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Abstract
Learned fear is orchestrated by a brain fear network that comprises the amygdala, hippocampus and the medial prefrontal 
cortex. Synaptic plasticity within this network is critical for the formation of proper fear memories. Known for their role 
in the promotion of synaptic plasticity, neurotrophins position as obvious candidates in the regulation of fear processes. 
Indeed, recent evidence from our laboratory and others associates dysregulated signalling through neurotrophin-3 and its 
receptor TrkC with the pathophysiology of anxiety and fear-related disorders. Here, we put wild-type C57Bl/6J mice through 
a contextual fear conditioning paradigm in order to characterize TrkC activation and expression in the main brain regions 
involved in (learned) fear – amygdala, hippocampus, and prefrontal cortex – during the formation of a fear memory. We 
report an overall decreased activation of TrkC in the fear network during fear consolidation and reconsolidation. During 
reconsolidation, hippocampal TrkC downregulation was accompanied by a decrease in the expression and activation of Erk, 
a critical signalling pathway in fear conditioning. Moreover, we did not find evidence that the observed decrease of TrkC 
activation was caused by altered expression of dominant negative form of TrkC, neurotrophin-3, or the PTP1B phosphatase. 
Our results indicate hippocampal TrkC inactivation through Erk signalling as a potential mechanism in the regulation of 
contextual fear memory formation.
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Introduction

Excessive (learned) fear is a shared feature of anxiety disor-
ders [1], the most prevalent group of mental disorders world-
wide with more than 300 million people affected by one of 
these conditions [2–4]. Importantly, most patients are still 
resistant or relapse to currently available pharmacological 
and/or cognitive behavioural therapies [5, 6].

Pavlovian fear conditioning is a translationally relevant 
model, key in both understanding the physiology of fear and 
the pathophysiology of anxiety disorders. Fear condition-
ing is an associative learning process in which a neutral 

stimulus, such as a tone or a specific context (conditioned 
stimulus, CS), is presented together with an aversive stimu-
lus, usually a foot shock (unconditioned stimulus, US), to 
generate a conditioned fear response [7]. The fear acquisition 
phase is followed by a consolidation phase, lasting hours to 
days, during which memories are formed [8]. Subsequent 
exposure to the CS, in absence of the US, is sufficient to 
evoke freezing behaviour, demonstrating the effective for-
mation of a conditioned fear memory. Re-exposure to the 
CS after the stabilization of fear memories causes them 
to become labile and susceptible to disruption [9]. In this 
state, depending on the characteristics of the CS exposure, 
memories can progress to extinction, or they can undergo 
reconsolidation. Reconsolidation is the process through 
which memories re-stabilize after having been destabilized 
by exposure to the CS. It is thought to allow the integration 
of new information into the memory trace, and shares most, 
but not all, molecular mechanisms with fear consolidation 
[10, 11].

Fear conditioning is mediated by the brain fear circuit, 
a complex ensemble of brain areas with highly specialized 
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cell populations and an intricate connectivity [12, 13]. The 
core brain region of the fear circuit is the amygdala, that 
is implicated in fear conditioning in animals [14, 15] and 
humans [16, 17]. Other fundamental regions of the fear cir-
cuit are the medial prefrontal cortex (mPFC), involved in 
fear retrieval and extinction [12, 13], and the hippocampus 
that encodes information about the context [18, 19].

Fear memory acquisition and consolidation are achieved 
through an assortment of cellular and molecular mecha-
nisms, many of them underlying synaptic plasticity at fear 
network brain regions [20]. Of note, the MAPK/Erk pathway 
and the PI3-K/Akt pathway are essential for the consolida-
tion of fear memories [21–23], by regulating transcription 
of genes that promote synaptic plasticity [24].

The MAPK/Erk pathway, the PI3-K/Akt pathway and the 
PLC-γ/Ca2+ pathway [25, 26] are the three main intracel-
lular signalling cascades initiated by neurotrophins. Neuro-
trophins are a family of growth factors classically known for 
their role in neuronal development [27] and their potential to 
promote synaptic plasticity [28, 29]. Mature neurotrophins, 
i.e. nerve growth factor (NGF), brain-derived neurotrophic 
factor (BDNF), neurotrophin-3 (NT-3) and neurotrophin-4/5 
(NT-4/5), selectively bind receptors of the tropomyosin 
receptor kinase (Trk) family with high affinity [29, 30]. TrkA 
preferentially binds NGF, TrkB preferentially binds BDNF 
and NT-4, while TrkC preferentially binds NT-3 [26, 29, 31].

