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Abstract
Repeated neonatal exposures to sevoflurane induce long-term cognitive impairment that has been reported to have sex-dependent 
differences. Exercise promotes learning and memory by releasing lactate from the muscle. The study tested the hypothesis that 
lactate may improve long-term cognitive impairment induced by repeated neonatal exposures to sevoflurane through SIRT1-
mediated regulation of adult hippocampal neurogenesis and synaptic plasticity. C57BL/6 mice of both genders were exposed 
to 3% sevoflurane for 2 h daily from postnatal day 6 (P6) to P8. In the intervention experiments, mice received lactate at 1 g/
kg intraperitoneally once daily from P21 to P41. Behavioral tests including open field (OF), object location (OL), novel object 
recognition (NOR), and fear conditioning (FC) tests were performed to assess cognitive function. The number of 5-Bromo-2′- 
deoxyuridine positive (BrdU+) cells and BrdU+/DCX+ (doublecortin) co-labeled cells, expressions of brain-derived neurotrophic 
factor (BDNF), activity-regulated cytoskeletal-associated protein (Arc), early growth response 1 (Egr-1), SIRT1, PGC-1α and 
FNDC5, and long-term potentiation (LTP) were evaluated in the hippocampus. Repeated exposures to sevoflurane induced 
deficits in OL, NOR and contextual FC tests in male but not female mice. Similarly, adult hippocampal neurogenesis, synaptic 
plasticity-related proteins and hippocampal LTP were impaired after repeated exposures to sevoflurane in male but not female 
mice, which could rescue by lactate treatment. Our study suggests that repeated neonatal exposures to sevoflurane inhibit adult 
hippocampal neurogenesis and induce defects of synaptic plasticity in male but not female mice, which may contribute to long-
term cognitive impairment. Lactate treatment rescues these abnormalities through activation of SIRT1.
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Introduction

There is accumulating evidence that early exposures to anes-
thetic agents may interfere with brain development, ultimately 
leading to cognitive deficits in both rodents and non-human 
primates [1-4]. The Mayo Anesthesia Safety in Kids (MASK) 
study suggested that children with multiple exposures to 
anesthesia/surgery did not have significant reductions in their 
intelligence quotients but developed impairments in processing 
speeds and fine motor abilities [5]. Several lines of evidence 
from animal studies have indicated that repeated exposures 
to inhalation anesthetics induced long-term neurobehavio-
ral abnormalities later in life [6-9]. Mechanically, neuronal 
apoptosis [10], neuroinflammation [11], oxidative stress [12], 
mitochondrial dysfunction [8], and dysregulation of histone 
acetylation [13] are implicated in this process. However, the 
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specific mechanisms that underlie pediatric anesthetic neuro-
toxicity remain to be elucidated. Therefore, it’s urgent to inves-
tigate the exact mechanisms and therapies to prevent neonatal 
general anesthesia-induced cognitive impairment.

The adult hippocampal neurogenesis is a process that the 
hippocampus recruits several thousand new dentate granule 
cells (DGCs) into existing neural circuits per day occurred in 
the adult mammalian brain [14-17]. A great number of studies 
have suggested that the DGC recruitment is essential for nor-
mal cognitive function [18-21]. Adult hippocampal neurogene-
sis confers plasticity to the mature brain and thus contributes to 
learning and memory processes [22]. Exercise was reported to 
promote learning and memory formation by promoting neuro-
genesis [23, 24]. Notably, lactate is a molecular released after 
exercise by the muscle, which could cross the blood–brain 
barrier (BBB) [25] and support neuronal energy demands 
[26]. In addition to serving as an energy source for the brain, 
an increasing body of evidence has indicated that lactate 
may serve as an intercellular signaling molecule involved in 
synaptic plasticity [27, 28]. The mechanism is independent 
of serving as an energy substrate, but through increasing the 
expressions of synaptic plasticity-related genes, including 
activity-regulated cytoskeletal-associated protein (Arc), early 
growth response 1 (Egr-1) and brain-derived neurotrophic fac-
tor (BDNF) in neurons [29]. Whether lactate treatment could 
improve long-term cognitive impairment induced by repeated 
exposures of neonatal mice to sevoflurane remains unknown.

SIRT1 is a nicotinamide-adenine dinucleotide 
(NAD+)-dependent histone deacetylase (HDACs) that 
plays critical roles in diverse biological processes, including 
chromatin remodeling [30], DNA repair, cell survival [31], 
differentiation [32], apoptosis [33], autophagy [34], and 
neurogenesis [35]. It was reported that SIRT1 can regulate 
Sox-2 and Oct-4, which is critical for neuronal survival and 
neurogenesis [36, 37] and is essential for normal cognitive 
function and synaptic plasticity [38]. In addition, exercise 
was shown to significantly increase the expression of SIRT1 
in the hippocampus [39]. These findings suggest that SIRT1 
may mediate the neuroprotective effects of lactate on adult 
hippocampal neurogenesis and synaptic plasticity. There-
fore, we hypothesized that lactate treatment improves long-
term cognitive impairment induced by repeated neonatal 
sevoflurane exposures through SIRT1-mediated regulation 
of adult hippocampal neurogenesis and synaptic plasticity.

Materials and Methods

Animals

All animal experiments were carried out with the approval 
from the Laboratory Animal Care and Use Commit-
tee of Southeast University (Ethical permission code: 

20,210,301,071). Male and female C57BL/6 mice were used 
in the study. At postnatal day 6 (P6), mice from each litter 
were randomly assigned to control and treatment groups. 
Mice were housed under controlled illumination (12-h light/
dark, lights on at 7:00 a.m.) and temperature (24 ± 1 °C) with 
free access to food and water.

Anesthesia

From P6 to P8, mice in the sevoflurane groups were placed 
in an acrylic anesthesia chamber received 3% sevoflurane 
(30% oxygen/air) for 2 h a day for 3 consecutive days and 
the body temperature was maintained by a heating blanket 
set to 37 °C during anesthesia. The total gas flow was set 
to 2 L/min. At the end of the exposures, mice were main-
tained in oxygen on the heating blanket for about 30 min 
until the pups recovered and displayed righting reflexes. 
Then the pups returned to their dams, where they remained 
until weaning at P21. The mice breathed spontaneously, and 
the concentrations of sevoflurane and oxygen were measured 
continuously (GE Datex-ohmeda, Tewksbury, USA). Pups 
in the control group received 30% oxygen/air at 2 L/min in a 
similar chamber. The schematic timeline of the experimental 
design is shown in Fig. 1.

