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Abstract
The constant exposure of rural workers to pesticides is a serious public health problem. Mancozeb (MZ) is a pesticide  linked 
to hormonal, behavioral, genetic, and neurodegenerative effects, mainly related to oxidative stress. Vitamin D is a promising 
molecule that acts as a protector against brain aging. This study aimed to evaluate the neuroprotective role of vitamin D in 
adult male and female Wistar rats exposed to MZ. Animals received 40 mg/kg of MZ i.p. and 12.5 μg/kg or 25 μg/kg vita-
min D by gavage, twice a week, for 6 weeks. The concentration of manganese had a significant increase in the hippocampus 
of both sexes and in the striatum of females, unlike zinc, which did not show a significant increase. MZ poisoning led to 
mitochondrial changes in brain tissues and promoted anxiogenic effects, especially in females. Alterations in antioxidant 
enzymes, mainly in the catalase activity were observed in intoxicated rats. Taken together, our results showed that exposure 
to MZ leads to the accumulation of manganese in brain tissues, and the behavior and metabolic/oxidative impairment were 
different between the sexes. Furthermore, the administration of Vitamin D was effective in preventing the damage caused 
by the pesticide.
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Introduction

Mancozeb (MZ) is a synthetic multisite fungicide that 
belongs to the class of carbamates and the subclass of dithi-
ocarbamate pesticides. It contains a manganese (Mn) and 
zinc (Zn) atom coordinated with ethylene bis-dithiocarba-
mate [1]. It was synthesized in the 1940s as a fungicide for 
seed treatment [2] and demonstrated nearly seventy years 
of fungicidal efficacy in a wide range of agricultural and 
industrial applications, including as a fungicide in major 
agricultural crops (e. g., potato, tomato, grapevine, and 

citrus) for roughly 400 different plant pathogens [3] and, 
like most pesticides, it can be available as dust, liquid, dis-
persible granules, or wettable powder [4]. MZ presents low 
acute toxicity and short environmental persistence, accord-
ing to [5]. Despite this, many studies reported environmental 
and health damage associated with exposure of MZ. Among 
these studies, genotoxicity, steatosis, and oxidative stress 
caused by MZ exposure have been demonstrated in different 
human cells [6–8]. Thus, MZ is one of the most widely used 
fungicide in Brazil, which is one of the world leaders in the 
use of agrochemicals [9, 10].

Several studies have already demonstrated the action of 
MZ increasing the production of reactive oxygen species 
(ROS) and mitochondrial damage mainly due to the presence 
of Mn in its composition. Two hypotheses can be formulated 
to explain this. The first is related to the accumulation of 
MZ, which has a lipophilic character, in the mitochondria, 
influencing the flow of electrons at the level of the elec-
trogenic transport system, and the second because of the 
impairment of mitochondrial functions due to the inactiva-
tion of the p53 protein pathway [11].
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Previous works showed that there is sexual dimorphism 
in the effects of pesticides in animals. In a study on the 
effects of organophosphate pesticide dimethoate on cul-
tured cortical astrocytes obtained separately from male and 
female mouse pups, an increase in the production of ROS 
was observed in the astrocytes from male mice. However, 
estradiol reduced the production of ROS in the cells from 
females, suggesting that pesticides may have different neu-
rological effects between the two sexes [12]. Another study 
that reports this difference between the sexes is the one of 
Yardimci [13], where the pesticide imidacloprid was tested 
in male and female Sprague–Dawley rats, and males suf-
fered more oxidative damage in the kidney when compared 
to females.

Despite several studies being developed to identify treat-
ments that can counteract MZ toxicity, not much success 
has been achieved so far. In this context, vitamin D is a 
promising group of molecules, as they act as modulators of 
development and protect against several CNS conditions, 
as brain aging [14, 15], retinal tissue [16, 17], 2021) neuro-
degenerative disorders [18] among others. The presence of 
the vitamin D receptor (VDR) in the hippocampus, hypo-
thalamus, thalamus, cerebral cortex, and substantia nigra 
has raised the interest in the potential role of vitamin D in 
different neurological pathologies [19]. Also, vitamin D 
has direct and indirect antioxidant effects [20]. The major 
sources of vitamin D are exposure to ultraviolet radiation 
and diet [21–23].

Based on the recent and promising effects of Vitamin 
D in models for neurotoxicity, in this work we evaluated 
the potential protective effects of Vitamin D against MZ-
induced behavioral, metabolic, and oxidative impairments 
in cerebral tissues using adult male and female Wistar rats.

Material and Methods

Chemicals

All chemicals were of analytical grade or the highest-level 
available pharmaceutical grade. MZ (manganese ethylene 
bis-dithiocarbamate with zinc salt) used was fom Unizeb 
Gold® (UPL do Brasil Indústria e Comércio de Insumos 
Agropecuários S. A.), and the vitamin D used was cholical-
ciferol (D3) 500 IU/drop from DePURA® (Sanofi-Aventis 
Pharmaceutical, S. A.).

