promotes its 
inclusion on exosomes [46]. In the later stage of autophagy, 
autophagosomes fuse with lysosomes to degrade substrates. 
Blocking the combination of autophagosomes and lys-
osomes interrupts autophagic flux. Adipose-derived MSCs 
(ADMSCs) secrete EVs that contain miR-25-3p to enhance 
autophagic flux, thereby inducing neuroprotection [47]. In 
addition to EVs inducing intracellular autophagy, autophagy 
can regulate EV biogenesis and degradation. Notably, inhibi-
tion of ATG12–ATG3 formation changes MVB formation, 
disrupts late endosome trafficking and reduces exosome bio-
genesis [44]. In addition, a recent study demonstrated that 
EVs generated from damaged hepatocytes as well as sinusoi-
dal endothelial cells (LSECs) were capable of inducing HSC 
activation and migration, which aggravated liver injury [48]. 
The activation of HSCs (hepatic stellate cells) mediated by 
PDGF (platelet-derived growth factor) and SHP2 resulted in 
a reduction in autophagic flux due to increased fibrogenic 
EV release [49]. Moreover, SHP2 (tyrosine phosphatase-2) 
in HSCs suppressed REDD1 (DNA damage response 1) and 
activated the mTOR (mammalian/mechanistic target of rapa-
mycin) pathway to inhibit autophagy [49]. Thus, autophagy 
can eliminate MVs, and inhibiting SHP2-mTOR signalling 
might be a new strategy for treating liver fibrosis. All of 
this evidence suggests a link between autophagy and MVs, 
which may be helpful for understanding the progression of 
diseases and developing cures.

EVs and Necroptosis

Necroptosis refers to a form of regulated necrosis that 
proceed independent of caspase action and is mediated by 
receptor-interacting protein kinase 3 (RIPK3) together with 
mixed lineage kinase domain-like (MLKL) [50]. Similar 
to the apoptotic release of ApoBD, dying necroptotic cells 
also secrete EVs carrying pMLKL, ESCRT-III members and 
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other proteins, and the DNA content in these EVs is lower 
than that in apoptotic bodies [51]. Studies demonstrated 
that active MLKL is capable of inducing EV formation at 
sites where it accumulates in the plasma membrane, and 
MLKL deficiency attenuates EV formation [51–53]. MLKL 
is phosphorylated by RIPK3 and then is translocated to 
the plasma membrane where it oligomerizes to form 
pores that cause plasma membrane rupture. Yoon et al. 
reported that RIPK3-dependent MLKL phosphorylation 
and conformational changes are indispensable in MLKL-
mediated EV generation [54]. Thus, RIP kinases affect 
MLKL-mediated necroptotic EV biogenesis [51]. As we 
previously stated, EVs are able to mediate interactions 
among different cells; therefore, these findings prove that 
necroptosis may influence bioactivities in other cell by 
transporting EVs carrying active molecules. Shlomovitz 
et al. performed proteomic analysis on necroptotic EVs and 
found enriched ESCRT-III machinery and inflammatory 
signalling in EVs derived from necroptotic cells, and these 
proteins underwent phospholipid binding and vesicle-
mediated transport [55]. These results revealed the vesicle 
transport and cell-targeting machinery of EVs derived from 
necroptotic cells. More importantly, PS-exposed necroptotic 
cells can be phagocytosed by macrophages and are capable 
of triggering increases in the levels of secreted TNF-α and 
CCL2 (C-C motif chemokine ligand) that exceed those 
secreted from apoptotic cells [51, 55]. Shlomovitz’s findings 
may explain why necroptosis aggravates injury through 
inflammation: their EVs are transported to impact recipient 
cells in the microenvironment.

Additionally, EVs from other cell types may trigger 
or inhibit the necroptosis of target cells. Notably, the 
oncobacterium Fusobacterium nucleatum (Fn) is capable 
of secreting EVs that carry many harmful molecules to 
the intestine and have the ability to change microbe–host 
interactions, particularly disrupting epithelial homeostasis 
in UC (ulcerative colitis) [56, 57]. Liu et al. discovered 
that in macrophage/Caco-2 cocultures, EVs from Fn 
profoundly upregulated the expression of receptor-
interacting protein kinase 1 (RIPK1) and RIPK3, promoted 
the migration of RIPK1 and RIPK3 into necrosomes in 
Caco2 cells and thus facilitated epithelial barrier loss and 
oxidative stress damage [58]. This finding provides new 
insights into the toxic impact of bacteria on cells via the 
secretion of bacterial vesicles to mediate cell death and 
inflammation. In addition, hiPSC-MSCs (human-induced 
pluripotent stem cell-derived mesenchymal stromal cells)-
derived EVs exerted a therapeutic effect in renal I/R 
injury through the delivery of SP1 to targeted renal cells, 
where it activated the SP1–SK1–S1P signalling pathway 
to inhibit necroptosis [59]. The effect of the necroptosis 
inhibitor Nec-1 as a pretreatment was the same as that 
of a single dose of hiPSC-MSCs-EVs, which indicates 

that hiPSC-MSCs confer renal protection by inhibiting 
necroptosis not inhibiting apoptosis [59]. These discoveries 
proved an interaction between necroptosis and EVs, but 
recent studies are rare. Some key mechanisms, such as how 
active compounds in EVs are precisely transported to target 
cells, need to be researched further.

EVs and Pyroptosis

Pyroptosis is a newly discovered mechanism of cell 
death that depends on caspase and is accompanied by the 
release of inflammatory factors [60]. For a long time, 
pyroptosis has been considered a form of monocyte death 
mediated by caspase-1 in response to specific bacterial 
insults but has been recharacterized as gasdermin-
mediated programmed necrosis [60]. Pyroptosis is 
triggered in close association with inflammation, and 
EVs are considered pyroptotic inflammation mediators 
and biomarkers; therefore, we have assumed that EVs may 
be involved in pyroptosis [5]. Bacteria constitute the main 
cause of inflammation, and research has indicated that 
gram-negative bacteria-derived EVs induce pyroptosis 
by delivering LPS to the cytosol of recipient cells and 
inducing effector responses dependent on caspase-11 
[61]. Previous studies indicated that LPS can be detected 
only at the cell surface by TLR4 (Toll-like receptor 4). 
Sivapriya’s research revealed a mechanism by which LPS 
from these gram-negative bacteria enter the cytosol to 
activate the inflammasome [61, 62]. In addition to those 
derived from bacteria, EVs derived from cells are also 
able to transport signalling molecules to target cells to 
trigger pyroptosis. Notably, mechanical ventilation-
induced lung injury in preterm infants results from 
defective neurodevelopment, and Chavez et  al. found 
that EV circulation after ventilation-induced lung injury 
resulted in brain injury and defective neurodevelopment 
in preterm infants by activating caspase-1 and GSDMD 
[63]. In addition, EVs from TBI patients can induce 
pyroptosis in lung endothelial cells [64]. Nadine found 
that in TBI patients, the serum-derived EV number and 
ASC (apoptosis-associated speck-like protein) level 
were profoundly increased, and these abundant proteins 
activated inflammasomes while inducing endothelial cell 
pyroptosis when cocultured with HMVEC-L (human lung 
microvascular endothelial cells) in vitro [64]. However, 
only head trauma from gunshots has been proven to be a 
neural trauma, and whether these EVs isolated from TBI 
patient serum were from injured brain cells is unknown. 
In conclusion, the characterization of EVs can explain 
how an injured organ influences another organ that is 
not closely related to it, such as systemic inflammatory 
response syndrome (SIRS), and the induction of 
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inflammation. Future studies need to further explore the 
relationship between EVs and pyroptosis in different 
models of disease.