Experimental Design

The mice were exposed to 3% sevoflurane (30% oxygen/
air) for 2 h a day from P6 to P8. Behavioral tests were per-
formed by open field test (OFT), object location test (OLT), 
novel object recognition test (NORT), and fear conditioning 
(FC) from P42 to P45. After that, the mice were sacrificed 
to collect hippocampal tissue to detect the protein levels by 
western blot. To evaluate the effect of repeated exposures of 
neonatal mice to sevoflurane on adult hippocampal neuro-
genesis, the mice received two intraperitoneal injections of 
5-Bromo-2′- deoxyuridine (BrdU) (100 mg/kg, i.p.; Sigma, 
USA) 8 h apart on P42. To examine proliferation of neural 
progenitor cells (NPCs), mice were sacrificed 24 h after 
the second injection; to examine neuronal differentiation, 
mice were sacrificed 1 week after BrdU injection. The dose 
of BrdU and the detection time points were based on the 
previous studies [40, 41]. In addition, 5 to 6 weeks after 
exposures, the hippocampal slices (P42 to P49) from the 
another set of the mice not subjected to the behavioral tests 
were prepared to record hippocampal long-term potentia-
tion (LTP) to evaluate synaptic plasticity. In the interven-
tion experiments, L-lactate (Sigma, USA) at 1 g/kg was 
injected into mice intraperitoneally once daily from P21 to 
P41 according to previous studies [40, 42], while mice in 
the saline groups received an equal volume of saline at the 
same time.
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Open Field Test

To examine the exploratory locomotor activity, the OFT 
was conducted at P42 in a white opaque plastic chamber 
(40 cm × 40 cm × 40 cm) in a quiet, dimly lit (30 lx) room. 
Each mouse was placed facing the wall of one corner of 
the arena (called the release corner) and left to explore for 
10 min, which was automatically recorded by a video track-
ing system (Noldus, Netherlands). Arenas were cleaned 
with 70% ethanol between trials.

Object Location Test and Novel Object Recognition 
Test

The object location test (OLT) and novel object 
recognition test (NORT) were performed at P43 to assess 
spatial and non-spatial hippocampal memory, respectively. 
Two identical objects were placed in the open-field box 
described above. During the training phase, each mouse 
was placed in the box facing the wall of the release 
corner and left to explore the two identical objects near 

Fig. 1   Schematic timeline of the experimental design. The mice 
were exposed to 3% sevoflurane for 2  h daily from postnatal day 6 
(P6) to P8. Behavioral tests were performed by OFT (P42), OLT and 
NORT (P43), and FC (P44-P45). After that, the mice were sacri-
ficed to collect hippocampal tissue to detect protein levels by west-
ern blot. To evaluate the effect of repeated neonatal sevoflurane 
exposures on adult hippocampal neurogenesis, the mice received 
two intraperitoneal injections of BrdU(100 mg/kg; i.p.) 8 h apart on 
P42. To examine NPC proliferation, mice were sacrificed 24 h after 

the second injection; to examine neuronal differentiation, mice were 
sacrificed 1  week after BrdU injection. In another set of mice not 
subjected to the behavioral tests, the hippocampal slices (P42-P49) 
were prepared to record LTP to evaluate hippocampal synaptic plas-
ticity. In the intervention experiments, lactate at 1 g/kg was injected 
into mice intraperitoneally once daily from P21 to P41. The behav-
ioral tests, expressions of proteins, adult hippocampal neurogenesis 
and hippocampal LTP were evaluated at the indicated time points as 
described above
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2 non-release corners for 10 min. Then the mice were 
returned back to their home cages. 1 h later, one of the 
objects was moved to a new non-release corner. The mice 
were placed in the modified box to explore for 5 min 
to fulfill the OLT and then return to their home cages. 
After 1 h, the mice were subjected to the NORT. The 
procedure was the same as in the OLT except that one 
novel object was substitute for one familiar object that 
was not moved during the OLT. The exploration behavior 
was automatically recorded with a video tracking system 
(Noldus, Netherlands). Only mice that investigated the 
objects for at least 10 s were taken into data analysis. 
The recognition index refers to the time spent exploring 
the novel location or object relative to the time spent 
exploring both objects.

Fear Conditioning

Fear memory was measured by fear conditioning (FC) 
experiments. The mice were trained in a conditioning 
chamber at P44. After a 3 min baseline period, three tone-
footshock pairings (tone,30 s, 80 dB, 2 kHz; footshock, 
2 s, 0.5 mA) separated by 1 min intervals were delivered. 
Contextual fear conditioning (a hippocampus-dependent 
task) was assessed 24 h after training by placing the mice 
back to the same chamber for 5 min without tone pres-
entation or footshock, during which the freezing behav-
ior was scored. 2 h later, the auditory-cued fear test (a 
hippocampus-independent task) was performed in a novel 
chamber (i.e., a different shaped chamber, no grid floor). 
In the novel chamber, the mice were allowed to explore 
for 3 min and then the training tone was delivered for 
another 3 min. The freezing behavior was scored dur-
ing the second 3 min. Freezing behavior, defined as the 
absence of all visible movement of the body, except from 
movement necessitated by respiration, was scored and 
expressed as percentage of the observation period.

Western Blot

The hippocampal tissue was harvested and subjected to 
Western bolt analysis which were performed as described 
previously [43]. Briefly, the samples were homogenized 
using 1 × radioimmunoprecipitation assay (RIPA) buffer 
(Beyotime, China) containing protease inhibitors and phos-
phatase inhibitors. Protein concentration was determined 
by BCA protein assay kit (Beyotime, P0010, China). Pro-
teins were separated on 4–20% SDS-PAGE gels (Tanon, 
China) and then transferred to polyvinylidinene fluoride 
(PVDF) membranes (Millipore, USA). Membranes were 
blocked with 5% bovine serum albumin for 1 h at room 
temperature (RT). And then the membranes were incubated 
at 4 °C overnight with the following primary antibodies: 

rabbit anti-BDNF (1:1000; Abcam, ab108319), rabbit 
anti-Arc (1:1500; Abcam, ab183183), rabbit anti-Egr-1 
(1:1000, Abcam, ab133695), rabbit anti-SIRT1 (1: 1000; 
Abcam, ab189494), mouse anti-PGC-1α (1: 5000; Protein-
Tech, 66,369–1-Ig), rabbit anti-FNDC5 (1: 1000; Abcam, 
ab174833) and mouse anti-GAPDH (1:10,000; Protein-
Tech, 60,004–1-Ig). After washing in TBST for three times, 
the membranes were probed with horseradish-peroxidase-
conjugated goat anti-rabbit (1:8000, Bioworld, BS13278) 
or goat anti-mouse IgG antibody (1:8000, Bioworld, 
BS12478) for 2 h at RT. The membranes were developed 
by enhanced chemiluminescence substrate (Tanon, China) 
and exposed onto X-ray film. Protein bands were quanti-
tated by Image J software (National Institutes of Health, 
USA).