Animals

Male and female Wistar rats were obtained from the Fed-
eral University of Rio Grande do Sul, UFRGS, Brazil, and 
allowed to acclimate in the animal facility of Universidade 
do Oeste de Santa Catarina (UNOESC) for 20 days after 

arrival. Rats were 6 months-old and weighed approximately 
200–300 g for females and 300-500 g for males at the begin-
ning of the study. Rats were housed standard conditions for 
temperature (24 ± 2 °C), humidity (30–70%), and light/
dark cycle (12/12 h, lights on at 6 a.m.). Rats were kept in 
large cages with water and food (Neovia – Animal nutri-
tion) ad libitum. All procedures on animals were approved 
by UNOESC ethics committee under n° 74/2019 protocol.

MZ and Vitamin D treatment in vivo

Male and female rats were treated with 40 mg/kg of MZ, 
intraperitoneally (i.p) twice a week for 6 weeks, according 
to Goldoni [24] with slight modifications. This dose was also 
confirmed by a pilot study. Control animals received 0.9% 
sterile saline i.p. instead. Vitamin D was administered twice 
a week, for 6 weeks by gavage method using a PE 190 probe 
at 12.5 μg/kg or 25 μg/kg, according to Salum et al. [25] 
and Kechrid et al. [26] and the Vitamin D administration 
was performed in the same days of the i.p. injections. It is 
important to highlight that the various recommendations for 
the prevention of vitamin D deficiency range in adulthood 
range from 400 to 800 IU/day (10–20 μg) [27]. As Vitamin 
D was supplied in its active form, it was not necessary to 
use UVB radiation for its synthesis [28]. The animals were 
weighed weekly.

Experimental Protocol

Separated by sex, animals were randomly allocated into the 
following groups: (i) control, (ii) MZ 40 mg/kg, (iii) Vit D 
12.5 µg/kg, (iv) MZ 40 mg/kg + Vit D 12.5 µg/kg, and (v) 
MZ 40 mg/kg + Vit D 25 µg/kg. As the same groupings were 
made for male and female rats, there were ten experimental 
groups in total. Depending on the experiment, the number 
of animals changes and the “n” are informed in captions of 
the figures.

Behavioral Tests

Rotarod

Balance and motor coordination were assessed in the accel-
erating Rotarod apparatus (Insight Scientific Equipments, 
Ribeirão Preto, SP, Brazil), which consists of a grooved 
metal roller (6 cm diameter × 16 cm length) separated into 
four 9 cm wide compartments. Firstly, the animals were 
placed on the stationary roller until they could stay for 30 s 
to adapt to the task. To confirm their ability to perform the 
task, they were subjected to a basal test in the Rotarod at 
a constant speed of 12 rpm for 1 min. Balance and motor 
coordination of rats were tested in the accelerated Rotarod 
in a single session during which the rotation speed was 
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progressively increased with an automatic increase of 0.1 
revolutions per second over a maximum period of 300 s, and 
the latency to fall (in seconds) from the accelerating Rotarod 
was determined [29].

Elevated Plus‑maze test

Anxiety-related responses were evaluated on the elevated 
plus-maze (EPM) test. The EPM apparatus is a cross-shaped 
wooden maze with two opposite open arms (50 cm × 10 cm) 
and two enclosed arms (50 cm × 10 cm × 40 cm) spread-
ing out from a central platform (10 cm × 10 cm) elevated 
at a height of 50 cm from the floor. The animals were indi-
vidually placed in the center of the EPM, facing one of the 
enclosed arms, and were allowed to freely explore the appa-
ratus for 5 min [30]. The following parameters were meas-
ured: frequency of open arm entries, frequency of enclosed 
arm entries, and time spent on the open arms. An entry 
was counted whenever the animal placed four paws on a 
given arm of the maze. An anxiogenic effect is defined as a 
decrease in the frequency of open arm entries and/or time 
spent on the open arms.

Sample Preparation for Analysis

Six weeks after the first MZ administration, animals were 
anesthetized with ketamine 80 mg/kg and xylazine 12 mg/
kg and euthanized by decapitation. The teeth were extracted 
using pliers. The brains were isolated, and the hippocam-
pus, striatum, and cerebral cortex were immediately stored 
at − 86 °C until biochemical analysis.

Determination of serum vitamin D concentration

Serum vitamin D concentration was measured through blood 
collection during euthanasia and an analysis was performed 
by a Commercial Kit ichroma ™ Vitamin D by fluorescent 
immunoassay using the ichroma ™ II equipment. Detection 
range for the test was between 8 ~ 70 ng / mL.

Determination of Mn and Zn by Atomic Absorption 
Spectrometry

According to Fitsanakis et al. [31], with slightly modifica-
tions, 50 mg of brain structures, 300 µL of serum and 50 mg 
of teeth were prepared for analysis. Tissues were digested 
in 4:1 acid mix (1.2 mL of 65% nitric acid and 300 μL per-
chloric acid) for 24 h at room temperature. After that, the 
digested samples were kept in ultrasonic bath at 70 °C for 
3 h and then 3.5 mL of 1% perchloric acid was added. The 
final samples were filtered at 0.22 μm syringe membrane. 
The concentration of metals was measured by Perkin Elmer, 
Atomic Absorption Spectrometer, AAnalyst 800®, with 

standard curves for calibration. Results were expressed as 
μg/g of tissue.