EVs and Apoptosis

Apoptosis is an autonomous and orderly cell death process 
controlled by genes, and it maintains a stable internal 
microenvironment. During apoptosis, cells undergo obvious 
morphological changes, and a dying cell is eventually 
disassembled into smaller fragments, that is, ApoBDs. 
ApoBDs are affiliated with EVs and were previously 
regarded as garbage bags containing genetic information 
and other substances from dying cells. Moreover, ApoBDs 
were considered to be biomarkers of apoptosis, but recent 
studies indicated that ApoBDs provide healthy recipient 
cells with necessary materials [65]. Billions of cells 
undergo apoptosis every day during normal development 
and homeostasis; as a result, many apoptotic bodies are 
generated [66]. This phenomenon suggests that apoptotic 
bodies may function in regulating tissue homeostasis. 
Apoptotic cells rarely accumulate under physiological 
conditions, which means that apoptotic cells undergo stable 
and rapid clearance [66]. Notably, macrophages, fibroblasts 
and specific phagocytes (Sertoli cells) can recognize and 
engulf apoptotic bodies to achieve apoptotic body clearance 
[67]. In one study, macrophages engulfed ApoBDs derived 
from MSCs, which triggered macrophage polarization 
towards the M2 phenotype to promote cutaneous wound 
healing [68]. Moreover, in Liu’s study, bone marrow 
MSCs were capable of engulfing apoptotic bodies to retain 
stem cell properties [69]. Systemic infusion of exogenous 
apoptotic bodies led to recycling of apoptotic body-derived 
RNF146 (the E3 ligase Ring figure protein 146) and miR-
328-3p to activate the Wnt/β-catenin pathway, thereby 
rescuing damaged bone marrow MSCs [69]. These results 
showed that apoptotic bodies mediate the direct regulation 
of the Wnt/β-catenin pathway to maintain MSC homeostasis 
[69]. Similarly, in bone remodelling, osteoclasts undergo 
apoptosis in each bone turnover cycle, which results in the 
production of a large amount of ApoBDs. A study revealed 
the biological role of osteoclast-derived ApoBDs in bone 
remodelling via activation of receptor activator of NF-κB 
ligand (RANKL) reverse signalling in preosteoblasts 
[70]. All the evidence suggests that phagocytes not only 
eliminate superfluous ApoBDs but also acquire active 
ApoBD contents to maintain tissue homeostasis. Despite 
the small number of studies focusing on ApoBDs, ApoBDs 
obviously function as pivotal messengers that are released 
by dying cells to regulate cell clearance, tissue homeostasis 
and various other processes, implicating them in potential 
therapeutic applications.

EVs and Ferroptosis

Ferroptosis is a recently identified iron-dependent cell death 
pathway that is activated by iron overload and lipid per-
oxidation [71]. It has been genetically demonstrated that an 
imbalance in glutathione (GSH) synthesis via inhibition of 
system  xc− (a cystine/glutamate antiporter containing subu-
nits SLC7A11) and glutathione peroxidase 4 (GPX4) leads 
to lipid peroxidation [72]. Iron overload induced by envi-
ronmental stress also triggers the excessive production of 
ROS (reactive oxygen species), causing further lipid peroxi-
dation [71]. Therefore, the regulation of iron overload and 
lipid peroxidation controls ferroptosis activation. Recently, 
some studies have reported on the relationships between the 
extracellular system and ferroptosis. Zhang et al. found that 
plasma exosomes from lung adenocarcinoma patients spe-
cifically reduced lipid peroxidation rates and desensitized 
lung adenocarcinoma cells to ferroptosis [73]. Moreover, 
exosomes containing miR-522 that originated from cancer-
associated fibroblasts (CAFs) blocked lipid ROS accumula-
tion by targeting ALOX15 (arachidonate lipoxygenase 15) 
and thus inhibited ferroptosis [74, 75]. In obesity-induced 
cardiac injury, macrophages infiltrate adipose tissues, and 
exosomes derived from adipose tissue macrophages induce 
ferroptosis via glutathione synthesis inhibition mediated 
by targeting solute carrier family 7 member 11 (SLC7A11) 
[76]. In addition, prominin 2 alleviates iron overload in 
ferritin-containing MVBs and exosomes to stimulate iron 
transport out of cells and thereby inhibits ferroptosis [77]. 
In addition, cells undergoing ferroptosis are capable of gen-
erating EVs that influence other cells. One KRAS (Kirsten 
rat sarcoma viral oncogene homologue) mutant,  KRASG12D, 
generated from tumour cells undergoing to autophagy-
dependent ferroptosis was loaded into exosomes, and these 
exosomes caused macrophages to switch and acquire an 
M2-like pro-tumour phenotype via STAT3-dependent fatty 
acid oxidation [78]. All this evidence indicates that EVs are 
closely related to the process of ferroptosis. Thus, EVs may 
function as promising targets to regulate ferroptosis.