Immunofluorescence

Mice were deeply anesthetized with 1% sodium pentobarbi-
tal in saline (60 mg/kg, i.p.; Sigma, USA) and subsequently 
perfused transcardially with phosphate-buffered saline 
(PBS, PH 7.4) followed by 4% paraformaldehyde (PFA) 
dissolved in PBS. Brains were then removed, postfixed in 
4%PFA for 2 h at 4 °C, and dehydrated in 30% sucrose. After 
that, the brains were embedded in optimal cutting tempera-
ture (O.C.T.) compound, rapidly frozen and cut coronally 
at thickness of 30 µm with a microtome-cryostat (Leica 
CM3050S, Germany).

For BrdU staining, the sections were incubated in the 
50% formamide/2 × SSC (0.3 M NaCl and 0.03 M sodium 
citrate) at 60 °C for 2 h and then incubated in 2 N HCl 
at 37 °C for 30 min and rinsed in 0.1 M sodium borate 
buffer (pH 8.5) for 15 min followed by several washes in 
PBS. Then the sections were blocked with 10% normal 
goat serum dissolved in PBS supplemented with 0.1% Tri-
ton X-100 (PBST) for 1 h at RT. Then the sections were 
incubated with rat anti-BrdU (1:1000, abcam, ab6326) anti-
body at 4 °C overnight. The following day, sections were 
washed and incubated with donkey anti-rat Alexa Fluor 
594 antibody (1:500, Molecular Probes, A-21209) for 2 h 
at RT. Nuclear staining was performed by 4′,6-diamidino-
2-pheny-lindole (DAPI).

To analyze the neuronal differentiation in the dentate 
gyrus (DG), brain sections were incubated with a goat 
anti-doublecortin (DCX) antibody (1:200, Santa Cruz 
Biotechnology, sc-8066) together with a rat anti-BrdU 
(1:1000, abcam, ab6326) overnight at 4 °C as described 
above. The following day, the sections were incubated 
with a donkey anti-goat Alexa Fluor 488 antibody 
(Molecular Probes, A-11055) together with a donkey anti-
rat Alexa Fluor 594 antibody (1:500, Molecular Probes, 
A-21209) for 2 h at RT. BrdU+ cells were counted in 
the subgranular zone (SGZ) by a confocal microscope 
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(Olympus, FV1000, Japan). For quantifying the adult neu-
rogenesis in the DG, every third section of each mouse 
was counted for the number of BrdU+ cells or BrdU+/
DCX+ co-labeled cells. Six sections of each mouse were 
analyzed to cover the whole DG.

Electrophysiology

The mice were anesthetized with 1% sodium pentobarbi-
tal (60 mg/kg, i.p.; Sigma, USA) and decapitated. Brains 
were quickly removed and transferred to ice-cold artifi-
cial CSF (ACSF) cutting medium (in mM: 185 sucrose, 
20 D-glucose, 2.5 KCl, 1.25 NaH2PO4, 26 NaHCO3, 1 
CaCl2, and 6 MgCl2) and saturated with 95% O2 and 5% 
CO2. Hippocampal transversal slices (350-μm-thick) were 
made by a Leica VT 1200S vibrotome. The slices were 
recovered at 34 °C for 30 min in the above ACSF with 
sucrose replaced by 124 mM NaCl and then maintained at 
RT (22 to 24˚C) for at least 1 h preincubation. Then a slice 
was transferred to the recording chamber and completely 
submerged in ACSF containing the following (in mM): 124 
NaCl, 26 NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 4 CaCl2, 4 
MgCl2, and 20 glucose, pH 7.4 (bubbled with 95% O2/5% 
CO2) at a rate of 2 mL/min at RT.

Synaptic responses were recorded by a MultiClamp 
700B amplifier, and the signal was digitized with Digi-
data 1550B, analyzed with pClamp10 (Molecular Devices, 
USA). The field excitatory postsynaptic potentials (fEP-
SPs) recordings were made from the stratum radiatum of 
CA1 area of the hippocampus. Evoked responses were elic-
ited through a concentric electrode. The LTP was induced 
using theta-burst stimulation (TBS) containing 6 episodes 
with an interval of 10 s. Each episode of theta-burst com-
prised 5 bursts at 5 Hz, with each burst composed of 5 
pulses at 100 Hz. fEPSP recordings were conducted for 
15 min at baseline and 50 min after high-frequency stimu-
lus. The fEPSP slope was analyzed, and the values were 
normalized to the mean values recorded in 15-min base-
line. The median of normalized slopes of fEPSPs from 40 
to 50 min after high-frequency stimulus were compared 
between groups.

Statistical Analysis

Statistical analysis was analyzed by the GraphPad Prism 
version 8.0 statistical package (Graphpad Software, Inc.). 
Data are presented as standard error (mean ± SEM). Dif-
ferences between control and sevoflurane groups were 
determined using 2-tailed student’s t test. Data among four 
groups were analyzed using two-way ANOVA followed by 
post hoc Tukey multiple comparisons. A significant differ-
ence was considered as P < 0.05.

Results

Repeated Neonatal Exposures to Sevoflurane 
Induced Long‑term Cognitive Impairment in Male 
But Not Female Mice

In OFT, no significant difference was observed in total distance, 
velocity and time spent in the center of the arena between con 
(control) and sev (sevoflurane) groups in both genders (Fig. 2A, 
B; mean ± SEM; female: distance, con [3832.39 ± 98.12] vs. 
sev [3767.41 ± 130.78], P = 0.6957; velocity, con [5.88 ± 0.30] 
vs. sev [6.13 ± 0.45], P = 0.6479; time spent in the center (%), 
con [8.11 ± 0.45] vs. sev [7.92 ± 0.81], P = 0.8363; male: dis-
tance, con [3543.63 ± 153.04] vs. sev [3603.39 ± 199.88], 
P = 0.8150; velocity, con [5.88 ± 0.31] vs. sev [6.07 ± 0.33], 
P = 0.6839; time spent in the center (%), con [8.99 ± 0.75] 
vs. sev [9.26 ± 0.89], P = 0.8254). In OLT and NORT, there 
was no significant difference in time explored the two identi-
cal objects during the training phase in both genders (Fig. 2C, 
D; mean ± SEM; time spent (%), female: con [48.83 ± 2.02 vs. 
51.17 ± 2.02], P = 0.4214; sev [49.73 ± 3.59 vs. 50.27 ± 3.59], 
P = 0.9155; male: con [49.65 ± 2.85 vs. 50.35 ± 2.85], 
P = 0.8629; sev [49.18 ± 3.82 vs. 50.82 ± 3.82], P = 0.7657). 
The recognition index in OLT and NORT were significant 
decreased by neonatal repeated exposures to sevoflurane in 
male but not female mice (Fig. 2C, D; mean ± SEM; female: 
OLT, con [0.56 ± 0.04] vs. sev [0.54 ± 0.03], P = 0.7152; NORT, 
con [0.55 ± 0.03] vs. sev [0.54 ± 0.03], P = 0.8908; male: OLT, 
con [0.60 ± 0.03] vs. sev [0.46 ± 0.03], P = 0.0072; NORT, con 
[0.60 ± 0.04] vs. sev [0.44 ± 0.03], P = 0.0033). In contextual 
FC test, neonatal repeated exposures to sevoflurane induced sig-
nificantly decreased freezing time in male but not female mice 
(Fig. 2E; mean ± SEM; female: freezing to context (%), con 
[36.99 ± 5.36] vs. sev [35.21 ± 3.99], P = 0.7930; male: freez-
ing to context (%), con [34.64 ± 3.07] vs. sev [25.24 ± 2.44], 
P = 0.0275). However, there was no significant difference 
in the freezing time to tone between the two groups in both 
genders (Fig. 2E; mean ± SEM; female: freezing to tone (%), 
con [70.36 ± 4.91] vs. sev [69.07 ± 3.21], P = 0.8282; male: 
freezing to tone (%), con [68.80 ± 3.91] vs. sev [69.28 ± 3.25], 
P = 0.9245). Therefore, the auditory-cued fear conditioning test 
was not performed in the subsequent experiments.

