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Abstract
Neurological diseases place a substantial burden on public health and have a serious impact on the quality of life of patients. 
Despite the multifaceted pathological process involved in the occurrence and development of these neurological diseases, each 
disease has its own unique pathological characteristics and underlying molecular mechanisms which trigger their onset. Thus, 
it is unlikely to achieve effective treatment of neurological diseases by means of a single approach. To this end, we reason that 
it is pivotal to seek an efficient strategy that implements multitherapeutic targeting and addresses the multifaceted pathologi-
cal process to overcome the complex issues related to neural dysfunction. In recent years, natural medicinal plant–derived 
monomers have received extensive attention as new neuroprotective agents for treatment of neurological disorders. Fisetin, 
a flavonoid, has emerged as a novel potential molecule that enhances neural protection and reverses cognitive abnormalities. 
The neuroprotective effects of fisetin are attributed to its multifaceted biological activity and multiple therapeutic mechanisms 
associated with different neurological disorders. In this review article, we summarize recent research progression regarding 
the pharmacological effects of fisetin in treating several neurological diseases and the potential mechanisms.
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Introduction

Neurological disorders, especially those in the central nerv-
ous system (CNS), are still one of the leading causes of 
mortality and disability worldwide. There is a substantial 
increase in the prevalence of neurological diseases with age 
and an acceleration of the aging population globally, which 
poses a serious challenge to global community health. There 
is growing evidence that a number of toxic insults, includ-
ing oxidative stress, trophic support loss, accumulation of 

protein aggregates, dysfunction of the neurovascular system, 
and immune system activation [1], have been identified as 
the main contributions to most neurological diseases. This 
multiplicity of insults and the possibility that each of these 
factors will have varying relative importance mainly depend 
on the individual [1]. In addition, most neurological diseases 
involve complex signaling pathways, making effective treat-
ment more difficult. To effectively curtail and alleviate these 
neurodegenerative diseases, it is vital to comprehensively 
understand multiple molecular pathways and unveil detailed 
molecular mechanisms involved in these diseases [2]. In 
general, most neurological disorders do not share a com-
mon mechanism that elicits their onset. Several molecular 
pathways contribute to their pathogenesis in addition to the 
primary mechanism [2, 3]. Therefore, the exhaustive inves-
tigation of compounds that direct at different targets and 
modulate multiple molecular mechanisms simultaneously 
is very necessary and urgent. Moreover, these compounds 
must target multiple pathological process. Thus, compelling 
research has focused on naturally derived, nontoxic biomol-
ecules from plants, such as flavonoids, for the treatment of 
neurological diseases.
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Flavonoids are a broad category the dietary plant-derived 
compounds that are consumed by the human beings as part 
of their diet. Importantly, these plants are easily accessible 
[4]. Due to the extensive and immense health benefits of 
flavonoids, people are becoming increasingly interested in 
the long-term effects of consuming flavonoid-rich plants. 
Until now, numerous studies have showed that flavonoids 
possess the broad potential therapeutic effects, including 
antioxidants, antiviral, anti-inflammatory, anticancer, anti-
bacterial, neurotrophic, neuroprotective, and immunostimu-
latory effects. Thus, flavonoids are also regarded as promis-
ing neuroprotective compounds that can aid in the treatment 
of prevalent neurodegenerative diseases [4, 5]. The flavonoid 
fisetin belongs to the class of flavonoids known as polyphe-
nolic compounds, which has been extensively studied by 
researchers as a result of its potential to target multiple path-
ways. In this review, we will focus mainly on the therapeutic 
efficacy of fisetin in multiple animal neurological disease 
models, including Alzheimer’s disease (AD) [6], Parkinson’s 
disease (PD) [7], Huntington’s disease (HD) [8], stroke [9], 
epilepsy [10], depression [11], glioma [12], amyotrophic 
lateral sclerosis (ALS) [13] and the neurological complica-
tions. Additionally, the detailed cellular mechanisms of fise-
tin in the treatment of neurological diseases are discussed. 
Finally, the neuroprotective potential of fisetin in treating 
neurological diseases is systemically summarized to better 
understand its therapeutic effects.

Fisetin Pharmacodynamics, Pharmacokinetics, 
and Toxicity

Fisetin, a bioactive natural hydrophobic flavonol, is broadly 
found in vegetables and fruits such as cucumber, onion, 
strawberry, apple, lotus root, kiwifruit, peach, tomato, and 
persimmon, as seen in the food-plant chemical composition 
table [14]. Based on some recent studies and numerous pre-
vious reports, increasing research attention has been given 
to fisetin’s pronounced pharmaceutical properties. To date, 
a growing body of evidence indicates that fisetin shares dis-
tinct biological and functional properties with a plethora of 
other plant polyphenols, exhibiting a wide range of pharma-
cological activities, including anticancer [15], antioxidant 
[16], anti-inflammatory [17], and neuroprotective properties 
[18], which are tightly associated with the pharmacothera-
pectic strategies for multiple diseases, including neurode-
generative disorders.