Cell Death Regulated by EVs in the CNS Trauma 
Context

Role of Cell Death in CNS Trauma

CNS trauma includes TBI and SCI, with increased incidence 
in recent years. CNS trauma is classified into two stages: the 
primary injury and secondary injury stages. Primary injuries 
occur at the time of direct external impact to the brain or 
spinal cord, causing mechanical damage to tissue, including 
blood vessels, axons and neural cell membranes [12, 79, 80]. 
Secondary injuries, which are more complex and severe con-
sequences of CNS trauma, are described by the molecular, 
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chemical and inflammatory cascades critical to the damage 
induced after the initial impact [12, 79, 80]. Thus, focusing 
on secondary injuries in the progression of CNS trauma is 
important to elucidate the causes of aggravated CNS trauma. 
In secondary injuries, free radicals, inflammatory mediators 
and other active factors mediate cell death [81]. Because of 
the irreversible damage to nerve cells, cell death may aggra-
vate secondary CNS trauma injuries. Previous studies proved 
that programmed cell death, specifically apoptosis, may be 
involved in CNS injury [11, 12, 82]. Days or weeks after the 
initial trauma, oligodendrocytes may undergo cell suicide, 
another term for apoptosis, which impacts as many as 4 seg-
ments of a trauma site [12]. Although pathophysiological 
progression was previously attributed to ischaemia–reperfu-
sion, excitotoxicity and calcium overload, these mechanisms 
are ultimately the causes of apoptosis [83]. However, preced-
ing studies were rarely focused on the role of programmed 
cell death in CNS trauma due to limited understanding of 
programmed cell death. Recently, an increasing number of 
programmed cell death modalities have been discovered 
and have been proven to be critical factors in CNS trauma 
progression [11]. For example, the oxidative stress in dam-
aged tissues induces microglial and astrocyte activation and 
the release of proinflammatory mediators, which promote 
blood–spinal cord barrier (BSCB) disruption and neutro-
phil influx and infiltration and contribute to inflammation 
and subsequent neural cell death after spinal cord ischaemia 
[84]. The infiltration of neutrophils causes a novel type of 
cell death involving the release of NETs (neutrophil extra-
cellular traps) called NETosis, but this type of cell death 
has rarely been studied in the context of CNS trauma [85]. 
ROS produced after SCI cause pyroptosis, which further 
aggravates damage to the spinal cord [86]. Additionally, 
the production of downstream mature interleukin (IL)-1β 
and IL-18 triggers an inflammatory response [86]. Moreo-
ver, ROS profoundly affect ferroptosis. A study focused on 
how deferoxamine (DFO), which functions as a treatment 
to attenuate iron overload, affected SCI repair and revealed 
that DFO inhibited ferroptosis, which promotes functional 
recovery from SCI [11, 87]. This evidence demonstrated 
that ferroptosis does not favour SCI repair. As a self-deg-
radative process, autophagy is involved in SCI and helps 
to eliminate damaged organelles. Most studies show that 
the activation of autophagy exerts neuroprotective effects 
on injured spinal cord tissue, revealing the important role 
of autophagy in SCI [88, 89]. Autophagy may function as a 
protective factor after SCI, and inhibition of autophagy may 
aggravate SCI. Necroptosis is mediated by RIPK1, RIPK3 
and MLKL, which are regulated by intracellular signalling 
pathways, such as the caspase-independent pathway, and 
necroptotic cells exhibit the morphological characteristics 
similar to those exhibited by necrotic cells [90]. A previous 
study revealed that necroptosis contributed to neural cell 

death, and Nec-1 reduced functional and histopathological 
deficits in mice [11]. Necroptosis causes serious damage in 
injured spinal cords, and inhibiting necroptosis is a potential 
treatment of spinal cord injury. Similarly, previous studies 
proved that programmed cell death exerts the same effect 
as SCI in TBI [91–93]. These studies reveal that cell death 
may be an important cause of the tissue deterioration after 
CNS trauma.

According to previous studies, different types of cell 
death are mediated after CNS trauma in a time-dependent 
manner. For example, the levels of RIPK3 and MLKL 
obviously increase 6 h after TBI, while the levels of 
RIPK3 and MLKL protein increase markedly 1 day after 
SCI but decreased by 3 days after SCI [94–96]. These 
discoveries revealed that necroptosis follows a distinct 
temporal pattern in TBI and SCI. Similarly, the protein 
expression levels of pyroptosis markers, such as NLRP3 
(NOD-like receptor protein 3), ASC and caspase-1, were 
elevated 1 day after brain tissue was injured, peaked at 
3 days and gradually decreased over time after TBI [13, 
97]. NLRP3, ASC and caspase-1 levels were found to be 
increased at 3 days after SCI, but the specific temporal 
pattern of pyroptosis-related molecule level changes is 
unknown [98]. Reportedly, autophagic indicators such as 
LC3II and Beclin1 in the lesion area were increasingly 
expressed within 1 h after injury, peaked 2 h after injury 
and returned to normal levels 72 h later in a model of SCI 
contusion [99]. In the context of TBI, the expression of 
Beclin-1 was increased 1 h post-TBI and peaked at 6 h, 
while the expression of LC3-II was upregulated rapidly 
and peaked at 48 h in injured cortex and hippocampus 
[100]. In apoptotic cells, caspase 3 levels increased 6 h 
after injury, peaked at 12 h and then slowly declined 2 
weeks after SCI, while caspase 8 was expressed within 1 
h and the caspase 3 level increased within 6 h in model 
rats with TBI [101, 102]. In cells undergoing ferroptosis, 
iron overload was detected 1 h after SCI [103]. Transferrin 
protein expression remained elevated 1 and 3 days after 
injury and returned to baseline on day 7, while lipid ROS 
levels and MDA (malondialdehyde) concentrations were 
significantly elevated 6 h after injury, peaked on day 3 and 
returned to baseline on day 7 after TBI [104]. All this evi-
dence indicates that the programs in cells undergoing dif-
ferent types of death varied in terms of timing, and further 
experimental research is needed to investigate their simi-
larities and differences at different time points. Although 
many cell death pathways, such as apoptosis, necroptosis 
and autophagy, have been identified in the context of CNS 
trauma, the major cell death pathway contributing to the 
imbalanced microenvironment in tissues after CNS trauma 
is still unknown [71]. Additionally, different types of cell 
death were found to be mediated in different cell types 
after CNS trauma. Therefore, future studies are needed.
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Cell death is a complex process mediated by cell-to-cell 
communication. For example, it is known that the infiltra-
tion and recruitment of immune cells such as neutrophils 
and macrophages lead to the release of inflammatory fac-
tors, which induce neuronal death and demyelination [83]. 
These processes may involve interactions between EVs and 
target cells. Additionally, some studies have demonstrated 
that cells undergoing programmed cell death may release 
bioactive substances to induce the death of other cells via 
EV delivery; thus, necrotic neurons or brain cells may pro-
mote the death of other cells to aggravate the injury [37, 
51, 105]. The aforementioned evidence proved relationships 
between EVs and cell death; therefore, we believe EVs may 
play important roles in the regulation of cell death in patients 
after CNS trauma. We examined recent studies related to 
cell death in the CNS trauma context in which EVs were 
released with the aim of elucidating the regulatory mecha-
nisms underlying cell death and the roles of EVs in CNS 
trauma.

The Effects of EVs on Cell Death After TBI

TBI refers to disruptive brain function or other evidence of 
brain pathology resulting from the impact of an external 
physical force [106]. TBI has a yearly estimated incidence 
of 2.8 million cases in America; the mortality rates reach 
30–40%, and nearly 60% of patients experience profound 
physical, social and psychosocial deficits [79, 106]. Second-
ary injuries, which constitute the most complex and severe 
stage of TBI, refer to the molecular, chemical and inflam-
matory cascades critical to further cerebral damage after the 
initial; secondary injuries include cerebral oedema, neuron 
degradation, hypoxia and increased intracranial pressure 
(ICP) [80, 107].