The Hippocampal Neurogenesis Was Inhibited 
By Repeated Neonatal Exposures to Sevoflurane 
in Male But Not Female Mice

Given that hippocampal neurogenesis plays a key role in 
certain forms of learning and memory formation during 
adulthood. We examined adult hippocampal neurogenesis, 
including NPC proliferation and neuronal differentiation. 
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The results showed that repeated neonatal exposures to 
sevoflurane decreased NPC proliferation as shown by 
a lower number of BrdU+ cells (Fig.  3; mean ± SEM; 
number of BrdU+ cells, female: con [16.50 ± 0.92] vs. 

sev [16.17 ± 0.91], P = 0.8021; male: con [17.50 ± 1.18] 
vs. sev [11.83 ± 1.30], P = 0.0090) and neuronal differ-
entiation as shown by a lower number of BrdU+/DCX+ 
co-labeled cells (Fig. 4; mean ± SEM; number of BrdU+/
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DCX+ co-labeled cells, female: con [7.00 ± 1.07] vs. sev 
[6.50 ± 0.76], P = 0.7107; male: con [7.33 ± 1.15] vs. sev 
[3.50 ± 0.76], P = 0.0193) in the DG of the hippocampus in 
male but not female mice during young adulthood.

The Hippocampal Synaptic Plasticity Was Impaired 
By Repeated Neonatal Exposures to Sevoflurane 
in Male But Not Female Mice

To test whether repeated neonatal exposures to sevoflurane 
induced different alterations in hippocampal plasticity in 
male and female mice, we first examined the expressions of 
plasticity-related proteins in the hippocampus. The expres-
sions of BDNF, Arc and Egr-1 were significantly decreased 
after repeated exposures to sevoflurane in male but not 
female mice (Fig. 5A-D; mean ± SEM; female: BDNF, con 
[1.00 ± 0.03] vs. sev [0.99 ± 0.04], P = 0.8330; Arc, con 
[1.00 ± 0.09] vs. sev [0.99 ± 0.09], P = 0.9213;Egr-1, con 
[1.00 ± 0.05] vs. sev [1.00 ± 0.07], P = 0.9592; male: BDNF, 
con [1.00 ± 0.02] vs. sev [0.59 ± 0.06], P = 0.0001;Arc, 
con [1.00 ± 0.10] vs. sev [0.62 ± 0.04], P = 0.0047; Egr-1, 
con [1.00 ± 0.10] vs. sev [0.70 ± 0.05], P = 0.0192). Sub-
sequently, we assessed the electrophysiologic effects at 
5–6 weeks following sevoflurane exposures in hippocampal 
slices in both genders. The analysis of fEPSP slope showed 
that repeated exposures to sevoflurane impaired the LTP in 
hippocampal slices in male but not female mice (Fig. 5E-
J; mean ± SEM; normalized fEPSP slope 40 to 50 min 
after TBS, female: con [1.72 ± 0.19] vs. sev [1.86 ± 0.26], 
P = 0.6752; male, con [1.66 ± 0.08] vs. sev [1.20 ± 0.06], 
P = 0.0004).

These results suggested that adult hippocampal neuro-
genesis and synaptic plasticity during young adulthood 
were damaged after repeated exposures to sevoflurane from 
P6 to P8 only in male mice, which contributed to long-term 
cognitive impairment. Therefore, the female mice were not 
used in the subsequent experiments.

Lactate Treatment Improved Long‑term Cognitive 
Impairment Induced By Repeated Neonatal 
Exposures to Sevoflurane in Male Mice

To confirm whether treatment of lactate could improve 
long-term cognitive impairment induced by repeated 
neonatal exposures to sevoflurane in male mice, we 
conducted the behavioral tests. During the 10-min 
test session in OFT, there was no significant differ-
ence in total distance, velocity and time spent in the 
center of the arena among the four groups (Fig. 6A-C; 
mean ± SEM; distance, con + ns [2749.08 ± 167.14] 
vs. sev + ns [2929.59 ± 220.40], P = 0.8888, sev + ns 
[2929.59 ± 220.40] vs. sev + lactate [2576.90 ± 116.21], 
P = 0.5044; velocity, con + ns [4.58 ± 0.28] vs. sev + ns 
[4.95 ± 0.39], P = 0.8304, sev + ns [4.95 ± 0.39] vs. 
sev + lactate [4.29 ± 0.20], P = 0.4287; time spent 
in the center (%), con + ns [8.42 ± 1.39] vs. sev + ns 
[8.72 ± 1.42], P = 0.9990, sev + ns [8.72 ± 1.42] vs. 
sev + lactate [8.69 ± 1.48], P > 0.9999). In OLT and 
NORT, there was no significant difference in time 
explored the two identical objects during the training 
phase (Fig. 6D; mean ± SEM: time spent (%), con + ns 
[50.46 ± 4.12 vs. 49.54 ± 4.12], P = 0.8756; con + lac-
tate [49.89 ± 3.97 vs. 50.11 ± 3.97], P = 0.9684; sev + ns 
[49.46 ± 2.83 vs. 50.54 ± 2.83], P = 0.7916; sev + lactate 
[51.07 ± 2.67 vs. 48.93 ± 2.67], P = 0.5767). The recogni-
tion index in OLT and NORT were significantly decreased 
by neonatal repeated exposures to sevoflurane, which can 
be rescued by lactate treatment (Fig. 6D-H; OLT, con + ns 
[0.57 ± 0.03] vs. sev + ns [0.43 ± 0.03], P = 0.0293, 
sev + ns [0.43 ± 0.03] vs. sev + lactate [0.57 ± 0.03], 
P = 0.0360; NORT, con + ns [0.56 ± 0.03] vs. sev + ns 
[0.42 ± 0.02], P = 0.0146, sev + ns [0.42 ± 0.02] vs. 
sev + lactate [0.57 ± 0.03], P = 0.0075). In contextual FC 
test, mice in the sev + ns group displayed significantly 
decreased freezing time than those in the con + ns group, 
which was improved by lactate treatment (Fig. 6I; con + ns 
[33.99 ± 2.93] vs. sev + ns [18.91 ± 2.62], P = 0.0062, 
sev + ns [18.91 ± 2.62] vs. sev + lactate [30.99 ± 3.62], 
P = 0.0368).