Mitochondrial Complex I and II Activities

Brain tissues were homogenized in 10 vol of 4.4 mM potas-
sium phosphate buffer pH 7.4, containing 0.3 M sucrose, 
5 mM MOPS, 1 mM EGTA and 0.1% bovine serum albu-
min. The homogenates were centrifuged at 3000 × g 4 °C for 
10 min and the supernatant were used for measurement of 
mitochondrial complex I and II activity, according to Latini 
et al. [32]. Complex I activity was measured by the rate 
of NADH-dependent ferricyanide reduction at 420 nm as 
previously described by Cassina and Radi [33]. The activity 
of succinate-2.6-dichloroindophenol (DCIP)-oxidoreductase 
(complex II) was determined according to Fischer et al. [34]. 
The activity of the respiratory chain complexes was calcu-
lated in nmol/min/mg of protein, and were measured using a 
microplate reader, Synergy HTX, Biotek®, with controlled 
temperature (37 °C).

ROS Measurement

The tissue homogenate was incubated with 20 μM of 5- 
(e-6) -carboxy-2′7'-dichlorodihydrofluorescein diacetate 
(carboxy-H-DCFDA, Image-iT Live Green, Molecular 
Probes, Carlsbad, CA, USA) for 30 min at room tempera-
ture. The carboxy-H DCFDA was hydrolyzed by esterases 
to carboxy-DCFH which, in turn, reacted with ER (oxygen 
and nitrogen) generating a fluorescent carboxy-DCF prod-
uct [35]. Fluorescence was measured at 485 nm excitation 
and 538 nm emission. The results were expressed in relative 
fluorescence units.

Determination of Antioxidant Enzymes Glutathione 
Peroxidase (GPx), Glutathione Reductase (GR) 
and Catalase (CAT)

GR activity was determined based on the research protocol 
of Calberg and Mannervik [36]. GR reduces from NADPH, 
GSSG to GSH, whose mechanism can be seen at 340 nm. 
GPx activity was determined according to the research pro-
tocol of Wendel [37] by indirect measurement of NADPH 
consumption at 340 nm. GPx uses GSH to reduce tert-butyl 
hydroperoxide producing GSSG which is reduced to GSH by 
the GR using NADPH as a reducing agent. CAT activity was 
measured using the method of Aebi et al. [38]. The reaction 
was initiated by the addition of a 30 mM H2O2 solution. The 
H2O2 decomposition rate was measured by spectrophotom-
etry at 240 nm.
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Protein Determination

Protein quantification was estimated by the method 
described by Lowry et al. [39] using bovine serum albumin 
as standard.

Statistical Analysis

The results were expressed as mean ± standard error of the 
mean. For the analysis of body weight gain, ANOVA was 
used for repeated measures followed by Tukey's post-hoc 
test. The differences between the groups evaluated were ana-
lyzed by one-way or two-way ANOVA to verify the interac-
tion between the group and sex, both followed by Tukey's 
post-hoc test. Pearson’s correlation was performed to cor-
relate the ROS production and Mn concentration (In the cor-
relation 10 animals from mancozeb group and control group 
were used to calculate, i.e., vitamin D groups were excluded 
for these analysis). The “n” refers to the number of animals 
included in each test. Only significant values ​​were cited 
in the text. Differences were considered significant when 
P < 0.05. The analyzes were performed using the Statistica® 
version 7.0 program and the graphics were made using the 
Graph Pad Prism® software version 8 (GraphPad Software, 
San Diego, CA, USA).

Results

In comparison to the group that received MZ only, the meas-
ured concentration of vitamin D was higher in rats of all 
groups treated with it by gavage [F(3.16) = 3.86; p < 0.05] 
(Fig. 1B), with no difference between sexes [F(1.16) = 0.042; 
p = 0.838] or between groups and sexes [F(3.16) = 0.67; 
P = 0.58] (Fig. 1A). Also, it was observed that both males 
(Fig. 1C) and females (Fig. 1D) treated with MZ had a sig-
nificantly lower weight gain during the early stages of the 
experiment, but at the end of the period, the weight gain 
was similar to the control group. The same was observed 
in the groups that received the MZ and vitamin D in the 
two doses. Among males, were found differences between 
groups [F(4,25) = 10.99; p < 0.001], interaction between treat-
ment weeks [F(5,24) = 2.73; p < 0.05]) and between groups 
and treatment weeks [F(18.144) = 12.55; p < 0.0001]. Consid-
ering the females, there were differences between groups 
[F(4,25) = 8.10; p < 0.001], interaction between treatment 
weeks [F(5,24) = 0.89; p = 0.227]) and between groups and 
treatment weeks [F(18.144) = 2.87; p < 0.05].

In our study, the motor changes were investigated using 
the Rotarod test and are shown in Fig. 2A. For females, there 
was a significant difference between groups [F(1.19) = 3.84; 
p = 0.0433], with significantly lower latency to fall in the MZ 
group (p < 0.05). Among males, there was not significant 

difference between groups, although the MZ group had 
lower mean latency to fall than the other groups. Addition-
ally, for females, treatment with vitamin D prevented the 
motor impairment caused by the pesticide, as the latency to 
fall for both MZ + Vit D at 12.5 and 25 µg/kg did not differ 
from the control group.