Organ injury is usually accompanied by cell death, and 
previous studies have explained concrete details of cell death 
after TBI [108]. Cell death is closely related to complex 
signalling pathways and molecules and is mediated by cell-
to-cell communication. As mediators of cell communica-
tion, EVs are involved in the pathophysiological processes 
of cell death in the TBI context. Therefore, we examined a 
recent study that provided evidence of EV involvement in 
TBI. Reportedly, microcirculation in brains that are seriously 
damaged causes an increase in EV concentrations in the first 
24 h following TBI [109]. By using nanoparticle tracking 
analysis to analyse 17 TBI patients and 18 healthy controls, 
the EV concentration was found to be the highest 1 day after 
TBI, and the EV size in CSF (cerebrospinal fluid) was obvi-
ously increase on days 4–7 [110]. Moreover, EVs crossed 
the BBB into peripheral circulation and were isolated from 
nearly all bodily fluids, including blood and the CSF, and by 
assessing EVs collected in blood or CSF, the severity of TBI 
was determined [111–114] (Fig. 2). EVs easily pass through 

the BBB due to their lipid solubility and ability to recognize 
specific proteins. Additionally, substantial evidence suggests 
that the tau protein released by injured neurons is carried 
by exosomes, which may be critical to chronic traumatic 
encephalopathy and neurodegenerative disorders [115–117]. 
These results reveal the possibility that EVs are broadly 
involved in cell-to-cell communication after TBI. The pro-
duction of multiple EVs revealed active cell-to-cell com-
munication — that is, EVs were implicated in driving both 
processes of pathology and recovery in TBI throughout the 
disease progression period. In terms of pathology, secondary 
injuries after TBI are related to inflammation and ischaemia. 
As described in a previous study, the initial inflammatory 
response is associated with protective and beneficial effects, 
such as tissue debris clearing and protection against patho-
gens. Moreover, successive bouts of neuroinflammation are 
harmful, as they may lead to the pathological progression 
after TBI by exacerbating the primary injury, inducing pro-
gressive neurodegeneration and delaying cell death [118]. 
EVs may function as bridges connecting inflammation sig-
nalling between injured cells and bystander cells. Recent 
experimental and human studies have shown that EVs 
exhibit immune-activating properties and inflammation-pro-
moting activities by carrying and releasing numerous proin-
flammatory mediators, such as IL-6 and IL-1β, which may 
induce neuroinflammation under injury conditions [119] 
(Fig. 2). Notably, inflammasome activation is the reason for 
the release of EVs [120–122]. Inflammatory cascade-related 
inflammasomes, such as NLRP3, cause pyroptosis and the 
release of inflammatory cytokines critical for further injury 
in TBI (Fig. 2). Kumar and his colleagues found that micro-
glia-derived MVs containing elevated concentrations of pro-
inflammatory molecules such as IL-1β were released into the 
circulation following TBI via NLRP3 activation, inducing a 
systemic response and enhancing robust neuroinflammatory 
responses in the injured brain through microglial cell activa-
tion and increased expression of proinflammatory molecules 
[123] (Fig. 2). Proinflammatory cytokines induced inflam-
matory cell infiltration and exerted a detrimental impact on 
neurons (Fig. 2). Hazelton et al. demonstrated that peripheral 
inflammation was induced by manipulating the circulating 
EV population with ‘primed’ EVs to exacerbate CNS injury 
[124]. Inflammatory lesions in the brain activate a systemic 
acute phase response (APR) dependent on the release of 
EVs into the circulation, ultimately resulting in the regula-
tion of leukocyte mobilization and subsequent recruitment 
to the brain [124–126]. The characteristics of the response 
depend on the nature of the EVs. In addition, the EV load is 
protected from degradation, which makes these molecules 
perfect biomarkers of upstream events. Additionally, EV 
release induced by inflammasomes exerts functional effects 
on bystander cells. For example, EVs released via NLRP3 
contain IFN-β protein, which induced interferon-stimulated 
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genes (ISGs) in recipient macrophages and limited inflam-
masome responses in unprimed EV recipient macrophages 
[120]. This was an interesting finding. Evidence from the 
work of Kumar et al. shows that microglia-derived MVs 
containing elevated concentrations of proinflammatory 
molecules (e.g. IL-1β and miR-155) were released into 
the circulation following TBI, thereby inducing a systemic 
response and enhancing robust neuroinflammatory responses 
in the injured brain through microglial cell activation and 
increased expression of proinflammatory molecules [123]. 
Similarly, related research reported that platelet-inflam-
masome activation led to the generation of IL-1β- and 
caspase-1-carrying platelet EVs that bound neutrophils and 
promoted platelet-neutrophil aggregation in lung arterioles 
in SCD mice in vivo and in human blood via microfluidic 
assays performed in vitro [127]. Therefore, EVs that were 
generated by inflammasome signalling may transport inflam-
matory factors to target cells to further aggravate TBI. In 
addition, an encapsulated inflammasome may be transferred 
from an original cell to other cells, causing target cell death. 

Using immunoblot analysis, NLRP1 inflammasome proteins 
have been identified in exosomes derived from the CSF of 
patients with severe TBI [128]. NLRP1 has been previously 
demonstrated to be an activator of pyroptosis, and transport 
of the inflammasome may be a reason for injury to nearby 
healthy neurons [129]. Moreover, cells undergoing cell death 
under the impact of stress and ontological components pro-
duced by dead neurons may function as antigens to activate 
specific reactions (Fig. 2). These antigens are formed by 
cell fragments called damage-associated molecular patterns 
(DAMPs). Animal studies have shown that DAMPs, such as 
HMGB1 (high mobility group box-1 protein), are carried 
by EVs after TBI and function as inflammasome activators 
that contribute to the development of pulmonary dysfunc-
tion [64] (Fig. 2). Additionally, serum-derived EVs from 
patients with severe TBI contribute to acute lung injury by 
activating pyroptosis via an EV-mediated neural-respiratory 
inflammasome axis [64]. Due to their small size and lipid 
bilayer, EVs can pass through the disrupted BBB into the 
peripheral circulation and contribute to acute lung injury 

Fig. 2  The effect of EVs on cell death after TBI. (a) Neuron expe-
riencing cell death and rupture to release EVs containing DAMPs, 
which fuse with nearby neurons and induce pyroptosis. Microglial 
experiencing pyroptosis may release EVs containing cytokines and 

inflammasome to induce further neuroinflammation. (b) EVs pro-
duced from brain cells can be transported to other organs by the 
bloodstream. (c) Serum-derived EVs from TBI patients cause ALI
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after TBI. To some extent, this finding reveals the possibility 
that EVs from injured brain cells may induce cell death in 
bystander cells. Previous studies [130, 131] identified that 
EVs secreted by bacteria converged in a ubiquitous mecha-
nism contributing to inflammasome activation, but whether 
DAMPs in patients with TBI exhibit the same function 
remains unknown. To date, studies related to the pathology 
of TBI and EVs are rare, and future research is needed to 
further explore current challenges.

The Effects of EVs on Cell Death After SCI

Patients suffering a SCI use a wheelchair and suffer lifelong 
medical issues for more than 10 years. The yearly estimated 
rate of SCI is in a range from 250,000 to 500,000 individuals 
[132]. Thus, SCI destroys neurons, which places an eco-
nomic and physiological burden on patients. SCI refers to 
dysfunctions in motor, sensing and autonomic functions, as 
it exerts a comprehensive effect on various cell types (astro-
cytes, neurons, oligodendrocytes, microglia etc.) [132]. To 
some extent, patients with SCI experience primary injuries 
and secondary injuries in the same manner as patients with 
TBI, and a complete understanding of cerebral trauma and 
ischaemia ensures that we can better understand secondary 
events following the primary injury [12]. Although numer-
ous important studies on SCI have been reported, the patho-
physiology underlying SCI is still not well characterized.