Lactate Treatment Rescued the Inhibition of Adult 
Hippocampal Neurogenesis Induced By Repeated 
Neonatal Exposures to Sevoflurane in Male Mice

The number of BrdU+ cells and BrdU+/DCX + co-labeled 
cells in SGZ were significantly decreased after repeated 
exposures to sevoflurane, which can be rescued by lac-
tate treatment (Fig. 7, number of BrdU+ cells, con + ns 
[19.17 ± 1.42] vs. sev + ns [12.00 ± 0.97], P = 0.0070, 
sev + ns [12.00 ± 0.97] vs. sev + lactate [18.17 ± 1.49], 
P = 0.0220; Fig. 8, number of BrdU+/DCX+ co-labeled 

Fig. 2   Repeated neonatal exposures to sevoflurane induced long-term 
cognitive impairment in male but not female mice. (A and B) In OFT, 
there was no significant difference in total distance, velocity and time 
spent in the center between con and sev groups in female (A) and 
male (B) mice (n = 10 mice/group). (C and D) In OLT and NORT, 
there was no significant difference in time explored the two identical 
objects during the training phase in both genders. Compared with the 
con group, the recognition index in OLT and NORT was significant 
decreased in sev group in male (D) but not female (C) mice (n = 10 
mice/group). FL, familiar location; NL, novel location; F, familiar 
object; N, novel object. (E) Compared with the con group, the freez-
ing time to context was significantly decreased in sev group in male 
but not female mice. There was no significant difference in the freez-
ing time to tone in both genders between con and sev groups (n = 10 
mice/group) Data are presented as mean ± SEM Data were analyzed 
with 2-tailed Student’s t test. *P < 0.050, **P < 0.010, ***P < 0.001, 
****P < 0.0001

◂
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cells, con + ns [8.33 ± 0.88] vs. sev + ns [3.50 ± 0.67], 
P = 0.0065, sev + ns [3.50 ± 0.67] vs. sev + lactate 
[8.00 ± 1.07], P = 0.0116). It is worth noting that lactate 
treatment did not affect NPC proliferation nor neuronal 

differentiation in mice not exposed to sevoflurane (Figs. 8, 
9). The results suggested that lactate reversed the inhibi-
tory effect of neonatal repeated exposures to sevoflurane on 
adult hippocampal neurogenesis in male mice.
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Fig. 3   The NPC proliferation was decreased by repeated neona-
tal exposures to sevoflurane in male but not female mice. (A) Rep-
resentative images of hippocampal sections immunostained for 
BrdU in female mice. (B) Representative images of hippocam-
pal sections immunostained for BrdU in male mice. (C) Analysis 
of NPC proliferation in female mice. Histogram of the number of 
BrdU+ cells in SGZ in female mice (n = 6 mice/group). (D) Analy-

sis of NPC proliferation in male mice. Histogram of the number of 
BrdU+ cells in SGZ in male mice (n = 6 mice/group). (E) Timeline 
showing the experimental design. DAPI staining is shown in blue. 
Scale bar = 100 μm. Enlarged scale bar = 20 μm. Data are presented 
as mean ± SEM. Data were analyzed with 2-tailed Student’s t test. 
*P < 0.050, **P < 0.010, ***P < 0.001, ****P < 0.0001
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Lactate Treatment Improved the Defects 
in Hippocampal Synaptic Plasticity Induced By 
Repeated Neonatal Exposures to Sevoflurane 
in Male Mice

Western blot analysis revealed that the expressions of 
plasticity-related proteins, including BDNF, Arc and Egr-1 
were significantly decreased after repeated exposures to 
sevoflurane, which were reversed by lactate treatment 
(Fig.  9A, B; BDNF, con + ns [1.00 ± 0.06] vs. sev + ns 

[0.76 ± 0.02], P = 0.0248, sev + ns [0.76 ± 0.02] vs. sev + lac-
tate [0.98 ± 0.07], P = 0.0485; Arc, con + ns [1.00 ± 0.08] 
vs. sev + ns [0.74 ± 0.07], P = 0.0491, sev + ns [0.74 ± 0.07] 
vs. sev + lactate [1.00 ± 0.06], P = 0.0454; Egr-1, con + ns 
[1.00 ± 0.06] vs. sev + ns [0.63 ± 0.06], P = 0.0403, sev + ns 
[0.63 ± 0.06] vs. sev + lactate [0.99 ± 0.12], P = 0.0486). 
Consistently, by analyzing the fEPSP slope, the impaired 
hippocampal LTP in the sev + ns group was significantly 
rescued in the sev + lactate group (Fig. 9C-E, normalized 
fEPSP slope 40 to 50 min after TBS, con + ns [1.66 ± 0.08] 
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Fig. 4   The neuronal differentiation was decreased by repeated neona-
tal exposures to sevoflurane in male but not female mice. (A) Repre-
sentative images of hippocampal sections immunostained for BrdU+/
DCX+ co-labeled cells in female mice. (B) Representative images of 
hippocampal sections immunostained for BrdU+/DCX+ co-labeled 
cells in male mice. (C) Analysis of neuronal differentiation in female 
mice. Histogram of the number of BrdU+/DCX+ co-labeled cells in 

SGZ in female mice (n = 6 mice/group). (D) Analysis of neuronal 
differentiation in male mice. Histogram of the number of BrdU+/
DCX+ co-labeled cells in SGZ in male mice (n = 6 mice/group). (E) 
Timeline showing the experimental design. DAPI staining is shown 
in blue. Scale bar = 100 μm. Enlarged scale bar = 20 μm. Data are pre-
sented as mean ± SEM. Data were analyzed with 2-tailed Student’s t 
test. *P < 0.050, **P < 0.010, ***P < 0.001, ****P < 0.0001



5282	 Molecular Neurobiology (2023) 60:5273–5291

1 3

vs. sev + ns [1.16 ± 0.04], P = 0.0040, sev + ns [1.16 ± 0.04] 
vs. sev + lactate [1.56 ± 0.15], P = 0.0250).