The activation of the downstream pathways mentioned 
above regulates gene expression and promotes synaptic plas-
ticity, placing neurotrophins as good candidates in the regu-
lation of fear memory. In fact, BDNF and its receptor TrkB 
have been shown to be necessary for proper fear learning 
[32–35]. The NT-3/TrkC system is less consistently stud-
ied, but several lines of evidence from our laboratory and 
others strongly suggest that the NT-3/TrkC pathway is also 
involved in the regulation of fear in anxiety and fear-related 
disorders. First, human genetic studies found an associa-
tion of polymorphisms in NTRK3, the gene that codes for 
TrkC, with panic disorder patients [36, 37]. Studies in mice 
have further supported a role for NT-3/TrkC in panic dis-
order. A transgenic mouse (TgNTRK3) that overexpresses 
human TrkC, validated as a panic disorder model, shows 
increased anxiety-related behaviours [38] and increased con-
textual fear memory that is resistant to extinction processes 
[39, 40]. More recently, a study in Rhesus monkeys showed 
that NTRK3 expression levels in the dorsal amygdala are 
inversely correlated with anxious temperament, a risk factor 
for the development of anxiety disorders [41]. Notably, NT-3 
overexpression in the amygdala rescues anxious tempera-
ment levels [41].

Here, we aimed at investigating the NT-3/TrkC system in 
the formation of a contextual fear memory. C57Bl/6 J mice 
were trained in the contextual fear conditioning paradigm 
to study the NT-3/TrkC system during the time windows of 

consolidation and reconsolidation of a fear memory in the 
amygdala-hippocampus-PFC fear network.

Material & Methods

Animals

A total of 57 C57Bl/6J male mice (8 weeks of age) were 
used in this study (purchased from Charles River labo-
ratories). Mice were housed in groups of four (eventu-
ally two) animals per cage containing sawdust, paper 
bag and cardboard roll as nesting material and shelter. 
Food and water were available ad libitum and animals 
were maintained in a 12-h light/dark cycle, with con-
trolled conditions of temperature (18-22ºC) and humid-
ity (60–70%). All described procedures were carried out 
in strict accordance with the EU directive 2010/63/EU 
and approved by the local ethical committee for animal 
well-being and experimentation (ORBEA, project num-
ber 209/2018).

Contextual Fear Conditioning Paradigm

Animals were trained in the contextual fear condition-
ing (CFC) paradigm as previously described [39, 40]. 
Mice were transferred to the behaviour room three days 
before the beginning of the behavioural test for acclima-
tion. On day one, mice were placed in the fear condition-
ing chamber (UgoBasile, Italy) for 3 min for habituation. 
On day 2, CFC training consisted in 2 min of exploration 
of the chamber, during which basal freezing levels were 
recorded, followed by administration of 5 foot-shocks 
(US1-US5, 0.5 mA, 2 s), separated by a variable inter-
trial interval (between 15–60 s). Freezing was manually 
scored in the 15 s following each shock. Twenty-four hours 
after CFC training, fear conditioned and control mice 
were placed back in the chamber for 2 min, during which 
freezing was scored to assess fear memory retrieval. The 
chamber was cleaned with 10% ethanol to provide a neu-
tral olfactory environment. Animals in the control groups 
were treated the same way as animals in the experimental 
groups, but did not receive any shocks (CTRL-no shock 
group).

Sample Collection and Processing

Animals in the experimental groups and their respective con-
trols were sacrificed 2–4 h after CFC training (fear acqui-
sition group) or after fear memory retrieval (fear memory 
group), and the hippocampi, PFC and amygdalae were 
isolated and immediately frozen in dry ice and stored at 
-80 °C until further processing. In particular, PFC dissection 
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includes approximately 2.5 mm of the most frontal part of 
the brain (coordinates from Paxinos & Franklin mouse brain 
atlas [42]: anterior–posterior + 3.3 to + 1.8), excluding the 
portion of the olfactory bulbs, olfactory areas and nuclei.