Recent studies have suggested that EVs transport parent 
cell-specific EVs capable of changing recipient cell function 
within and beyond the CNS, thereby affecting secondary 
injury progression [1, 133]. Notably, damaged cells, blood 
vessels and axons are capable of releasing toxic chemicals 
to attack intact neighbouring cells, resulting in injury or 
death of nearby cells [12]. We assume that EVs transport 
these toxic chemicals. For instance, glutamate is a normal 
neurotransmitter that is released from the presynaptic 
membrane and binds to receptors on target neurons 
to stimulate impulses [12]. However, glutamate from 
damaged spinal neurons, axons and astrocytes overexcites 
neighbouring neurons [134] (Fig. 3). Overflowed glutamate 
may be encapsulated in EVs and transferred to cells to 
change the membrane potential (Fig.  3). Interestingly, 
Gosselin et al. found that astrocyte-derived EVs derived 
from astrocytes carry the functional glutamate transporters 
EAAT-1 and EAAT-2, which are important for maintaining 
low concentrations of extracellular glutamate via glutamate 
reuptake to maintain glutamate homeostasis [134] (Fig. 3). 
In a mouse model, exosomes from neurons were directly 
internalized by astrocytes and increased the astrocyte 
miR-124a level, which increased the level of GLT-1 (an 
EAAT-1 analogue in mice) protein levels [1] (Fig.  3). 
Neuronal dysfunction may decrease the release rate of 

miR-124a exosomes, causing dysfunctional glutamate 
transport. Dysfunctional glutamate transport after SCI 
may cause neurotoxicity. Overexcited cells allow waves of 
calcium ions to enter, leading to the production of many 
free radicals, such as ROS (reactive oxygen species) [12] 
(Fig. 3). As destructive bioactive components, ROS are 
critical to numerous modes of cell death, such as ferroptosis 
and pyroptosis [135, 136]. Reactive astrocyte-derived EVs 
enriched in small GTPases, proteins and miRNAs decrease 
neurite outgrowth and spike firing rates to inhibit neuronal 
function and may lead to neuronal apoptosis [1, 10, 137, 
138]. A study demonstrated that small EVs encapsulating 
CCL2 derived from activated astrocytes promoted neuronal 
apoptosis and aggravated inflammation by interacting 
with CCR2 (C-C motif receptor 2) on both neurons and 
microglia [139] (Fig.  3). Activated microglia release 
IL-1β, which not only induces inflammatory reactions but 
also exerts an impact on neuronal cells, thereby further 
aggravating neural apoptosis (Fig. 3). Neuroinflammation 
is another factor that contributes to the aggravation of 
SCI in secondary injury. Similar to TBI described in the 
literature, EVs isolated from human CSF of patients with 
SCI also contain inflammasomes [128]. This evidence 
suggests that inflammation may be linked with EVs and 
that EVs may function as signal transmission vehicles to 
activate pyroptosis. The nuclear factor NF-κB pathway is 
a typical proinflammatory signalling pathway that mainly 
depends on the effect of NF-κB on proinflammatory gene 
expression (chemokines, cytokines, adhesion molecules 
etc.) [140]. A study reported that exosomal miR-155 
derived from M1-polarized macrophages contributed to 
the EndoMT (endothelial-to-mesenchymal transition) 
and increased the generation of mitochondrial ROS in a 
model of SCI and then targeted downstream suppressor 
of cytokine signalling 6 (SOCS6) and suppressed the 
p65 ubiquitination and degradation mediated by SOCS6, 
thereby activating the NF-κB signalling pathway [36]. 
NF-κB is a signalling protein upstream of NLRP3, which 
is broadly involved in pyroptosis in numerous diseases [86, 
141, 142]. Liu et al. demonstrated that kaempferol was 
capable of downregulating the ROS-MAPK-NF-κB and 
pyroptosis signalling pathways, hence reducing oxidative 
stress and weakening the inflammatory response, which 
clarified the relationship between NF-κB and pyroptosis in 
neuroinflammation [143]. Therefore, we presume that EVs 
activate the NF-κB signalling pathway to trigger pyroptosis. 
However, recent papers have focused mainly on the 
potential of EVs to deliver therapeutic components and thus 
contribute to recovery after SCI, and few researchers have 
focused on the cell-specific signalling cargo function of EVs 
participating in the progression of secondary injury. Future 
studies are needed to examine EV-mediated crosstalk.
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Therapeutic Insights into EVs in the Context of CNS 
Trauma

Potential Cell Sources of Therapeutic EVs

As described in previous studies, EVs can profoundly facili-
tate the regulation of factors involved in SCI, which helps in 
gaining a deeper understanding of the pathophysiology of 
SCI as well as in developing various corresponding treat-
ment strategies. EVs are emerging as feasible candidates 
for the cell-to-cell transfer of bioactive contents to target 
cells. Despite the poor understanding of the different func-
tional properties by EVs or the mechanism of action asso-
ciated with parental cell type, diverse EV-related cargoes 
suggest a positive association between pleiotropic, comple-
mentary and/or synergistic effects and treatment results [1]. 
These findings reveal that the cell source of EVs may be a 

significant standard to consider during the development of 
EV-based treatment strategies specific to SCI and TBI.

MSCs are widely used to analyse therapies. MSCs are 
characterized by their differentiation potential, colony 
forming ability and self-renewal capacity [144]. MSCs are 
derived from adipose tissue, human umbilical cord blood, 
bone marrow etc. Initially, after injury, MSCs migrate to the 
damage site, undergo engraftment and differentiate into the 
cells needed for tissue regeneration, thereby exerting a thera-
peutic effect [145]. However, recent studies have revealed 
that MSCs may also repair damaged tissue by secreting bio-
active contents, such as growth factors, cytokines and EVs 
[146, 147]. Notably, EVs are promising nanocarriers used 
for drug delivery and targeted therapy and may replace direct 
stem cell transplantation treatment. Researchers have shown 
that MSC-derived exosomes support tissue regeneration 
specific to many central nervous syndrome diseases, such 

Fig. 3  The effect of EVs on cell death after SCI. EVs containing 
miR-124a secreted from normal neurons are able to upregulate astro-
cyte GLT-1 expression in mice, and EVs loaded with GLT-1 can 
maintain glutamate homeostasis. Glutamate that floods out of injured 
spinal neurons overexcites neighbouring neurons, causing superflu-
ous production of ROS and finally inducing ferroptosis and pyropto-

sis. EVs containing miR-155 from M1-polarized macrophages induce 
ROS production in neurons, which can cause ferroptosis and pyropto-
sis. EVs encapsulating CCL2 from activated astrocytes promote neu-
ronal apoptosis and aggravate inflammation by interacting with CCR2 
on microglia and neurons
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as stroke, spinal cord injury, TBI, Parkinson’s disease and 
Alzheimer’s disease [31, 148–151]. Given that transplanta-
tion of MSCs has potential risks, such as the formation of 
tumours, EVs derived from MSCs may be regarded as fea-
sible replacements of these cells [152]. It is easy to isolate 
EVs from MSCs of different origins, and these EVs carry 
biologically active molecules capable of being transferred 
to target cells where they can play roles in treatment, such 
as tissue injury regeneration, inflammatory response inhibi-
tion and immune system modulation. Additionally, MSC-
derived EVs are involved in the regulation of cell death after 
CNS trauma, which makes them suitable therapy carriers for 
injury repair (Table 1).