Lactate Treatment Attenuated Long‑term Cognitive 
Impairment Induced By Repeated Neonatal 
Exposures to Sevoflurane in Male Mice Through 
SIRT1‑dependent Induction of the PGC‑1α/FNDC5 
Pathway

The mechanisms by which lactate treatment prevented defi-
cits of adult hippocampal neurogenesis and synaptic plasticity 
from repeated neonatal exposures to sevoflurane in male mice 
has not been deciphered. Since exercise was shown to signifi-
cantly increase the expression of SIRT1 in the hippocampus 
and improve cognitive function [39], we decided to detect 
whether lactate treatment also affect the expression of SIRT1. 
We observed that repeated exposures to sevoflurane signifi-
cantly decreased the expression of SIRT1 in the hippocampus, 

which could be reversed by lactate treatment (Fig. 10A, B, 
SIRT1, con + ns [1.00 ± 0.07] vs. sev + ns [0.65 ± 0.04], 
P = 0.0003, sev + ns [0.65 ± 0.04] vs. sev + lactate [0.97 ± 0.05], 
P = 0.0008). It was previously reported that SIRT1 induced 
the expression of the transcriptional coactivator PGC-1α and 
then activated the expression of the myokine FNDC5, which 
can induce the expression of BDNF in the hippocampus [44, 
45]. Therefore, we suspected that lactate could activate SIRT1, 
which would induce the PGC-1α/ FNDC5 pathway and thus 
result in the increased expressions of plasticity-related pro-
teins. The analysis of Western blot showed that the expressions 
of PGC-1α and FNDC5 were significantly decreased after 
repeated exposures to sevoflurane, lactate treatment reversed 
these alterations (Fig. 10A, B, PGC-1α, con + ns [1.00 ± 0.11] 
vs. sev + ns [0.65 ± 0.05], P = 0.0180, sev + ns [0.65 ± 0.05] 
vs. sev + lactate [0.96 ± 0.06], P = 0.0426; FNDC5, con + ns 
[1.00 ± 0.08] vs. sev + ns [0.59 ± 0.04], P = 0.0075, sev + ns 
[0.59 ± 0.04] vs. sev + lactate [0.91 ± 0.11], P = 0.0438).
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Fig. 5   The hippocampal synaptic plasticity was impaired by repeated 
neonatal exposures to sevoflurane in male but not female mice. (A) 
Representative western-blots of BDNF, Arc and Egr-1 in the hip-
pocampus in female mice. GAPDH was included as loading con-
trol. (B) Quantitative analysis of the levels of BDNF, Arc and Egr-1 
in female mice (n = 6 mice/group). (C) Representative western-blots 
of BDNF, Arc and Egr-1 in the hippocampus in male mice. GAPDH 
was included as loading control. (D) Quantitative analysis of the lev-
els of BDNF, Arc and Egr-1 in male mice (n = 6 mice/group). (E) 
Example traces of fEPSP plots in female mice are shown. (F) The 
fEPSP slope of 15 min at baseline before TBS and 50 min after TBS 

were analyzed in female mice (n = 9 slices from 3 to 4 mice/group). 
(G) Mean of normalized fEPSP slope 40 to 50 min after TBS showed 
no significant difference between con and sev group (n = 9 slices 
from 3 to 4 mice/group). (H) Example traces of fEPSP plots in male 
mice are shown. (I) The fEPSP slope of 15  min at baseline before 
TBS and 50 min after TBS were analyzed in male mice (n = 8 to 9 
slices from 3 to 4 mice/group). (J) Mean of normalized fEPSP slope 
40 to 50 min after TBS showed impaired LTP in sev group compared 
with con group (n = 8 to 9 slices from 3 to 4 mice/group).Data are 
presented as mean ± SEM. Data were analyzed with 2-tailed Student’s 
t test. *P < 0.050, **P < 0.010, ***P < 0.001, ****P < 0.0001
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Discussion

In the current study, the results demonstrated that repeated 
exposures to sevoflurane from P6 to P8 induced inhibition 
of adult hippocampal neurogenesis, defects of hippocampal 
synaptic plasticity, and long-term cognitive impairment in 

male but not female mice, which can be rescued by lactate 
treatment. The mechanism may be involved SIRT1-depend-
ent induction of the PGC-1α/FNDC5 pathway. Collectively, 
our study provides a novel therapeutic strategy for preven-
tion of repeated neonatal exposures to sevoflurane-induced 
long-term cognitive impairment.

Object 1 Object location test

Fear conditioning testNovel object recognition

Object 2

Fig. 6   Lactate treatment improved long-term cognitive impair-
ment induced by repeated neonatal exposures to sevoflurane in male 
mice. (A-C) In OFT, there was no significant difference in total 
distance (A), velocity (B) and time spent in the center (C) among 
the four groups in male mice (n = 10 mice/group). (D) In OLT and 
NORT, there was no significant difference in time explored the two 
identical objects during the training phase in each of the four groups 
(n = 10 mice/group). (E) Compared with the con + ns group, the rec-
ognition index in OLT was significant decreased in sev + ns group, 
which was reversed by lactate treatment in male mice (n = 10 mice/
group). (F) Representative trial in OLT. (G) Compared with the 

con + ns group, the recognition index in NORT was significant 
decreased in sev + ns group, which was reversed by lactate treat-
ment in male mice (n = 10 mice/group). (H) Representative trial 
in NORT. (I) Compared with the con + ns group, the freezing time 
to context was significantly decreased in sev + ns group, which was 
attenuated by lactate treatment in male mice (n = 10 mice/group). 
Data are presented as mean ± SEM. Data were analyzed with two-
way ANOVA followed by post-hoc Tukey multiple comparisons. 
*P < 0.05 compared to the con + ns group (*P < 0.050, **P < 0.010, 
***P < 0.001, ****P < 0.0001), #P < 0.05 compared to the sev + ns 
group (#P < 0.050, ##P < 0.010, ###P < 0.001, ###P < 0.001)
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Accumulating evidence has suggested that repeated neo-
natal anesthetics exposures induce cognitive impairment in 
rodents [1, 2], non-human primates [3, 4], and human [5, 
46]. The rodents used in most of the related studies were 
male or composed of a mixture of male and female indi-
viduals. Although a few studies compared male with female 
rodents in long-term cognitive impairment after exposures 
to general anesthetics during early postnatal development, 
the results were inconsistent. Lee and colleagues reported 
that exposures to isoflurane at P7 resulted in decreased rec-
ognition memory in male but not female rats [47]. However, 
Boscolo and colleagues reported that female, but not male, 
neonatal rats exposed to anesthesia showed impaired spatial 
reference memory in the Morris water maze, but memory 
retention was impaired in both genders after anesthesia in 