Considering the number of times, the animals entered the 
closed arms in the EPM task, there were no significant dif-
ferences between groups (Fig. 2B). There was a significant 
decrease in the time spent in the open arms when compar-
ing the MZ and the control group [F(4.77) = 6.38; p < 0.001] 
(Fig. 2C). The same could be observed for the percent-
age (%) of animals entering the open arms [F(4.77) = 6.62; 
p < 0.001] (Fig. 2D). Both variables show that there is a 
distinction between all groups when compared to the group 
that was treated with MZ only. Considering the interac-
tion between sex and group, no significant differences were 
observed. However, for the variables referring to entry into 
the open arms and percentage of time in the open arms there 
was a difference between the categorical variable "sex" 
([F(1.77) = 7.11; p = 0.0204] (Fig. 2C) and [F(1.77) = 8.23; 
p = 0.0053] (Fig. 2D), respectively). This result shows that, 
in general, females stayed longer in the open arms. How-
ever, statistical group and sex interaction analysis revealed 
no differences for these parameters. This means, in general 
terms, that these parameters did not differ according to the 
sex of the animals.

It is also noteworthy that the group treated with vitamin D 
only did not differ from the control group and was equivalent 
to the groups treated with MZ, which provides evidence that 
treatment with both doses of the vitamin D not only prevent 
the anxiogenic effect, but also normalized the effects when 
compared to the control group.

Biochemical and metabolic parameters regarding to the 
concentration of Mn in the cerebral cortex (A), striatum (B), 
hippocampus (C), serum (D), and tooth (E) of rats treated 
with MZ are shown in Fig. 3. It was observed a significant 
increase in the concentration of Mn in the hippocampi of 
male and female rats that received MZ and in the striatum of 
female rats. Moreover, there was a significant increase of in 
the concentration of Mn in teeth of both sexes and the treat-
ment with vitamin D did not alter this parameter. Hippocam-
pus: Difference between groups [F(4.41) = 6,26; p < 0.001] 
and interaction between the sexes [F(1.41) = 2.43; p < 0.01]; 
striatum: between groups [F(4.41) = 13.91; p < 0.001]; tooth: 
between groups [F(4.75) = 192.4; p < 0.001], between sexes 
[F(1.75) = 71.1; p < 0.001] and interaction between group and 
sex [F(4.75) = 12.4; p < 0.001].

Figure 4 shows the Zn concentration in the same tissues, 
cerebral cortex (A), striatum (B), hippocampus (C) serum 
(D) and tooth (E) from intoxicated male and female Wistar 
rats. There was no significant difference between the groups 
and sexes.
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Exposure to MZ led to a significant inhibition of 
female mitochondrial complex I activity in cerebral cortex 
(Fig. 5A). In addition, it was possible to observe that the 
administration of Vitamin D prevented this inhibition in 
both doses [F(4.43) = 8,05; p < 0.001] and two-way ANOVA 
showed significant interaction between groups and sexes 
[F(4.90) = 19,24; p < 0.001]. On the other hand, the activity 
of the mitochondrial complex II and the generation of EROs 
did not show significant difference between the groups and 
sexes (Fig. 5B and 5C, respectively). Regarding to oxidative 

parameters, it was observed a significant reduction of GPx 
[F(4.19) = 3.48; p < 0.05] and GR activity [F(4.19) = 3.70; 
p < 0.05] from male rats treated with MZ. Other than that, 
CAT activity was significantly reduced in both sexes and the 
vitamin D treatment was effective in preventing all oxida-
tive impairments (difference between males [F(4.15) = 3.50; 
p < 0.05] and females [F(4.16) = 4,20; P < 0.05] and interac-
tion between group and sex [F(4.21) = 11.10; p < 0.05]). Addi-
tionally, all inhibitions caused by MZ were prevented by the 
administration of Vitamin D.

Fig. 1   Effect of Mancozeb (40 mg/kg; twice/week for 6 weeks; i.p.) 
and/or Vitamin D (12.5 µg/kg or 25 µg/kg; twice/week for 6 weeks; 
gavage) administration on serum Vitamin D concentration (A and 
B) and on body weight gain in adult male (C) and female (D) Wistar 
rats. The data represent mean ± standard error of the mean (n = 3 to 6 