Another widely used EV-derived cell type in research is 
the neural stem cell (NSC). As the cells of CNS origin, NSCs 
are capable of self-renewing and generating neurons and 
glia during mammalian CNS development [165]. According 
to some studies, NSC transplantation can ameliorate 
neuroinflammation and enhance neuronal plasticity and cell 
replacement [166–168]. However, stem cell transplantation 
exhibits the disadvantages of a low survival rate, tendency to 
dedifferentiate, immune rejection and formation of malignant 
tumours [152, 169]. Therefore, researchers have focused on 

EVs secreted from NSCs, and NSC exosomes are capable of 
protecting neuronal function and accelerating neurocognitive 
impairment and repair of SCI [153, 170]. NSCs have been 
extensively researched in the context of CNS injury, and 
EVs from NSCs show the potential to promote neurologic 
recovery by regulating cell death (Table 1). To some extent, 
EVs are dependent on the cell type of their origin, and NSCs 
share a close relationship with neurons; therefore, features 
of the cells of origin may contribute to EV localization to 
target cells. Additionally, the functions of NSC exosomes 
are similar to those of transplanted NSCs, which solves the 
limitations of direct stem cell transplantation, making NSCs 
perfect sources of EVs.

Macrophages are innate immune cells involved in CNS 
injury. Macrophages infiltrating damaged tissue exhibit 
functions that differ from those of resident microglia and 
can mediate beneficial and detrimental effects following 
injury. Under the influence of cytokines, infiltrated mono-
cytes terminally differentiate into macrophages, which are 
classified into proinflammatory M1-like macrophages and 
anti-inflammatory M2-like macrophages [171]. As described 
in previous studies, M1-polarized macrophages induce the 
EndoMT while damaging mitochondrial function after 

Table 1  Relationship between cell death and EVs from different cell sources

Cell source Disease Regulatory effect on cell death Mechanism References

NSCs SCI Promote autophagy and inhibit apop-
tosis

Increase the expression of the autophagy 
marker proteins LC3B and beclin-1 
and promote autophagosome forma-
tion

[153]

NSCs Hypoxic-ischaemic brain injury Inhibit apoptosis Downregulate caspase-3 [154]
Astrocytes Ischaemic stroke Inhibit apoptosis Inhibit OGD-induced expression of 

caspase-3 and Bax
[155]

Astrocytes OGD Inhibit autophagy Act on the miR-7670-3p/SIRT1 axis [156]
Astrocytes OGD Inhibit autophagy and apoptosis Transfer miR-190b to inhibit OGD-

induced autophagy and neuronal 
apoptosis

[157]

MSCs TBI Reduce the apoptosis rate Suppress microglia/macrophage activa-
tion by inhibiting NF-κB and P38 
mitogen-activated protein kinase 
signalling

[158]

MSCs Myocardia injury Reduce the ferroptosis rate Suppress DMT1 expression mediated 
via miR-23a-3p

[159]

MSCs Liver injury Reduce the ferroptosis rate Increase OTUB1 which can deubiquit-
inate ubiquitinated SLC7A11

[160]

MSCs OGD Promote mitophagy and inhibit pyrop-
tosis

Increase FOXO3a expression to enhance 
mitophagy

[161]

Macrophages SCI Promote autophagy Inhibit the PI3K/AKT/mTOR signalling 
pathway

[162]

M2 BMDMs SCI Promote autophagy and inhibit apop-
tosis

Inhibit mTOR [163]

MSCs Acute kidney injury Inhibit apoptosis and necroptosis Suppress the phosphorylation of nuclear 
factor-κB, signal transducer and acti-
vator of transcription 3

[164]
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spinal cord injury, which means that the persistence of M1 
macrophages may aggravate the damage and impede cell 
regeneration [36]. In contrast, M2-like macrophages are 
capable of promoting cell proliferation and tissue growth, 
and EVs carrying a combination of nerve growth factor 
from M2 macrophages and curcumin promoted significant 
motor function recovery after SCI [172, 173]. EVs derived 
from M2 BMDMs (bone marrow-derived macrophages) or 
peripheral macrophages were able to increase autophagy and 
promote recovery after SCI [162, 163] (Table 1). These stud-
ies indicate that EVs from M2-like macrophages are poten-
tial therapeutic carriers in the context of CNS trauma. Some 
other cell types are also involved in CNS disease, but the 
scope of their therapeutic application is narrow. EVs derived 
from Schwann cells increased sciatic nerve axonal sprout-
ing and remyelination and thus were successfully used to 
treat rodent peripheral neuropathy [174]. The Schwann cells 
derived from skin precursors activated the AKT/mTOR/
p70S6K signalling pathway to enhance axonal outgrowth 
and motoneuron regeneration in an oxygen-glucose depriva-
tion (OGD) model [175]. Astrocytes, which are broadly dis-
tributed in brain tissue, have also been proven to be effective 
source of carriers in cell death [155–157] (Table 1). Even 
neuron-derived exosomes protected traumatically injured 
spinal cord via the inhibition of M1 microglia and astrocyte 
activation in vivo and in vitro [176].

Altogether, different cell source-derived EVs are effec-
tive in regulating cell death, such as autophagy, apoptosis, 
pyroptosis and ferroptosis, and promote injury repair, but 
few studies have established a positive role for EVs in organ 
injury by inhibiting necroptosis (Table 1). In some patho-
logical processes, EVs promote necroptosis and exacerbate 
tissue damage [58, 105]. Further research is needed to deter-
mine whether EVs derived from MSCs can alleviate damage 
by inhibiting necroptosis. In the future, studies are needed to 
compare the treatment effect and transport efficiency among 
EVs from these cell sources and then select the best cell 
type to use to generate EVs loaded with therapeutic cargo. 
It is also necessary to explore more efficient methods for EV 
separation and purification.

Therapeutic Use of EVs as Cargo Carriers

As perfect cargo carriers, EVs not only can carry therapeutic 
compounds but can also easily pass through the blood–brain 
barrier due to their lipid solubility. And receptors on EVs 
make it easier to cross blood–brain barrier or blood–spi-
nal cord barrier by recognizing specific protein while direct 
drug delivery lacks such advantage. One study showed that 
exosomes derived from brain cells that expressed brain-
specific surface proteins can cross the blood–brain barrier 
and deliver drugs to the other side [177]. This unique char-
acteristic suggests new avenues for CNS trauma treatment. 