neonatal rats [48]. Wali and colleagues reported that repeated 
neonatal sevoflurane exposures resulted in long-term cog-
nitive impairment independent of gender [49]. In the pre-
sent study, we showed that repeated neonatal sevoflurane 
exposures induced long-term cognitive impairment during 
young adulthood in male but not female mice. Our results 
are consistent with one previous study that neonatal isoflu-
rane exposure induced long-term cognitive impairment in 
male but not female rats [47], which suggests that males are 
more susceptible to long-term cognitive effects of neonatal 
anesthetics exposure. However, the mechanisms are poorly 
understood. Russell and colleagues reported that female rats 
were more vulnerable to long-term cognitive impairment 
after isoflurane exposures at P4 compared with P7 [50]. 
They showed sex-specific difference in cortical expressions 

Fig. 7   Lactate treatment rescued 
the inhibition of NPC prolifera-
tion induced by repeated neo-
natal exposures to sevoflurane 
in male mice. (A) Representa-
tive images of hippocampal 
sections immunostained 
for BrdU in male mice. (B) 
Analysis of NPC proliferation 
in male mice. Histogram of 
the number of BrdU+ cells in 
SGZ in male mice (n = 6 mice/
group). (C) Timeline showing 
the experimental design. DAPI 
staining is shown in blue. Scale 
bar = 100 μm. Enlarged scale 
bar = 20 μm. Data are presented 
as mean ± SEM. Data were 
analyzed with two-way ANOVA 
followed by post-hoc Tukey 
multiple comparisons. *P < 0.05 
compared to the con + ns group 
(*P < 0.050, **P < 0.010, 
***P < 0.001, ****P < 0.0001), 
#P < 0.05 compared to the 
sev + ns group (#P < 0.050, 
##P < 0.010, ###P < 0.001, 
###P < 0.001)
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of chloride transporters NKCC1 (Na+-K+-2Cl− cotrans-
porter 1) and KCC2 (K+-2Cl− cotransporter 2), which regu-
late the function of gamma-aminobutyric acid (GABA) from 
excitation to inhibition during brain development. The ratio 
of NKCC1/KCC2 expression in cerebral cortex was higher 
in P4 females than in P7 females, and similar to that in P7 
males. The results suggest that females are at risk for anes-
thetic neurotoxicity during an earlier window of vulnerabil-
ity. In the present study, both male and female mice were 

exposed to sevoflurane from P6 to P8, which is beyond the 
window of vulnerable in females. This could be one of the 
explanations for why females did not exhibit impairments 
in adult hippocampal neurogenesis, LTP, and cognitive 
function. In addition, different epigenetic changes between 
males and females may also underlie this phenomenon. For 
instance, histone acetylation is higher in developing cortex 
and hippocampus in male mice than that in females [51]. 
This difference persists from the later stages of pregnancy 
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Fig. 8   Lactate treatment rescued the inhibition of neuronal differen-
tiation induced by repeated neonatal exposures to sevoflurane in male 
mice. (A) Representative images of hippocampal sections immu-
nostained for BrdU+/DCX+ co-labeled cells in male mice. (B) Analy-
sis of neuronal differentiation in male mice. Histogram of the number 
of BrdU+/DCX+ co-labeled cells in SGZ in male mice (n = 6 mice/
group). (C) Timeline showing the experimental design. DAPI stain-

ing is shown in blue. Scale bar = 100 μm. Enlarged scale bar = 20 μm. 
Data are presented as mean ± SEM. Data were analyzed with two-
way ANOVA followed by post-hoc Tukey multiple comparisons. 
*P < 0.05 compared to the con + ns group (*P < 0.050, **P < 0.010, 
***P < 0.001, ****P < 0.0001), #P < 0.05 compared to the sev + ns 
group (#P < 0.050, ##P < 0.010, ###P < 0.001, ###P < 0.001)
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until the first week of neonatal life, which is a critical devel-
opmental period that coincides with peak neuronal suscep-
tibility to general anesthetics. However, the mechanisms of 
sex differences on repeated neonatal exposures to sevoflu-
rane-induced long-term cognitive impairment remain to be 
further elucidated. Moreover, therapeutic strategy to prevent 
or treat this cognitive impairment is limited.

Lactate is considered as a traditional marker of ischemia 
and a waste product of anaerobic glycolysis, which is generally 
associated with severe disease states or poor outcome. However, 
there is accumulating evidence that lactate can produce 
neuroprotective effects in different animal models of cognitive 
disorders. For instance, lactate produced antidepressant-like 
effect in corticosterone-induced depression model [42]. In 
addition, lactate treatment rescued social behavior deficits 
induced by chronic social defeat stress (CSDS) [52]. In a 
neonatal rat model of hypoxia–ischemia, lactate injected 
intraperitoneally induced reduction in brain lesion volume and 
a complete recovery of neurological reflexes, sensorimotor 

capacities and long-term memory [53]. In a rat traumatic brain 
injury (TBI) model, lactate treatment promoted the expressions 
of plasticity-related proteins and reduced neurological deficits 
[54]. In this work, treatment of lactate improved spatial and 
non-spatial hippocampus-dependent memory after repeated 
neonatal sevoflurane exposures in male mice, supporting the 
neuroprotective role of lactate. However, the mechanisms 
underlying its neuroprotective effects remain to be elucidated.

New neurons are generated in the DG of the hippocampus 
through the life span in mammalian animals [55]. Adult 
hippocampal neurogenesis plays a critical role in synaptic 
plasticity and network adaption, thus contributing to 
hippocampus-dependent learning and memory [56, 57]. 
Adult hippocampal neurogenesis is inhibited in several 
neuropsychological diseases, including Alzheimer’s disease 
(AD) [58], depression [40], and chronic pain-related memory 
deficits [59]. During the development stage, mammalian 
animals are more vulnerable to adverse stimulation, which 
has significant and long-term effects on hippocampal 
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Fig. 9   Lactate treatment improved the defects in hippocampal synap-
tic plasticity induced by repeated neonatal exposures to sevoflurane 
in male mice. (A) Representative western-blots of BDNF, Arc and 
Egr-1 in the hippocampus in male mice. GAPDH was included as 
loading control. (B) Quantitative analysis of the levels of BDNF, Arc 
and Egr-1 in male mice (n = 6 mice/group). (C) Example traces of 
fEPSP plots in male mice are shown. (D) The fEPSP slope of 15 min 
at baseline before TBS and 50 min after TBS were analyzed in male 
mice (n = 8 to 9 slices from 3 to 4 mice/group). (E) Mean of normal-

ized fEPSP slope 40 to 50  min after TBS showed impaired LTP in 
sev + ns group compared with con + ns group, which was attenuated 
by lactate treatment in male mice (n = 8 to 9 slices from 3 to 4 mice/
group). Data are presented as mean ± SEM. Data were analyzed with 
two-way ANOVA followed by post-hoc Tukey multiple comparisons. 
*P < 0.05 compared to the con + ns group (*P < 0.050, **P < 0.010, 
***P < 0.001, ****P < 0.0001), #P < 0.05 compared to the sev + ns 
group (#P < 0.050, ##P < 0.010, ###P < 0.001, ###P < 0.001)