In general, the protective ability of the compounds is 
related to their chemical structures and substituents. As 
shown in Fig. 1, there are two aromatic rings in fisetin, 
which are connected by a 3-carbon-oxygenated heterocyclic 
ring, which has four hydroxyl substitutions and one oxo sub-
stitution. The structure consists of 6-hydrogen bond accep-
tors, 4-hydrogen bond donors, and one rotatable bond with 

one covalently bonded unit. The benzene structure without 
5-hydroxy group indicates they can protect DNA from sin-
glet molecular oxygen-induced single-strand breaks [19]. 
The hydroxylated C3, an unsaturated C ring, and hydro-
phobicity structure of fisetin can protect against exogenous 
glutamate [20]. The physiological effects of laccasein are 
closely related to the loss of electrons in the aromatic ring 
of its structure, preventing lipid peroxidation, scavenging 
oxygen radicals, binding glucuronides, and inhibiting ara-
chidonic acid. Due to these unique pleiotropic pharmaco-
logical properties, fisetin exhibits activities against various 
diseases, including cancer and neurological and inflamma-
tory diseases. Despite having the above pharmacological 
properties, the in vivo administration of fisetin remains chal-
lenging due to its poor aqueous solubility, high lipophilicity, 
extensive first-pass metabolism, and low oral bioavailability. 
Emerging studies indicate that oral bioavailability of fisetin 
is only 44% [21–23], resulting in low bioavailability and 
therapeutic effect in humans and animals. As a result, an 
effective, controlled release and safe fisetin-delivery systems 
for clinical use is urgently needed. Over a period of time, a 
variety of approaches, such as lipidosomes [24], cochleates, 
solid lipid nanoparticles, nano micelles, polymeric micelles, 
nano-emulsion, silica nanoparticles, co-crystals, cyclodex-
trins, and cyclosophoroase complexation, have been used 
to overcome solubility and bioavailability challenges [22]. 
These novel drug delivery options showed more evenly dis-
tributed fisetin in targeted tissues [10]. Regarding the treat-
ment of CNS diseases, the delivery of drug molecules to the 
brain is often precluded by a variety of physiological, meta-
bolic, and biochemical obstacles, such as the blood-brain 
barrier (BBB), blood cerebrospinal fluid barrier, and blood 
tumor barrier. Through a transfected Madin Darby canine 
kidney cell assay, Lapchak PA found that the BBB perme-
ability rate of fisetin was low [25]. Therefore, the rational 
design of polymer-based drug delivery systems is essential 
for the drug to enter the brain interstitium. Using these drug 
delivery techniques, fisetin can be rapidly diffused to the 

Fig. 1  Chemical structure of fisetin
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brain’s blood vessels, followed by a slower dispersion to the 
parenchyma [26]. This indicates that using the drug deliv-
ery techniques the BBB penetration rate of fisetin can be 
effectively enhanced. During pharmacokinetic studies, the 
Cmax and area under the curve are higher, and the average 
residence time of drugs in plasma is also increased [27, 28]. 
In addition, there was no pathological evidence of renal, 
hepatic, or other organs dysfunction after the administration 
of drug delivery system of fisetin [12, 28].

Pharmacological Effects of Fisetin in Treating 
Neurological Diseases

Fisetin and Alzheimer’s Disease

AD is the most common type of dementia. The neuropatho-
logic hallmarks of AD are extracellular neuroinflamma-
tory plaques containing amyloid beta(Aβ)peptide [6] and 
intracellular neurofibrillary tangles containing tau [29]. The 
clinical manifestation of AD is the progressive loss of cog-
nitive abilities, memory, and personality and visual-spatial 
confusion, which eventually leads to inability to perform 
daily functional activities. The current treatment for AD is 
only symptomatic and provides short-term improvements in 
cognitive function without halting the pathological progres-
sion of the disease.

Fisetin has been identified as a disease-related active 
small molecule [30] and plays a possible pharmacological 
role in neurodegeneration. The therapeutic effect of fisetin 
was investigated in APPswe/PS1dE9 double transgenic AD 
model mice aged 9 to 12 months [31]. The study showed that 
oral administration of fisetin can cause AD-related behav-
ioral and pathophysiological changes in an age-dependent 
manner, as demonstrated by the Morris water maze test. 
At 9 months of age, fisetin had no significant effect on the 
behavior of the wild-type mice in the acquisition task. In 
contrast, oral administration of fisetin to AD mice improved 
their learning ability and memory, and animal’s task per-
formance was almost the same as that of wild-type mice. 
To substantiate this hypothesis, mice were tested again at 
12 months to determine whether fisetin continues to reduce 
memory deficits. As expected, the test result showed that it 
takes longer time for AD mice to find the destination than for 
wild-type mice. In contrast, there was no significant differ-
ence between AD mice fed with fisetin and wild-type mice. 
The findings imply that fisetin exerts a potential preventive 
or therapeutic role in AD. The deposition of Aβ aggregates 
can cause synaptic dysfunction, tau hyperphosphorylation, 
and neurodegeneration, leading to cognitive impairment. 
To identify the effect of fisetin on the accumulation of Aβ 
and tau protein, Ahmad et al. injected Aβ1-42 (3μl/5min/
mouse) into the lateral ventricle of mice and concomitantly 
conducted intraperitoneal injection of fisetin (20 mg/kg/

day). Two weeks later, Aβ aggregation and tau hyperphos-
phorylation were significantly reduced [6], suggesting that 
fisetin exerts neuroprotection by suppressing Aβ and tau 
aggregation. This finding is consistent with the previous 
experimental results showing that fisetin can regulate alu-
minum chloride-induced Aβ aggregationand reduce the level 
of phosphorylated tau [32, 33].

Apart from the neuroprotection, several research groups 
have shown therapeutic effect of fisetin on AD through elec-
trophysiological changes [34]. Electrophysiology and multi-
unit activity (MUA) revealed that the relative spectral power 
of α and β declined along with the MUA count in aged rats 
compared to young. However, supplementing fisetin for 4 
weeks elevated the relative α-power, β-power, and MUA 
counts in aged rats. The findings demonstrated that fisetin 
prevents the aging-associated decline in relative spectral 
power of α, β and linked MUA in the cortex and behavioral 
alterations. These results provide further support for the idea 
that fisetin could be useful for the treatment of AD.