animals per group). *p < 0.05 when compared to MZ group; #p < 0.05 
when compared to control group (Two-way ANOVA and for repeated 
measurements followed by Tukey's post-hoc test). MZ: Mancozeb; 
Vit D: Vitamin D
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Fig. 2   Effect of Mancozeb 
(40 mg/kg; twice/week for 
6 weeks; i.p.) and/or Vitamin D 
(12.5 µg/kg or 25 µg/kg; twice/
week for 6 weeks; gavage) 
administration on Rotarod test 
(A) and on EPM test (B-D) 
in adult male and female 
Wistar rats. The data represent 
mean ± standard error of the 
mean (n = 3 to 6 animals per 
group). *p < 0.05; **p < 0.01; 
***p < 0.001 when compared 
to control group; (Two-way 
ANOVA followed by Tukey's 
post-hoc test). MZ: Mancozeb; 
Vit D: Vitamin D
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In the striatum, there were no differences in the activ-
ity of the mitochondrial complex I and II between groups. 
However, there was an increase in the production of ROS 
in females intoxicated with MZ in comparison to the con-
trol group and Vitamin D at the dose of 25 µg prevented 
this effect [F(4.52) = 6,01; p < 0.001]) (Figure C). In addition, 
there was a significant difference in the generation of ROS 
when comparing the MZ-treated groups by sex (difference 
between the sexes [F(4.90) = 34.40; p < 0.001] and interac-
tion between groups and sexes [F(4.90) = 20.14; p < 0.001]). 

It was observed a significant reduction of GR activity 
[F(4.19) = 14.22; p < 0.05] from male rats that received MZ 
and two-way analysis of variance revealed significant inter-
action between group and sex [F(4.21) = 20.78; p < 0.001] 
(Fig. 6B). In addition, CAT activity showed the same pat-
tern of decrease of males that received MZ [F(4.17) = 3.96; 
p < 0.05] (Fig. 6C).

Mitochondrial complex I activity was signifi-
cantly reduced in the hippocampus from females 
intoxicated with MZ and the Vitamin D prevented this 

Fig. 3   Effect of Mancozeb (40 mg/kg; twice/week for 6 weeks; i.p.) 
and/or Vitamin D (12.5 µg/kg or 25 µg/kg; twice/week for 6 weeks; 
gavage) administration on cerebral cortex (A), striatum (B), hip-
pocampus (C), serum (D) and tooth (E) Mn concentration in adult 
male and female Wistar rats. The data represent mean ± stand-

ard error of the mean (n = 3 to 6 animals per group). *p < 0.05; 
***p < 0.001 when compared to control group; #p < 0.05 when com-
pared to MZ group (Two-way ANOVA followed by Tukey's post-hoc 
test). MZ: Mancozeb; Vit D: Vitamin D



3731Molecular Neurobiology (2023) 60:3724–3740	

1 3

effect [F(4.41) = 10.66; p < 0.001] (Fig.  7A). In addi-
tion, there was a significant interaction between sexes 
[F(4.90) = 13.40; p < 0.001] and between groups and sexes 
[F(4.90) = 9.55; p < 0.05]. However, there was no signifi-
cant difference in complex II activity between groups 
(Fig. 7B). There was also an increase in the production of 
ROS in the group of female rats treated with MZ and the 
vitamin D was effective in protecting this increase at 12.5 
µ/kg [F(4.53) = 8.18; p < 0.001] (Fig. 7C). There was also a 
significant interaction between the sexes [F(4.90) = 52.48; 

p < 0.001] and between groups and sexes [F(4.90) = 15.11; 
p < 0.01]. A significant inhibition in CAT activity was 
observed in males intoxicated by MZ [F(4.18) = 5.47; 
p < 0.01] (Fig. 7F). GPx and GR activities were not dif-
ferent among groups (Fig. 7D and 7E, respectively).

Finally, Fig. 8 demonstrates a significant positive cor-
relation between Mn deposition and ROS generation in the 
striatum of male (Fig. 8A; r = 0,7466) and female (Fig. 8B; 
0,8366) rats exposed to MZ.

Fig. 4   Effect of Mancozeb (40 mg/kg; twice/week for 6 weeks; i.p.) 
and/or Vitamin D (12.5 µg/kg or 25 µg/kg; twice/week for 6 weeks; 
gavage) administration on cerebral cortex (A), striatum (B), hip-
pocampus (C), serum (D) and tooth (E) Zn concentration in adult 

male and female Wistar rats. The data represent mean ± standard 
error of the mean (n = 3 to 6 animals per group) (Two-way ANOVA 
followed by Tukey's post-hoc test). MZ: Mancozeb; Vit D: Vitamin D



3732	 Molecular Neurobiology (2023) 60:3724–3740

1 3

Discussion

Although dithiocarbamate derived compounds are char-
acterized by short persistence in the environment, caus-
ing mild acute toxicity upon exposure, MZ is known to 
have additional long-term toxic effects of primary con-
cern, due to its isothiocyanate skeletons, with molecular 
elements showing elevated binding capacity which may 
inhibit human enzymes, thereby affecting the interested 
biological systems and increasing the risk of endocrine 

disruption, cancer transformation, and neuronal dam-
age [40, 41]. The production and market volumes of MZ 
have kept an increasing trend for several decades. This is 
because MZ has a broad-spectrum efficacy towards a vari-
ety of plant diseases and quite a low purchase price. From 
2021, with a grace period that ended in January 2022, 
MZ use as pesticide has been banned within the whole 
European Union (EU) due to the observed reproductive 
toxicity and endocrine disrupting properties [42],Euro-
pean Food Safety Authority (EFSA) et al., [43]; European 