5287Molecular Neurobiology (2023) 60:5273–5291	

1 3

neurogenesis. Accumulating evidence suggests that both 
inhalational anesthetics, such as isoflurane and sevoflurane, 
and intravenous anesthetics propofol can induce cell death 
and decrease cell proliferation in the neonatal DG [1, 60, 61]. 
However, most studies observed relatively short-term effects 
of anesthetic exposure on hippocampal neurogenesis. In the 
present study, we detected adult hippocampal neurogenesis 
at 5–6 weeks after repeated neonatal sevoflurane exposures. 
The results showed adult hippocampal neurogenesis was 
suppressed after repeated neonatal sevoflurane exposures 
in male but not female mice, which is one key mechanism 
contributing to long-term cognitive impairment in male 
mice. Lactate was shown to promote adult hippocampal 
neurogenesis after chronic treatment of 7 weeks through 
increasing survival of newly born mature neurons but not the 
stimulation of NPC proliferation [62]. A recent study reported 
that lactate promoted NPC proliferation and survival of newly 
born mature neurons in corticosterone-induced depression 
model [40]. While mice exposed to sevoflurane treated 
with lactate, the decreased NPC proliferation and neuronal 
differentiation were reversed and the long-term cognitive 
impairment was attenuated in the present study.

Normal synaptic plasticity is essential for learning and 
memory. Several studies have investigated the effects of 
neonatal exposures to anesthetics on hippocampal synap-
tic plasticity. Liang and colleagues showed that repeated 
neonatal exposures to sevoflurane in male rats induced 
impaired hippocampal LTP at P37 but not at P97 [63]. Wan 
and colleagues reported that repeated neonatal exposures to 

propofol in male rats induced impaired hippocampal LTP 
at P60 [64]. However, Schaefer and colleagues reported 
that neonatal exposures to isoflurane at P7 did not induce 
impaired LTP in the hippocampus after 6 week recovery 
[6]. The authors explained that low animal number and a 
mixture of male and female mice may be the major reasons. 
In the present study, we showed hippocampal LTP was sup-
pressed after repeated neonatal exposures to sevoflurane in 
male but not female mice during young adulthood. Previous 
studies have revealed that lactate releasing from astrocytes 
to neurons serves as an energy substrate and promotes LTP 
[65]. Yang and colleagues showed that lactate up-regulated 
expressions of synaptic plasticity genes through activating 
NMDA and ERK signaling cascades [29]. In line with the 
study, we showed that lactate treatment increased expres-
sions of plasticity-related proteins, including BDNF, Arc, 
and Egr-1 after repeated neonatal sevoflurane exposures in 
male mice. These changes may contribute to the improve-
ment in hippocampal LTP and long-term cognitive impair-
ment during young adulthood.

Accumulating evidence hints that histone acetylation 
modification is involved in various aspects of brain devel-
opment, including neural cell fate specification, synaptic 
plasticity and function [66-68]. The sirtuins (SIRT1-7) are 
class III HDACs. Among them, SIRT1 has been widely 
investigated for its neuroprotective role. It was dem-
onstrated that repeated neonatal sevoflurane exposures 
decreased SIRT1 expression in the hippocampus in devel-
oping mice [69]. Overexpression of SIRT1 could improve 
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Fig. 10   Lactate treatment attenuated long-term cognitive impair-
ment induced by repeated neonatal exposures to sevoflurane in male 
mice through SIRT1-dependent induction of the PGC-1α/FNDC5 
pathway. (A) Representative western-blots of SIRT1, PGC-1α and 
FNDC5 in the hippocampus in male mice. GAPDH was included 
as loading control. (B) Quantitative analysis of the levels of SIRT1, 

PGC-1α and FNDC5 in male mice (n = 6 mice/group). Data are pre-
sented as mean ± SEM. Data were analyzed with two-way ANOVA 
followed by post-hoc Tukey multiple comparisons. *P < 0.05 com-
pared to the con + ns group (*P < 0.050, **P < 0.010, ***P < 0.001, 
****P < 0.0001), #P < 0.05 compared to the sev + ns group 
(#P < 0.050, ##P < 0.010, ###P < 0.001, ###P < 0.001)
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long-term cognitive impairment induced by repeated 
neonatal propofol exposures [70]. PGC1-a/FNDC5 path-
way was reported to be activated by SIRT1, which in turn 
induced the expression of BDNF [44, 45]. BDNF regu-
lates neuronal growth, differentiation and survival dur-
ing development, and also mediates spine formation and 
neuronal plasticity, that promotes learning and memory 
[71-73]. Here, repeated neonatal sevoflurane exposures 
were found to significantly decrease the expressions of 
SIRT1, as well as PGC1a and FNDC5, which may medi-
ate the decreased expressions of BDNF. As a result, it had 
a detrimental impact on neuronal development, plasticity, 
and function. Lactate treatment could activate the SIRT1/
PGC1a/FNDC5 pathway and alleviate the decreased levels 
of BDNF, Arc and Egr-1, which ameliorated the inhibi-
tory effect of repeated neonatal sevoflurane exposures on 
adult hippocampal neurogenesis, synaptic plasticity and 
long-term cognitive function during young adulthood in 
male mice. These results suggested that SIRT1-mediated 
regulation of adult hippocampal neurogenesis and synaptic 
plasticity may involve in the beneficial effects of lactate on 
repeated neonatal sevoflurane exposures-induced long-term 
cognitive impairment.

In conclusion, our study suggests that repeated neonatal 
exposures to sevoflurane induce inhibition of adult hip-
pocampal neurogenesis and defects of the hippocampal 
synaptic plasticity in male but not female mice, which may 
contribute to long-term cognitive impairment during young 
adulthood. Lactate treatment could rescue these altera-
tions through SIRT1-dependent induction of the PGC-1α/
FNDC5 pathway. The study provides a novel therapeu-
tic strategy for the treatment of anesthetic neurotoxicity. 
However, further studies are needed to clarify the detailed 
mechanism of how lactate attenuates sevoflurane-induced 
cognitive impairment.
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