Fisetin and Parkinson’s Disease

PD is the second most prevalent progressive neurode-
generative disorder after AD [29] and is characterized 
by long-lasting depletion of striatal dopamine caused by 
the loss or degeneration of DA neurons in the substantia 
nigra (SN) of the midbrain. The clinical characteristics 
of PD include resting tremor, bradykinesia (slowness of 
movement), rigidity, and postural instability. Until now, 
no curative treatment for PD is available although exist-
ing treatments such as deep brain stimulation surgery 
and pharmacotherapies including levodopa monoamine 
oxidase B can alleviate some symptoms. Based on the 
molecular pathology of PD, it is crucial to seek an effi-
cient multitherapeutic strategy to treat this complex dis-
ease. Since flavonoids have a wide range of biological 
activities, some of these have been identified specifically 
in the context of PD [35] using in vitro and in vivo PD 
models. As for the potential therapeutic effects of fla-
vonoid fisetin in vitro models of PD, primary mid-brain 
neurons or cell line, such as PC12 cells, have been used 
for in vitro study of fisetin activities. Intriguingly, fise-
tin can significantly suppress neuronal cell degeneration 
and death by PD-relevant insults such as rotenone [7, 27, 
34] and MPTP/MPP+ [36–38]. These studies suggest that 
fisetin likely has a potential protective effect on PD by 
attenuating cytotoxic insults. In addition, Kumar et al. 
[27] used a self-nanoemulsifying drug delivery system 
(SNEDDS) to identify the neuroprotective activity of fise-
tin in rotenone-treated rat PD model. Fascinatingly, they 
found that fisetin can effectively ameliorate the behavio-
ral alterations. In light of current data, we speculated that 
fisetin may prevent neurodegeneration and can be utilized 
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as neuroprotective agent against PD. Nevertheless, it is 
necessary to further investigate the underlying mechanism 
by which fisetin exerts its neuroprotective activities of in 
the complex physiological context of PD.

Fisetin and Huntington’s Disease

HD, a late-onset, progressive, and inherited neurodegener-
ative disorder, is caused by an expansion of a trinucleotide 
repeat that encodes an abnormally long polyglutamine tract 
in the huntingtin protein. Hitherto, no effective therapy has 
been identified. Since HD is an inherited neurodegenera-
tive disorder, gene-based therapies such as a reduction in 
the expression of the abnormal huntingtin gene by anti-
sense oligonucleotide and small interfering RNA (siRNA) 
may be an effective therapy. Nevertheless, there are still 
several issues to be resolved for their use in the treatment 
of HD, including their epigenetic memory, mismatch gene 
mutation, and tumor-forming risk. Thus, complex pharma-
cotherapies might be a promising option for treating HD. 
At the present, fisetin biological activity has been identi-
fied in several different models of HD including PC12 cells 
expressing mutant Httex1, Drosophila expressing Httex1, 
and R6/2 mice [8]. In an in vitro experiment, fisetin was 
added to PC12 cells pretreated with 5uM ponasterone (PA) 
to express the entire Htt exon 1 fused to EGFP. The results 
showed that fisetin significantly increased cell survival in 
a dosedependent manner, and the maximal effective doses 
were 5 to 10 μM. Interestingly, fisetin at 10 μM for 24 h 
provided equal or greater protection. In contrast, the pre-
treated with 5uM PA resulted in ~45% cell death within 
72 h. The data suggest that fisetin could reduce or elimi-
nate the effect of Httex1-103QP already present in cells. 
In addition, fluorescence microscopy also confirmed this 
conclusion, and a similar number of EGFP-labeled Httex1-
103QP aggregates could be seen in PA-treated PC12 cells 
with or without fisetin [8].

Given the positive results with fisetin in the cell-based 
assay, it was subsequently tested in mammalian R6/2 
mouse model of HD. Oral administration of fisetin sig-
nificantly ameliorated neurological deficits of R6/2 mice, 
improving animal performance and prolongating lifespan 
from 104 to 139 days [8]. These results indicate that fisetin 
can attenuate the effect of mutant Huntington protein in 
variety of HD models, highlighting that the potential ther-
apeutic effect of fisetin in treating HD is likely attributed 
to its antioxidation, neurotrophic, and neuroprotection. 
These interesting findings have an important implication 
for utilizing flavonoid-based treatments for HD patients. 
Although the molecular mechanism needed to be inves-
tigated, these data provided important insights for future 
clinical applications.

Fisetin and Stroke

Stroke, including ischemic stroke and hemorrhagic stroke, 
is an acute neuro-deficit disease with high disability rate. 
Ischemic stroke, a common type of stroke, occurs when the 
normal blood supply to an area of the brain is disrupted. 
Hemorrhagic stroke is mainly due to bleeding into the brain 
by a sudden rupture of vessel. Hematoma usually causes 
oligemia, neuro-transmitter release, mitochondrial dysfunc-
tion, and cellular swelling. In addition, thrombin released 
from blood activates microglia and causes inflammation and 
edema. In ischemic stroke, high levels of low-density lipo-
protein (LDL) and cholesterol constitute a major risk factor 
for atherosclerotic plaques that can easily form embolisms 
and block blood vessels. Thus, it is critical to reduce LDL 
and cholesterol levels to prevent stroke occurrence. An early 
study found that fisetin, as a natural anti-atherosclerosis 
component in the diet, can effectively prevent LDL oxidation 
and reduce oxLDL [39]. This finding has attracted increas-
ing attentions to the application of fisetin for the treatment 
of ischemic stroke.