Fig. 5   Effect of Mancozeb (40 mg/kg; twice/week for 6 weeks; i.p.) 
and/or Vitamin D (12.5 µg/kg or 25 µg/kg; twice/week for 6 weeks; 
gavage) administration on complex I (A) and II (B) activities, ROS 
generation (C), GPx (D), GR (E) and catalase (F) activities in cer-
ebral cortex from adult male and female Wistar rats. The data repre-

sent mean ± standard error of the mean (n = 3 to 6 animals per group). 
*p < 0.05; ***p < 0.001 when compared to control group; #p < 0.05; 
###p < 0.001 when compared to MZ group (Two-way ANOVA fol-
lowed by Tukey's post-hoc test). MZ: Mancozeb; Vit D: Vitamin D
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Union, [44]). Nevertheless, in several countries, MZ is still 
largely employed in the agriculture sector [45].

The present work provided evidence that exposure to 
MZ contributes to anxious behavior and to the develop-
ment of oxidative and metabolic dysfunction in the brain, 
with different responses between sexes. There was also 
an increased accumulation of Mn in the tissues analyzed, 
especially in hippocampus, striatum, and tooth. Treatment 
with vitamin D provided neuroprotective effects in rats 
exposed to the MZ.

A significant decrease in body weight gain was observed 
in male and female rats treated with MZ, even though ani-
mals from all groups gained weight throughout the six weeks 
of experiments. A decrease of body weight gain, especially 
in males intoxicated with Mn, is well described [46, 47], 
as an increase in inflammatory proteins leads to oxidative 
stress, which may induce muscle loss and inhibition of appe-
tite [48].

We found a high concentration of Mn especially in hip-
pocampus and tooth of both male and female rats and in the 

Fig. 6   Effect of Mancozeb (40 mg/kg; twice/week for 6 weeks; i.p.) 
and/or Vitamin D (12.5 µg/kg or 25 µg/kg; twice/week for 6 weeks; 
gavage) administration on complex I (A) and II (B) activities, ROS 
generation (C), GPx (D), GR (E) and catalase (F) activities in stri-
atum from adult male and female Wistar rats. The data represent 

mean ± standard error of the mean (n = 3 to 6 animals per group). 
*p < 0.05; ***p < 0.001 when compared to control group; #p < 0.05; 
###p < 0.001 when compared to MZ group; &&&p < 0.001 when com-
pared between sexes (Two-way ANOVA followed by Tukey's post-
hoc test). MZ: Mancozeb; Vit D: Vitamin D
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striatum in female rats. On the other hand, the Zn concentra-
tion in these tissues was not modified by the treatments. A 
possible explanation is that Mn constitutes around 15% of 
the composition of MZ, while Zn corresponds to only 1.87%, 
which may also be related to the fact that Mn is the one most 
associated with the pathophysiological outcomes associated 
with the pesticide [49]. The increased concentration of Mn 
in the teeth is in accordance with previous studies. Austin 
et al. [50] and Liang et al. [51] validated biomarkers for 
Mn exposure by assessing the relationships between Mn 
in the teeth and a clear dose–response relationship in rats 

treated with Mn orally and intraperitoneally. Thus, Mn in 
teeth could be a good indication of cumulative exposure to 
MZ. Serum Mn concentration did not differ between groups 
because of the rapid clearance of Mn in blood, since the 
half-life of Mn in human blood is relatively short about four 
days [52].

In comparison to males, female rats exposed to MZ 
showed a lower latency to fall from the Rotarod appa-
ratus. According to Peres et al. [53], male Wistar rats 
intoxicated with 10 and 20 mg/kg/day of MnCl2 performed 
worse on the Rotarod test than controls, indicating motor 

Fig. 7   Effect of Mancozeb (40 mg/kg; twice/week for 6 weeks; i.p.) 
and/or Vitamin D (12.5 µg/kg or 25 µg/kg; twice/week for 6 weeks; 
gavage) administration on complex I (A) and II (B) activities, ROS 
generation (C), GPx (D), GR (E) and catalase (F) activities in hip-
pocampus from adult male and female Wistar rats. The data repre-

sent mean ± standard error of the mean (n = 3 to 6 animals per group). 
*p < 0.05; **p < 0.01 when compared to control group; #p < 0.05; 
###p < 0.001 when compared to MZ group; &&&p < 0.001 when com-
pared between sexes (Two-way ANOVA followed by Tukey's post-
hoc test). MZ: Mancozeb; Vit D: Vitamin D
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and balance impairments. It is known that Mn exposure 
can result in significant neurological and motor deficits, 
as it can affect dopaminergic pathways and the devel-
opment of brain structures [54]. Also, the anxiety pro-
file was observed in both sexes exposed to MZ and the 

administration of Vitamin D prevented these behavioral 
impairments. In a work with zebrafish, it was noted that 
changes in behavior due to exposure to MZ happened 
before biochemical alterations could be detected, and even 

Fig. 8   Correlation between Manganese accumulation and ROS 
generation in striatum (A and B), hippocampus (C and D) and cer-
ebral cortex (E and F) from male and female adult Wistar rats that 

received Mancozeb 40 mg/kg; twice/week for 6 weeks; i.p. *p < 0.05; 
R = Pearson’s correlation
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at concentrations that did not lead to changes in morphol-
ogy or mortality among embryos and larvae [1].