Our review includes recent studies on the application of 
EVs in TBI and SCI to elucidate the feasibility of using 
EVs in CNS trauma therapy by inhibiting cell death. As 
effective gene-regulating factors, microRNAs are the most 
widely explored noncoding RNAs in exosomes, and they 
were found to be capable of targeting the 3′ untranslated 
region (UTR) of specific mRNAs to inhibit their translation 
in TBI models [178]. MicroRNAs are capable of modifying 
the recipient cell phenotype or physiology by modulating 
cellular processes related to proliferation, differentiation 
and cell death [179]. We list the roles of some microRNAs 
enriched in EVs and applied to TBI treatment in Table 2. 
MiR-873a-5p, the major component of exosomes derived 
from astrocytes, suppressed the NF-κB signalling path-
way to mediate microglial phenotype modulation, thereby 
attenuating the neuroinflammation mediated by microglia 
and enhancing neurological deficits following TBI [180]. 
Similarly, Exo-miR-124 treatment suppressed the TLR4 
pathway, thereby facilitating microglial M2 polarization as 
well as enhancing hippocampal neurogenesis and functional 
recovery after brain injury [191]. After TBI, the inhibition of 
neuronal inflammation mediated by miR-124-3p in micro-
glial exosomes promoted neuron outgrowth [181]. However, 
neuron-derived exosomes that contained high levels of miR-
21-5p triggered M1 microglial polarization; increased the 
levels of neuroinflammatory factors such as TNF-α, IL-6 and 
IL-β; and induced neuronal apoptosis [182]. These results 
revealed that regulation of the polarization of M1/M2 micro-
glia may be of great importance to inflammation control and 
functional recovery after TBI [192]. The treatment effect 
exhibited by miR-17-92 cluster-enriched exosomes derived 
from human bone MSC was much more robust, attenuating 
neuroinflammation, reducing the number of cells lost and 
enhancing angiogenesis and neurogenesis to greatly increase 
brain functional recovery [183]. Given that neuroinflamma-
tion is related to pyroptosis and necroptosis, miRNAs may 
be particularly useful to target genes involved in pyroptosis 
and necroptosis. Additionally, previous studies reported the 
downregulation of miR-212-5p in EVs after TBI, and the 
transfection of overexpressed miR-212-5p targeted Ptgs2 to 
reduce the rate of ferroptotic neuronal death, which dem-
onstrated that miR-212-5p may be a suitable cargo to block 
ferroptosis after TBI [193, 194]. In addition, miR-124-3p- 
or miR-21-5p-enriched exosomes conferred neuroprotection 
by inhibiting autophagy [184, 195]. MicroRNAs exert the 
same effects on SCI, as described in Table 2. Interestingly, 
astrocyte-derived EVs carrying NF-κB-interacting lncRNA 
(NKILA) competitively bound to miR-195 and upregulated 
nucleotide-binding leucine-rich repeat that contained family 
member X1 (NLRX1) to reduce neuronal injury after TBI 
and further inhibit cell apoptosis [185]. Moreover, lncRNA 
MALAT1 derived from adipose-derived stem cells (hASCs) 
exerted a regulatory effect on mRNA and ncRNA expression 
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during the inflammatory response and apoptosis and thus 
increased cell survival, MAPK pathway signalling and gene 
transcription [186]. LncRNAs (long noncoding RNAs) func-
tion through miRNA ‘sponges’ via miRNA response ele-
ments (MREs) to influence the expression of downstream 
target genes [196]. LncRNAs are thus excellent cargoes that 
impede the function of miRNAs that exacerbate injury dur-
ing pathophysiological progression after CNS trauma. Exo-
somal miR-155 from M1-polarized macrophages impaired 
mitochondrial function after SCI; therefore, we can acquire 
a specific lncRNA sequence, load it onto EVs and transfer 
it to injured cells to silence related miRNAs and promote 
functional recovery. However, few studies have identified the 
miRNAs carried by EVs that aggravate disease progression 
after TBI, and future studies are needed to further explore 
this field and identify key targets of lncRNAs.

Many studies have also investigated the methods of EV 
cargo modification by specific drug loading (Table 2). These 
drugs may lead to severe adverse reactions during systemic 
administration or be impeded from reaching target cells. EV 
injection may be an alternative way to locally release EVs 

into a damaged area. The advantages of EVs as vehicles to 
deliver drugs include their weak or none cytotoxic effects, 
small size enabling penetration deep into tissues, ability to 
be cleared rapidly via the mononuclear or reticuloendothe-
lial system and capability to penetrate the blood–brain bar-
rier [197]. Chen et al. demonstrated that FTY720-NSC-
Exos exerted a positive treatment in the context of SCI 
via PTEN/AKT pathway regulation [187]. FTY720 is a 
functional antagonist of sphingosine 1-phosphate recep-
tor-1 (S1P1) and shows the ability to effectively inhibit the 
inflammatory response, neuronal apoptosis and spinal cord 
oedema [187]. Some growth factors have been proven to be 
effective in promoting functional recovery after SCI, and 
loading growth factors into EVs may lead to a better cura-
tive effect [198, 199]. Han et al. demonstrated that TGF-β 
in EVs shows the potential to promote the differentiation 
of NSCs into neurons and recovery after SCI. Although 
previous studies have confirmed that TGF-β functions as 
cytokine against inflammation, inhibiting TGF-β expression 
in an early stage of injury may lead to destructive inflam-
mation, and the neuronal apoptosis rate in adjacent injury 

Table 2  Therapeutic mechanism underlying EVs as cargo carriers

EV cargo Cell source Disease Mechanism Effect References

miR-873a-5p Astrocytes TBI Inhibit the NF-κB signalling pathway Attenuate microglia-mediated neuro-
inflammation

[180]

miR-124-3p Microglia TBI Inhibit neuronal inflammation Promote neuron outgrowth [181]
miR-21-5p Neurons TBI Induce polarization of M1 microglia Aggravate neuroinflammation and 

neuron apoptosis
[182]

miR-17-92 Human bone MSCs TBI Reduce neuroinflammation and 
enhance angiogenesis and neuro-
genesis

Promote brain function recovery [183]

miR-124-3p Neurons TBI Inhibit the activity of neuronal 
autophagy by targeting Rab11a

Attenuate trauma-induced and 
autophagy-mediated nerve injury

[184]

NKILA Astrocytes TBI Bind to miR-195 and upregulate 
NLRX1

Inhibit cell apoptosis and alleviate 
neuronal injury

[185]

MALAT1 hASCs TBI Modulate inflammation-related 
pathways, cell cycle, cell death and 
regenerative molecular pathways

Promote recovery of motor function [186]

FTY720 NSCs SCI Regulate the PTEN/AKT pathway Inhibit the inflammatory response, 
neuronal apoptosis and spinal cord 
oedema

[187]

TGF-β MSCs SCI Upregulate Smad 6 which can inhibit 
BMP/Smad 1/5/8 signalling

Promote the differentiation of NSCs 
into neurons and the decrease apop-
tosis rate

[188]

NGF Primary M2 macrophages SCI Inhibit uncontrollable inflammatory 
response

Reduce neuronal cell apoptosis and 
promote the recovery of motor 
function

[172]

miR-421-3p M2 macrophages SCI Inhibit mTOR by binding to the 
3′UTR of mTOR mRNA

Attenuate apoptosis and promote 
motor function recovery

[163]

miR-381 MSCs SCI Inhibit the BRD4/WNT5A axis Rescue neuron apoptosis and promote 
recovery after SCI