Emerging data from in vitro and in vivo studies indi-
cate that fisetin possesses neuroprotection and consider-
ably reduces the infarct area following ischemia stroke. For 
the study of neuroprotective capacity of fisetin, Dajas et al. 
used PC12 cells and a permanent focal ischemia (permanent 
middle cerebral artery occlusion-p MCAO) model [40] and 
treated PC12 cells with hydrogen peroxide and flavonoid 
fisetin of different concentration. Their result showed that 
fisetin significantly attenuate the decrease of cell viability 
caused by hydrogen peroxide. In addition, they adminis-
tered fisetin to rat model of focal ischemia-induced brain 
injury through the intraperitoneal route [41]. Consistent 
with the in vitro studies, fisetin promotes the recovery 
of focal ischemia-induced brain injury in rats. This find-
ing shows that fisetin has multiple beneficial actions that 
reduce ischemia-induced brain damage. Notably, compared 
with aqueous formulation of fisetin, liposomal preparation 
of fisetin was more beneficial and neuroprotective in focal 
ischemia experiments.

Moreover, fisetin was also found to exert neuroprotective 
effects in the temporary middle cerebral artery occlusion 
stroke model [42]. The researchers first developed a mouse 
model of temporary middle cerebral artery occlusion by the 
intraluminal filament method and intraperitoneally injected 
fisetin 20 min before the onset of ischemia. Inspiringly, a 
significant, dose-dependent protective effect of fisetin on 
stroke infarct size was observed, and animals immediately 
injected with fisetin before the onset of ischemia showed 
a trend towards smaller infarcts than those of the control 
placebo animals. In comparison, the delivery of higher 
dose of fisetin (50 mg/kg) resulted in a significantly smaller 
infarct infarct size. More importantly, fisetin still retained its 
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protective capabilities even when injected 3 h after the onset 
of ischemia [42]. On the basis of the findings, the use of 
flavonoid-rich plant is capable of preventing ischemic stroke, 
mitigating the symptoms, and promoting early recovery.

In general, the resulting outcomes of severe stroke are 
deterioration of consciousness and neurological dysfunc-
tion. The development of brain tissue injury in stroke is 
accompanied by inflammatory response, disruption of the 
BBB, edema, overproduction of free radicals such as reac-
tive oxygen species (ROS), glutamate-induced excitotoxic-
ity, and release of hemoglobin and iron [9]. Among them, a 
number of clinical and animal studies have highlighted that 
the inflammatory response greatly contributes to the severity 
of brain damage and numerous sequelae after stroke [43]. 
Therefore, effectively antagonizing inflammatory responses 
may be a promising treatment strategy to facilitate functional 
recovery after stroke. Regarding the anti-inflammation of 
fisetin following stroke, one study focused on the effect of 
fisetin on early brain injury(EBI)after subarachnoid hem-
orrhage (SAH), a fatal subtype of stroke in rats [43]. The 
main findings of this study are as follows: (1) intraperito-
neal delivery of high dose (50 mg/kg) of fisetin significantly 
attenuated EBI and improved neurological function after 
SAH; (2) fisetin significantly reduced the production of pro-
inflammatory cytokines; and (3) the neuroprotective role of 
fisetin might be associated with the suppression of TLR 4/
nuclear factor-κB (NF-κB)-mediated inflammatory signal-
ing pathway. Due to a multifaced pathological process after 
SAH, cerebral hemorrhage might cause neuroinflammation 
in aged mice [44], and the neuroprotection of fisetin against 
cerebral ischemia-reperfusion injury is mediated by inhibit-
ing oxidative stress and inflammatory factors [9]. Although 
the precise mechanism(s) by which fisetin exert neuropro-
tective role during ischemia injury remains to be elucidated, 
the anti-inflammatory properties of fisetin are responsible, 
at least in part, for the mechanisms underlying the observed 
cellular events.

Fisetin and Epilepsy

Epilepsy is characterized by abnormal and frequent electri-
cal activity in the brain. Epilepsy occurrence is intimately 
associated with severe brain injury. In addition, stroke and 
central nervous system infections cause seizures and epi-
lepsy. In general, administration of antiepileptogenic drugs 
following acute brain insults has certain curative effect on 
late epilepsy. Nevertheless, the proper choice of disease 
models and target populations is extremely difficult in 
screening desirable drugs for treatment of epilepsy. Cur-
rently, an iron-induced experimental model of traumatic 
epilepsy is widely used to study the effect of antiepilep-
togenic agents [45]. To date, it has been shown that fise-
tin prevents the development of iron-induced epileptic 

electrophysiological activity, and corresponding MUA 
records also showed that the pretreatment with fisetin 
resulted in significantly decreased MUA counts [45]. The 
data highlights the fisetin as a useful antiepileptogenic agent 
for treatment of epilepsy. Inflammation and apoptosis cas-
cade activation are serious neurological sequelae during 
seizures. Fisetin, as a flavonoid molecule, is considered for 
its effective anti-inflammatory and anti-apoptotic properties. 
Thus, these properties are indicative of probable antiseizure 
activity of fisetin. As a result, an increasing number of stud-
ies have been performed to investigate the antiseizure activ-
ity of fisetin. The study of experimental epilepsy experiment 
is usually divided into two stages (acute and chronic) [10]. 
For the acute study, increasing current electroshock (ICES) 
and pentylenetetrazole (PTZ)-induced epilepsy tests were 
conducted. For the chronic study, the kindling model was 
established by the administration of PTZ at subconvulsive 
dose. Concomitantly, animals were treated with fisetin at 
different dose. The results showed that fisetin administration 
increased the epilepsy threshold current (STC) in the ICES 
test, implying fisetin neuroprotective effect [10, 45]. Like-
wise, in PTZ-induced epileptic model mice, administration 
of fisetin increased the latency for myoclonic jerks and gen-
eralized seizures, and in an induced kindling model, fisetin 
dose-dependently suppressed the development of kindling, 
downregulated mRNA expressions of the inflammatory mol-
ecules NF-κB, and COX-2, and reduced the neuronal dam-
age in the experimental animals, which supports the poten-
tial of fisetin to prevent electrically induced seizures [10]. 
The data suggest that fisetin plays a critical role in seizure 
events and epileptogenesis by inhibiting neuroinflammatory 
cascade. Additionally, these studies offer a rationale that the 
fisetin inhibition of the NF-κB signaling pathway could be 
an important target for inflammation-linked disorders.