According to a meta-analysis by Rimmelzwaan et al. 
[55], treatment with the active hormone of vitamin D has a 
protective effect on dopaminergic neurons and on the symp-
tomatology of Parkinson’s disease. Also, vitamin D has a 
role in the signaling of dopaminergic neurons, increasing 
the concentration of VDR, production of dopamine through 
increasing tyrosine hydroxylase, and protecting against sub-
sequent oxidative damage. Thus, vitamin D can act in the 
ontogeny of dopaminergic systems [56].

Therefore, the brain is a major target organ of Mn toxic-
ity. It is absorbed by mitochondria through uniport calcium 
channels, and the excess of Mn inhibits mitochondrial respir-
atory chain complexes and impairs ATP synthesis [57–61]. 
Mn also induces mitochondrial permeability transition 
(mPT) and releases cell death mediators to the cytoplasm 
[59, 60]. Thus, ROS formation and mitochondrial dysfunc-
tion are pointed out as the main mechanisms involved [62].

In rat brains, Mn accumulates with the highest concentra-
tion in the globus pallidus, followed by the substantia nigra 
pars compacta, hippocampus, and thalamus [63]. Ivleva et al. 
[64] performed the intranasal administration of MnCl2 in 
male Wistar rats and found accumulated Mn in hippocampal 
cells and mainly in the striatum, which led to a dysregulation 
of dopamine levels in these tissues. Here we found the Mn 
accumulation preferably in hippocampus of both sexes and 
in the striatum of the females.

Previous studies by Domico et al. [65] demonstrated 
that 15 mM of MZ and Maneb, a similar pesticide, pro-
moted a mitochondrial electron transport chain dysfunc-
tion, and doses greater than 30 mM inhibited this process. 
Furthermore, when they used Nabam, another pesticide that 
contains Sodium (Na) in its structure, it became less toxic 
than MZ and Maneb, so when adding MnCl2 to Nabam, it 
increased its toxicity to the same extent as the other two 
pesticides, suggesting that Mn plays a key role in cellular 
toxicity.

Regarding Zn, also present in MZ composition, Costa-
Silva et al. [1] did not find increased levels of this metal in 
carp exposed to MZ. In another work, Domico et al. [65] 
whose experiments were carried out with ZnCl2 associated 
with Nabam, did not demonstrate similar neurotoxic poten-
tial. In our study, the Zn concentration did not show sig-
nificant differences between groups in all tissues evaluated.

In agreement with these findings, we observed an inhibi-
tion of mitochondrial complex I activity in brain tissues such 
as the hippocampus and cerebral cortex of female rats along-
side Mn accumulation in the hippocampus of both sexes and 
striatum of the females. Also, it was found an increase in 
ROS generation and administration of Vitamin D prevented 
these effects. Costa-Silva et al. [1] also detected increased 
levels of ROS in brain tissues of carp exposed to MZ.

Another study by Zhang et al. [61], suggested that Mn 
associated with the organic complex ethylene bis-dithio-
carbamate, despite promoting inhibition dose-dependent 
of complex I and complex II, preferentially inhibited the 
mitochondrial function of complex III in vitro. They also 
observed that this association causes selective striatal dopa-
mine efflux, as well as dopaminergic neurodegeneration and 
suggested the hypothesis that this process is linked to the 
observed mitochondrial inhibition. However, we did not 
found changes on mitochondrial complex II activity in all 
investigated tissues.

In another study, Morales-Ovalles et al. [2], demonstrated 
the neurochemical variations of the hypothalamus after i.p. 
administration of MZ in mice, both in low (30 mg/kg) and 
high doses (90 mg/kg), for six weeks. They observed the 
development of cytotoxicity and excitotoxicity in the hypo-
thalamus of young adult mice, mechanisms by which nerve 
cells are damaged and killed by over-stimulation of neu-
rotransmitters such as glutamate and aspartate. Thus, the 
cytotoxicity caused by MZ can be explained through its 
action on extrinsic and intrinsic pathways, which is associ-
ated with intracellular stress such as DNA damage, oxidative 
stress, cytosolic calcium overload, and excitotoxicity, among 
others, and is known that MZ can induce oxidative stress, 
catalyze the production of ROS, and inhibit mitochondrial 
respiration. In this regard, a significant positive correlation 
was found in this study between the deposition of Mn and 
the generation of ROS, especially in striatum for male and 
female rats.

Another important factor, related to oxidative stress, is 
the activity of antioxidant enzymes that provide protection 
against this process. Antioxidant molecules are recruited to 
protect the biological system by preventing oxidative pro-
cesses. Glutathione is the first line of defense against oxida-
tive stress that protects cells from ROS. Also, superoxide 
dismutase (SOD) which is responsible for the dispropor-
tionation of superoxide anion and catalase which converts 
hydrogen peroxide into oxygen and water, are the main anti-
oxidant enzymes in the brain [66].