[189]

miR-145-5p MSCs SCI Inhibit the TLR4/NF-κB signalling 
pathway

Inhibit apoptosis and the inflamma-
tory response

[190]
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lesions be increased. TGF-β in MSC-derived EVs applied in 
the early stage of injury upregulated Smad 6 expression in 
NSCs, and Smad 6 regulates negative feedback by inhibiting 
BMP (bone morphogenetic protein)/Smad 1/5/8 signalling, 
which can decrease cell death after neuronal injury [188]. In 
addition, NGF engineered EVs accumulated precisely at the 
injury site in SCI model mice to increase the level of matrix 
metalloproteinase 9 (MMP9), which inhibits the inflamma-
tory cascade response to reduce neuronal cell apoptosis and 
protect the spinal cord from secondary damage [172]. The 
results showed that EVs exerted a better curative effect than 
therapies delivered via direct administration. The key ques-
tion is how to deliver EVs to an injured region after EVs 
fuse with injured cells. Intranasal delivery can effectively 
target EVs to access CNS tissues [150, 197]. As shown in 
an ischaemic stroke model, according to in vivo CT imag-
ing of EVs labelled with gold nanoparticles, intranasal EV 
administration led to better EV accumulation than intrave-
nous injection [200]. There may be an association between 

the migratory mechanisms underlying intranasal EV trans-
port to CNS tissues and direct transport across the epithelial 
cell layer into the circulatory system and transport along the 
olfactory nerve [197]. We hope that future studies continue 
to explore the best method of EV delivery.

Acquisition of Therapeutic EVs

How to obtain targeted EVs carrying therapeutic genes 
or proteins has been a focus of EV therapy. Most of the 
previous experiments acquired high-throughput noncoding 
RNA-expressing EVs via target gene overexpression and 
then isolated purified EVs via ultracentrifugation [201, 
202] (Fig. 4). However, a given molecule overexpressed in 
a cell may lead to unpredictable consequences, ultimately 
interfering with EV biogenesis. Thus, a great deal of research 
has been focused on finding a new strategy to acquire target 
EVs, and these strategies have mainly involved bioengineering 
approaches. Native EVs are characterized by low levels of 

Fig. 4  Therapeutic methods of EVs as cargo carrier. EVs can obtain 
from MSCs, NSCs, macrophage etc. And then, there are two ways to 
acquire EVs containing effective contents: overexpressing the target 
gene or bioengineering approaches like electroporation, freeze-thaw 

procedures and sonication. Next, modifying the surface of EVs to 
better accumulated in injured tissues or organs through chemical or 
genetic approaches. Finally, administration of EVs to distribute in the 
target region
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accumulation in specific organs and tissues, difficulty in 
characterizing EV cargo and low expression levels of target-
active contents, but engineering approaches may overcome 
these defects and be used for developing superior EVs for 
CNS trauma applications [203]. Membrane-permeabilizing 
strategies, such as electroporation (of both nucleic acids 
and drugs), heat shock or freeze-thaw procedures, detergent 
treatment and sonication, are applied for loading cells with 
exogenous material, and they have been broadly used in the 
EV field with certain success [203–205] (Fig. 4). Additionally, 
engineering approaches can be used to modify the surface 
molecules on EV membranes, which can lead to changes in 
the affinity of EVs, thereby remodelling EV biodistribution 
and targeting them to accumulate in injured tissues or organs 
(Fig. 4). Modifying EVs with polyethylene glycol (PEG) 
enhances EV stability in circulation and increases their 
uptake by specific cells [206]. Alternatively, modification of 
EV membranes with specific proteins or peptides via viral 
transfection to modify gene expression or using chemical 
approaches is a strategy for increasing selective and effective 
organ or tissue targeting [203]. However, genetic approaches 
may change the biological activity of the EVs because of 
genetic manipulation, and chemical modification is difficult to 
implement. The modification of EV surfaces requires further 
research.

Conclusions and Perspectives

This review describes the biogenesis and contents of EVs, 
the relationships between EVs and cell death, the patho-
physiologic mechanisms of EVs action in the context of 
CNS trauma and the potential therapeutic application of 
EVs. Herein, we analyse the possibilities of applying EVs 
to patients with CNS trauma by regulating cell death. 
The pathological process underlying CNS trauma is very 
complex and is a result of multiple factors, which may be 
related to EVs. By analysing recent literature, we found 
a close relationship between EVs and cell death. EVs are 
able to induce cell death, and EVs carry substances that 
are released after cell death, such as death via autophagy, 
pyroptosis, necroptosis, apoptosis and ferroptosis, and 
exert an impact on the cell microenvironment. In addition, 
the activity of EVs can be observed in CNS trauma, and 
EVs function as bridges connecting different cells with 
cell death modalities. Furthermore, EVs obtained from dif-
ferent cells, such as MSCs and NSCs, are capable of inhib-
iting cell death in the context of CNS trauma, and EVs car-
rying specific cell death inhibitors via bioengineering or 
chemical modification are effective in promoting recovery 
after CNS trauma. Neuronal death with poor cell regen-
eration is closely related to irrecoverable function after 
CNS trauma. Therefore, understanding the pathological 

mechanism underlying EVs and cell death may lead to the 
development of better treatments for patients with CNS 
trauma.

However, multiple obstacles are waiting to be overcome 
before EV therapy can be applied in the clinic. Selecting 
suitable cells from which to extract EVs is extremely important 
for EV-based therapy. MSCs and NSCs have been the most 
widely used stem cells in recent studies. Comparing the 
therapeutic effects of EVs among different cells and choosing 
appropriate cell sources for EV production are becoming the 
priorities of future work. Finding new standardized isolation 
and purification methods is another challenge for the clinical 
application of EVs. The perfect separation method of EVs that 
can be used for mass production will benefit clinical research 
and drug development. Moreover, how EVs are precisely 
localized to a lesion is unknown. Changing the receptors on 
the surface of EVs to make them more likely to accumulate 
in a lesion seems to be achievable via bioengineering 
approaches. Notably, genetic approaches carry a risk of 
affecting the biological activity, and chemical approaches are 
difficult to implement; therefore, bioengineering approaches 
to modify EV surfaces need to be improved. In addition to 
bioengineering technology, biomaterials can be applied to 
repair injury after CNS trauma. Biomaterials such as hydrogel 
scaffolds are used to load therapeutic drugs, and they are able 
to promote functional recovery after CNS trauma. Therefore, 
EVs or EV-produced cells can adhere to the same scaffolds 
and be targeted to the injured area. This manual positioning 
method seems simple and feasible; therefore, research into 
this approach may be an effective way in localizing EVs to 
the lesion area. Solving the problem of EV distribution will 
contribute to the best curative effect. Research on EVs proves 
that the selection of biologically relevant EVs as therapeutic 
cargo will aid in the development of next-generation 
therapeutic methods targeting CNS-specific cell death 
pathways and inducing functional regeneration following 
CNS trauma.
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