Fisetin and Depression

Depression is the leading cause of disease-related disabil-
ity, which impairs quality of life in patients. Depression is 
usually associated with both neuropsychiatric SLE [46] and 
inflammation [47]. Depression commonly occurs due to the 
insufficient concentration of neurotransmitter (NT) in mon-
oaminergic synapses. The imbalance of monoamine NTs 
might cause depressive illness. Currently, the treatments for 
depression and anxiety conditions are based on pharmaco-
therapy and cognitive behavioral therapy. A vast body of evi-
dence supports the antidepressant effect of fisetin. Yu et al. 
evaluated the effect of fisetin against lipopolysaccharide and 
restraint stress-induced behavioral deficits and found that 
pre-treatment with fisetin (orally) at different dose for 7 days 
could reverse lipopolysaccharide (LPS)-induced increase in 
immobility time in forced swimming and tail suspension 
tests [47]. Moreover, at a higher dose, fisetin decreased the 
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overexpression of pro-inflammatory cytokine mRNA and 
nitrite levels through modulation of NF-κB. Further stud-
ies showed that the antidepressant effects of fisetin involved 
modulation of the serotonergic system [48] by reducing 
serotonin metabolism, possibly through mild inhibition of 
monoamine oxidase A, which metabolizes serotonin, lead-
ing to amelioration of the comorbidly behavioral symptoms 
of depression.

In addition, fisetin has been shown to produce the antihy-
peralgesic effect after repeated treatment and prevent chronic 
neuropathic pain-induced depressive-like behavior in a dose-
dependent manner [46, 48]. Mechanistically, it was shown 
that fistein is likely to activate serotoninergic 5-HT1A recep-
tors and exert both antihyperalgesic and antidepressant-like 
effect [48]. Fisetin also appeared to have an impact on the 
number of senescent nerve cells in lupus model mice with 
depression-like behavior [46]. Neurochemical observation 
showed that doses of 5 and 10 μM fisetin decreased the frac-
tion of SPiDER-b-Gal–positive senescent Neuro-2a cells in 
the CA3 region of the hippocampus [46], which is associated 
with depression.

Fisetin and Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) is an age-related neu-
rodegenerative disorder characterized by progressive degen-
eration of upper and lower motor neurons in the brain and 
spinal cord that supply voluntary muscles. Although ALS 
has genetic and environmental triggers, the exact cause of 
ALS is still unknown. It has been assumed that glutamate-
induced excitotoxicity is one of the possible causes of com-
plex pathogenesis since excess glutamate in the synapse or 
extracellular space is transported into neuronal and glial 
cells via glutamate transporter 1 (GLT-1) [13]. ROS are 
another factor that enhances the occurrence of ALS. Due 
to mutations in the gene encoding superoxide dismutase 
(SOD1), the ability of neuronal cells to scavenge ROS is 
impaired, leading to oxidative stress [45]. It has been shown 
that Copper/zinc SOD1 gene mutation is linked with ALS 
pathogenesis. Regarding this point, researchers have used 
three different hSOD1-related mutant models drosophila 
expressing mutant hSOD1-G85R, hSOD1-G93A in NSC34 
cells to investigate whether mutant hSOD1 actively contrib-
utes to ALS pathogenesis [13]. The results are in accord-
ance with what was expected. It is thus acknowledged that 
the pathological mechanism of ALS might correlate with 
the glutamate and oxidative stress–induced cell death. The 
antioxidant, anti-inflammatory, and antiapoptotic properties 
of fisetin may aid the survival of motor neurons. Oral admin-
istration of fisetin (9 mg/kg/day) to 2-month-old SOD1-
G93A transgenic mice effectively improve motor functions 
by delaying motor deficits [13]. In addition, the delivery of 
fisetin significantly promotes the survival of motor neurons 

in the spinal cord [13]. This flavonoid also suppressed the 
progression of ALS and increased patient survival. The neu-
roprotective effect of fisetin against ALS is likely mediated 
at least partially through activation of ERK phosphoryla-
tion and upregulation of HO-1, GPx, and catalase to reduce 
oxidative stress [1, 35]. In addition, this flavonoid preserves 
mitochondrial SOD1 and counteracts mitochondrial DNA 
breaks. As a result, fisetin functions as an ideal agent to 
prevent the development of ALS.

The Mechanisms Underlying of Neuroprotective 
Effect of Fisetin in Neurological Diseases

Several lines of research literature elucidate multiple 
molecular signaling pathways by which fisetin participates 
in beneficial health effects in humans and animal models of 
neurological disorders. The critical mechanisms underlying 
fisetin’s role in neurological diseases are discussed below.