Patel et al. [67] found an increase of CAT activity in 
the striatum when Swiss albino mice were concomitantly 
exposed, i.p., to the pesticides Maneb and Paraquat, which 
was not observed when administered individually. In our 
work, on the other hand, CAT was the most sensitive enzyme 
to inhibition, reinforcing the role of oxidative stress in MZ-
induced toxicity [1]. Overproduction of ROS in this case 
might be related to the loss of neural cells, culminating in 
neurobehavioral deficits [68]. Thus, different sources of ROS 
by Mn include the oxidation of Mn2+ to Mn3+, wich cata-
lyzes DA oxidation with the formation of toxic and reactive 
intermediaries [69]. Also, Mn can increase the proportion 
of Fe (II), wich can then prompt oxidative stress via the 
Fenton reaction [70]. Thus, the accumulation of Mn caused 
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by MZ exposure could contribute to oxidative damage and 
behavioral impairment in flies by some of the mentioned 
mechanisms.

The neurological role of vitamin D can be evidenced 
by the presence of nuclear VDR in brain tissues of adult 
rats. In tests carried out by Bayo-Olugbami [71] with VDR 
knockout mice, it was shown that the animals had impaired 
motor function in behavioral tests, demonstrating that these 
receptors are important for neuronal control. Da Silva et al. 
[72] demonstrated in their study that vitamin D may also 
be related to a neuronal protection mechanism against Mn. 
They found that vitamin D acts on the brain by inducing the 
expression of a manganese-carrying enzyme called ZnT10, 
which, in reduced concentrations, is associated with the 
occurrence of manganism. This transporter provides neu-
rological protection against Mn by promoting its efflux. In 
our study, Vitamin D was able to prevent the mitochondrial 
complex I inhibition and the increase of ROS, as well as the 
decrease of the antioxidant capacity in the evaluated brain 
tissues, which was most evident in the cerebral cortex.

Our study also found relevant differences between sexes. 
According to Schmitz et al. (2019), liver damage was identi-
fied in female rats intoxicated with subacute Mn, showing a 
different accumulation pattern of Mn in the body of males 
and females, with a more expressive accumulation among 
females.

Oxidative stress and mitochondrial functions are sexually 
dysmorphic depending on the affected brain area, normally 
women have greater defense by antioxidant enzymes and 
less ROS production [73]. In a study with midbrain cells 
exposed to oxidopamine, males had higher levels of ROS 
and less expression of mitochondrial proteins when com-
pared to females [74]. In our study, there was increase in 
ROS generation predominantly in female´s striatum and 
hippocampus.

In addition, in vivo and in vitro experiments have shown 
that females have higher levels of PON2 gene expression 
in mitochondria and that these receptors are modulated by 
estrogen. This relationship was demonstrated with a reduc-
tion in the expression of PON2 among ovariectomized 
females and with an increase among males treated with 
estradiol, which appears to act as a potent antioxidant [75].

It has been shown that female rats aged 23 to 24 weeks can 
begin to present irregularities in the estrous cycle corroborat-
ing to the loss of neuronal protection among females [76]. 
Also, the environmental exposure to the pesticides can induce 
changes in the estrous cycle that can lead to early reproduc-
tive senescence, in addition to changes that have already been 
demonstrated in oocytes and ovarian follicles [77].

A general impairment of Wistar rats estrous cycle treated 
with MZ 500 at 800 mg/kg for 30 days was observed in 
comparison with controls [78]. Morphometric analysis of 
albino rats, intoxicated with oral MZ (700 mg/kg) showed 

a time-dependent destruction of the estrous cycle and an 
increase in atretic follicles and pathological changes in the 
gonads and uterus [78]. Our study did not evaluate hormonal 
and gonadal parameters, but the available evidence suggests 
that these parameters could explain the differences found in 
females.

Even though animals had the same age, the males expect-
edly had a greater body mass. This might limit our conclu-
sions in three aspects: (i) increased body fat might alter MZ 
and vitamin D pharmacodynamics, with potential effects 
on absorption and distribution; (ii) the different basal body 
weight between sexes possibly had an impact in the differ-
ences in weight variation along the study; and (iii) even with 
the same training protocol, males might have had more dif-
ficulty to adapt to the Rotarod apparatus, due to their larger 
and heavier bodies.

Conclusions

This study showed that MZ administration contributes to 
anxious-like behavior, motor impairments, and metabolic 
and oxidative dysfunction in cerebral tissues. Female rats 
appeared to be more sensitive to develop anxious behav-
ior and inhibition of mitochondrial complexes, while 
males demonstrated greater impairments in the activity of 
enzymes. Vitamin D was able to protect against most out-
comes. It is important to re-evaluate the abundant use of 
pesticides in agriculture and the consequences of lifetime 
human exposure to prevent the potential damage on health 
associated with this practice, which represents a serious 
problem in public health. On the other hand, our work also 
brings novelty in the scenario, providing more evidence on 
the neuroprotective role of vitamin D, although this role has 
already been demonstrated against different neurotoxicity 
mechanisms, in our work, for the first time, against MZ-
induced toxicity, providing new perspectives on pesticides 
intoxication treatment.
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