Antioxidant and Chelating Activity

Oxidative stress (OS) disrupts the chemical integrity of mac-
romolecules and increases the risk of neurological damage 
[49, 50]. Neural cells’ death from oxidative stress has been 
studied with a variety of inducers, including exogenous glu-
tamate, d-galactose, LPS, and rotenone [51–54]. Fisetin is 
a relatively suitable flavonoid that exhibits potent antioxi-
dant properties and protects nerve cells from OS [16, 18, 
20, 55]. It decreases the level of oxidative stress markers 
LPO and protein carbonyl [56, 57]. Pro-oxidant effects of 
fisetin at high concentrations have been reported. In con-
trast, in the tunicamycin (Tm)-mediated PC12 cell model, 
fisetin (<20μM) restored cell viability and inhibited apopto-
sis, autophagy, and ROS production [58]. In addition, fisetin 
reduced iron-induced lipid peroxidation in epileptic animals 
[45]. This activity might be related to the ability of fisetin 
to efficiently chelate iron [59]. Iron exhibits multiple oxida-
tion states and is therefore redox active. This oxidation state 
of iron property is critical for biological activity including 
generation of hydroxyl radicals (–OH), ROS such as highly 
reactive hydroxyl radical, via the Fenton reaction. By chelat-
ing iron, fisetin could effectively reduce the harmful effects 
of oxidative stress and deleterious effects of iron accumu-
lation in the brain, implying that fisetin chelating activity 
might play a pivotal role in its beneficial neuroprotective 
effects.

Regulation of Inflammatory Cytokines

Neuroinflammation is one of the important mechanisms 
involved in the progression of neurodegenerative diseases 
such as AD, PD, HD, stroke, and ALS. Numerous scientific 
studies have showed that inflammation may promote the 
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progression of these neurological disorders. Microglial cells, 
once activated, are involved in the inflammatory response, 
promoting the release of pro-inflammatory cytokines and 
chemokines and NF-κB protein [60]. They modulate the 
activity of inducers, sensors, transducers, and effectors, 
which trigger neurodegenerative mechanisms, resulting in 
neuronal dysfunction and death. Several studies suggested 
a potential neuroprotective and anti-inflammatory role of 
flavonoid-rich extract. Fisetin attenuated neuroinflamma-
tory responses by suppressing the activation of microglial 
cells and the production of TNF-α and IL-1β [60, 61]. Other 
research groups have demonstrated a fisetin-mediated inhibi-
tory effect against pro-inflammatory cytokines (e.g., TNF-α, 
IL-6, and IL-12) in macrophages and dendritic cells [17, 
62]. The production of inflammation mediators, including 
TNF-α, IL-1β, and iNOS, in the brains of mice was sig-
nificantly reduced after fisetin treatment [63]. Furthermore, 
fisetin is also known to reduce the neurological parameters 
and inflammatory cytokines TNF-α, IL-1β, IL-6 IL-1, iNOS, 
COX-2, and PGE2 [9, 44] in the brains of stroke patients. In 
particular, in a flavonoid mixture, it was reported that fise-
tin blocked NLRP3 inflammasome activation by promoting 
mitophagy in cerebral microvascular endothelial cells and 
possessed the greatest inhibitory effects against the secre-
tion of IL-1β into the CNS, reducing neuroinflammation and 
contributing to the amelioration of cognitive impairment 
[64]. From these data, the inhibition of neuroinflammation 
emerges as the main protective mechanism of fisetin against 
neurodegenerative disease processes.

Maintenance of GSH

Glutathione (GSH) is one of the most powerful intracellular 
antioxidant [23]. GSH and GSH-associated enzymes provide 
the major defense against oxidative and other forms of toxic 
stress to protect cells from damage [51]. In addition, as part 
of the major redox couple in cells, GSH plays a central role 
in maintaining cellular redox homeostasis [65]. Fisetin is a 
flavonoid that exhibits potent antioxidant properties and pro-
tects the cells against oxidative stress. The antioxidant activ-
ities of fisetin protect the neural cells from apoptotic degen-
eration. In general, oxidative damage directly or indirectly 
accelerates development of AD, PD, HD, and ALS. GSH 
is a reducing factor that prevents the excessive oxidation of 
sensitive cellular components. More importantly, GSH also 
influences protein structure and activity through changes in 
thiol-disulfide balance. Therefore, GSH levels are associ-
ated with cell survival. Several data have shown that fisetin 
antioxidant effects are due to enhancement of GSH synthesis 
to inhibit the production of ROS and reduce oxidative dam-
age, eventually leading to rat cortical neurons survive and 
neurite extension [66]. Moreover, fisetin can regulate the 
level of GSH. A study on the ability of fisetin to protect mice 

from aluminum chloride toxicity showed that oral adminis-
tration of fisetin at 15 mg/kg could greatly reduce the loss 
of total GSH from both the cortex and hippocampus [67]. It 
has also been proposed that fisetin can increase GSH levels 
either by enhancing the influx of cysteine and/or by boost-
ing the activity of GCL (glutamate cysteine ligase) [23, 51]. 
Accordingly, the maintenance and generation of GSH by 
fisetin are likely to be among the mechanisms underlying its 
neuroprotective effect of fisetin.

Restoration of Synaptic Proteins

Synapse dysfunction has been shown to adversely affect 
neuronal connections and nervous system functions. Direct 
evidence for an age-related decline in synaptic transmission 
is attributable to a shift in the balance between synaptic plas-
ticity. This reduction in plasticity precedes neural death in 
several neurodegenerative diseases, contributing to cognitive 
decline. In addition, exposure to the neurotoxic environmen-
tal contaminant methylmercury (MeHg) during pregnancy 
severely affects synaptic transmission and plasticity in the 
brain of developing offspring [67]. For example, iron homeo-
stasis is continuously kept under the physiological condition. 
Once the balance of certain iron of release and uptake is 
dysregulated, cell degeneration and apoptosis occur. Several 
evidence have also shown that fisetin can control the homeo-
stasis of  Zn2+ release from synapses and uptake by adjacent 
neurons. More uptake over release will progressively lead to 
toxic concentration, causing neuronal death [68]. Likewise, 
the aggregation of α-synuclein is also linked to neurological 
disorders [36]. For example, α-synuclein aggregation leads 
to neuronal death and affects the course of PD and other 
related diseases. However, fisetin can attenuate the expres-
sion level of α-synuclein and promote neuroprotection [36]. 
The dysregulation of synaptic proteins at both pre-synaptic 
and post-synaptic junctions elicits pathological changes in 
several neurodegenerative diseases. Fisetin can facilitate 
the maintenance of synaptic function and resist cognitive 
decline and neurological disorders. Several studies showed 
that fisetin treatment significantly reversed synaptic dysfunc-
tion by increasing the levels of presynaptic (SYN and SNAP-
25) and postsynaptic proteins (PSD-95, SNAP-23, p-GluR1 
(Ser 845), p-CREB (Ser 133), and pCAMKII (Thr 286)) 
and ultimately improved mouse memory [6, 69]. In another 
study, dizocilpine (MK-801) caused disruption of N-methyl 
d-aspartate receptors in rat model, leading to cognitive and 
memory decline [69]. Fisetin treatment can reverse these 
deficits of hippocampal synaptic plasticity and improve 
memory [70]. In addition, fisetin has ability to inhibit α-Syn 
fibrillation [71]. On the basis of the above data, it can be 
inferred that fisetin can improve synaptic dysfunction and 
memory by regulating synaptic proteins, synaptic transmis-
sion and plasticity, and α-synuclein aggregation.
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Modulation of CREB

Learning and memory are controlled by the transcription 
factor cAMP-response element-binding protein (CREB), 
which interacts with the cAMP-response element in the 
promoter region of genes that encodes the corresponding 
proteins. Activation of CREB by phosphorylation is depend-
ent on ERK activation. Fisetin treatment activates ERK and 
induces CREB phosphorylation, promoting long-term poten-
tiation [72, 73]. In addition, fisetin upregulates gene expres-
sions of CREB, and improves cell viability in the main brain 
areas related to recognition and memory [73], thus improv-
ing learning and memory abilities.

Regulation of PI3K/Akt Signaling Pathway

The PI3K/Akt pathway plays a pivotal role in apoptosis, 
survival, and angiogenesis [74, 75]. Fisetin upregulates the 
expression of the endogenous antioxidant HO-1 by activat-
ing of the PI3K/AKT signaling pathways in microglia [61], 
attenuating oxidative stress and inflammatory responses. 
Similarly, fisetin upregulated PI3K expression and phospho-
rylation of Akt [76, 77]. In a detailed study, pretreatment 
with fisetin obviously upregulated the high glucose-inhibited 
expression of BDNF, GDNF, Syp, and Gria1; attenuated 
LDH release and malondialdehyde (MDA) overproduc-
tion; and increased SOD activity in HT22 cells [51, 78]. 
In addition, the decreased phosphorylation of PI3K, Akt, 
and CREB was rescued by fisetin treatment. These findings 
indicate that fisetin has potent neuroprotective effect and 
prevents HG-induced neurotoxicity by activating the PI3K/
Akt/CREB pathway [78]. Consistently, in SH-SY5Y cells, 
fisetin treatment increased cell viability by upregulating 
Bcl-2 and p38/JNK-MAPK and activating PI3K, Akt, and 
GSK-3β signaling pathways [79]. Collectively, these results 
suggest that PI3K/Akt signaling pathways contribute, at least 
partially, to fisetin-induced neuroprotection against various 
insults.

Regulation of NF‑κB Signaling Pathway

The nuclear factor kappa-light-chain-enhancer of activated 
B cells (NF-κB) signaling pathway has a remarkable role in 
pathologic conditions. The effects of fisetin on this pathway 
have been investigated in several cancer cell lines, includ-
ing human lung adenocarcinoma H1299 cells, human Bur-
kitt lymphoma Daudi cells, and human embryonic kidney 
A293 cells [17]. The data showed that fisetin inhibits TNF-
induced IκBα degradation, NF-dependent IκBα phospho-
rylation and ubiquitination, TNF-induced IκBα kinase acti-
vation, p65 phosphorylation and its nuclear translocation, 
NF-κBdependent anti-apoptotic gene expression (cIAP1/2, 
survivin, Bcl-2, XIAP, Bcl-xL, and TRAF-1), and expression 

of cyclin D1, c-Myc, COX-2, MMP-9, VEGF, and intercel-
lular adhesion molecule-1 (ICAM-1), implying the modu-
latory effect of fisetin on this pathway [80]. In another 
study, it was shown that fisetin can counteract human brain 
microvascular endothelial cells apoptosis caused by MMP-9 
treatment or overexpression of COX-2 through the inhibition 
of the NF-kB pathway [81]. In addition, fisetin treatment 
significantly ameliorated lipopolysaccharide and restraint 
stress-induced behavioral deficits through suppression of 
NF-κB and IDO-1 (indoleamine 2,3-dioxygenase) activa-
tion, indicating fisetin as a nutraceutical for the management 
of inflammation-associated neurological disorders [11]. In 
a recent study, fisetin was found to decrease the phospho-
rylation of IκBα, p65, JNK, p38, and MEK and reduce the 
nuclear translocation of NF-κB p65 [17]. The regulation of 
NF-κB signaling by fisetin is likely to be involved in its neu-
roprotection against inflammation-associated neurological 
disorders.

Regulation of p38MAPK Pathway

The NF-κB and p38 mitogen-activated protein kinase 
(MAPK) signaling pathways have been shown to play a criti-
cal role in the expression of proinflammatory cytokines and 
iNOS in glia cells [60]. Using LPS-stimulated BV-2 micro-
glia cells, fisetin inhibits neuroinflammation by suppressing 
IκB degradation, nuclear translocation of NF-κB, and phos-
phorylation of p38 MAPK [60]. Fisetin inhibits microglia 
activation through modulating p38 phosphorylation levels, 
resulting in the activation of its downstream signaling mol-
ecules, which subsequently attenuates inflammation-associ-
ated microglia activation and coordination defects in mice 
[61]. Experimentally, fistein treatment of RAW264.7 mouse 
macrophage cells decreased the activation of the NF-κB and 
MAPK signaling pathways [6]. This suggests that fisetin 
contributes to abrogation of inflammatory responses and 
progressive neuronal cell death.

Regulation of ERK Signaling Pathway

The ERK signaling pathway controls diverse cellular pro-
cesses such as proliferation, differentiation [82], and sur-
vival. Fisetin is one of the flavonoids that has been found 
to activate ERK signaling in rat hippocampal slices, and 
enhance object recognition in animals [72]. Also, fisetin has 
been documented to prevent the development of learning 
and memory deficits by modulating ERK phosphorylation 
and reducing protein carbonylation [31]. Similarly, fisetin 
restored ERK1/2 in MK-801-treated rats [70]. In addition, in 
three different models of HD, fisetin reduced the impact of 
mutant huntingtin and activated ERK [8], causing improve-
ment of psychiatric, cognitive, and motor functions. Via 
the Akt/Erk signaling pathway, fisetin inhibits aggressive 
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astrocyte phenotype, which result in abortion of astrocyte 
migration and proliferation [77]. Furthermore, in mutant 
hSOD1 ALS models, fisetin upregulates the expression of 
antioxidant factors to inhibit oxidative damage and DNA 
break damage by enhancing phosphorylated ERK [13].

Regulation of Nrf2 Signaling Pathways

Nuclear erythroid 2-related factor 2 (Nrf2) is a key regulator to 
defense and survival against endogenous and exogenous stress. 
It has been found that fisetin reduces the levels of phosphoryl-
ated tau through the autophagy pathway activated by TFEB and 
Nrf2 [33]. Treatment of diabetic neuropathy rats with fisetin 
caused a progressive improvement of motor nerve conduction 
velocity and improved sciatic nerve blood flow deficits. Molec-
ularly, it also reduced the levels of IL-6 and TNF-α, which are 
closely associated with suppression of the Nrf2 and NF-κB 
signaling pathways [83]. Additionally, fisetin induced the 
expression of HO-1, GCL, and cystine/glutamate transporter 
(xCT/SLC7A11) through activation of the Nrf2, MAPK, and 
SIRT1 cellular stress response pathways, which restored cell 
viability and represses cell apoptosis, autophagy, and ROS pro-
duction to protect neuronal-like catecholaminergic PC12 cells 
from Tm-induced cytotoxicity [58]. Apart from these, fisetin 

decreased MDA, reduced the activity of glutathione peroxi-
dase (GPx), and activated the Nrf2-antioxidant response ele-
ment pathway following traumatic brain injury [84]. Recently, 
Hassan and Zhang et al. [85] found that fisetin translocated Nrf2 
into the nucleus and dramatically increased the expression of 
downstream HO-1 gene by inhibiting the degradation of Nrf2 
at the post-transcriptional level. Although these data provide a 
molecular mechanism for understanding the cellular antioxidant 
activity of fisetin [16, 85, 86], the details mechanism of action 
of fisetin still needs to be further investigated.

Prospects

Fisetin and quercetin are two of the most common plant fla-
vonoids that are present in many fruits and vegetables. The 
anti-cancer, anti-inflammatory, and antioxidant effects of 
these flavonols are related to their ability to inhibit apoptosis 
and mediate cell cycle arrest. A growing number of in vivo 
and in vitro experiments have shown that fisetin has the 
potential to maintain brain function and protects neuronal 
cells from various damages. The unique features of fisetin 
appear to orchestrate the molecular signaling for many pro-
cesses related to neuroprotection in a coordinated fashion 
through the modulation of related signaling pathways. A 

Fig. 2  Schematic diagram of the potential mechanism underlying the 
neuroprotective effects of fisetin against neurological disease. The 
bioactive potential of fisetin has been highlighted in the modulation 
of different neuroprotection related signaling pathways such as PI3K/

Akt, CREB, p38MAPK, NF-κB, and Nrf2, which are associated with 
a variety of cell events. All these events are crucial in preventing or 
inhibiting the initiation and progression of neurological diseases
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profound understanding of the different molecular biological 
characteristics of fisetin is very important for utilization at 
the appropriate stage for specific clinical neurological dis-
eases. Moreover, this review also provides new insights for 
elucidating the mechanism of these therapeutically active 
flavonols. Although this review highlights the modulatory 
potential of fisetin in different signaling pathways, such as 
Akt, Nrf2, ERK, p38MAPK, and NF-κB pathway, a detailed 
and dedicated outline of the therapeutic potential of fisetin 
in treating neurological health complications is still needed. 
In short, the underlying mechanisms by which fisetin exerts 
its neuroprotective role in the treatment of neurological dis-
eases are illustrated in Fig. 2. Based on the aforementioned, 
fisetin, as novel therapeutic agent for neurodegenerative dis-
ease, may possess excellent clinical prospect in the future.
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