For total protein extraction, brain tissues were mechani-
cally homogenized in radioimmunoprecipitation assay 
(RIPA) buffer (150 mM NaCl, 50 mM Tris–HCl pH7.4, 
5 mM EGTA, 1% Triton, 0.5% DOC and 0.1% SDS, pH7.5) 
supplemented with protease (Complete protease inhibitor 
cocktail, Roche, Switzerland) and phosphatase (PhosSTOP, 
Sigma-Aldrich, MA, USA) inhibitors. Lysates were left at 
an orbital rotator for 30 min at 4 °C and then centrifuged at 
16,000 × g for 30 min at 4 °C. The supernatant was collected 
and stored at -80 °C. Total protein content was quantified 
using the bicinchoninic acid (BCA) protein assay kit (Sigma-
Aldrich, MA, USA).

Western Blot

Total protein extracts (30 μg) were resolved in 7% sodium 
dodecyl sulfate–polyacrylamide gels and transferred to pol-
yvinylidene fluoride (PVDF) membranes (Immobilon-P, 
Merck Millipore, MA, USA) overnight at 40 V, plus 30 min 
at 100 V, at 4 °C. Membranes were then blocked for 1 h at 
room temperature (RT) in 5% (w/v) low fat milk prepared 
in tris-buffered saline-tween-20 (TBS-T: 137 mM NaCl, 
20 mM tris–HCl, pH 7.6 with 0.1% tween-20), followed by 
overnight incubation at 4 °C with primary antibodies diluted 
in 5% milk/TBS-T. Membranes were washed with TBS-T, 
and incubated for 90 min at RT with appropriate secondary 
antibodies diluted in 0.5% milk/TBS-T. After washing, mem-
branes were incubated with ECF substrate (GE Healthcare, 
IL, USA) and scanned with the ChemiDoc imaging system 
(Bio-Rad, CA, USA). Membranes were stripped of primary 
and secondary antibodies using 0.2 M NaOH (20 min at 
RT), blocked 1 h at RT in 5% milk/TBS-T, and probed for 
additional proteins of interest. β-actin detection was used 
as a loading control. Bands were quantified using ImageJ 
software (National Institutes of Health, MD, USA) following 
the guidelines of Gassmann and colleagues [43]. The follow-
ing primary antibodies were used in this study: rabbit anti-
phospho-TrkC Tyr516 (PA5-39755, 1:500 dilution, Thermo 
Fisher Scientific, MA, USA), rabbit anti-TrkC (3376, 
1:1000, Cell Signaling Technology, MA, USA), mouse 
anti-diphosphorylated-MAPK (M9692, 1:3000, Sigma-
Aldrich, MA, USA), rabbit anti-MAPK (M5670, 1:20,000, 
Sigma-Aldrich, MA, USA), rabbit anti-phospho-Akt Ser473 
(9271, 1:2000, Cell Signaling Technology, MA, USA), rab-
bit anti-Akt (sc-8312, 1:500, Santa Cruz Biotechnology, TX, 
USA), mouse anti-PLC-γ (610027, 1:1000, BD Transduc-
tion Laboratories, NJ, USA), mouse anti-PTP1B (sc-133259, 
1:1000, Santa Cruz Biotechnology, TX, USA) and mouse 
anti-β-actin antibody (A5441, 1:5000, Sigma-Aldrich, MA, 

USA). The following secondary antibodies were used in this 
study: alkaline phosphatase-conjugated antibody anti-rabbit 
(A16026, 1:10,000, Thermo Fisher Scientific, MA, USA) or 
anti-mouse (A16014, 1:10,000, Thermo Fisher Scientific, 
MA, USA).

Enzyme‑Linked Immunosorbent Assay (ELISA)

A NT-3 ELISA kit (#BEK-2079-2P, Biosensis, Australia) 
was used to assess the concentration of NT-3 in brain tissue 
lysates. Total protein extracts were diluted 1:5 in sample dil-
uent buffer, plated in a 96-well microplate pre-coated with a 
monoclonal NT-3 antibody and incubated overnight at 4 °C. 
After 5 washes with phosphate-buffered saline (PBS), a 2 h 
incubation with biotinylated anti-NT-3 antibody was per-
formed. The wells were washed 3 with PBS and incubated 
with avidin–biotin-peroxidase complex (ABC) enzyme for 
1 h at RT. After 5 washes with PBS, the peroxidase substrate 
TMB was added. The reaction was stopped after 10 min by 
adding TBM stop solution. Absorbance was measured at 
450 nm using a microplate spectrophotometer (SpectraMax 
Plus 384, Molecular Devices, CA, USA).

Statistical Analysis

All data were analysed using GraphPad Prism 8 software 
(Version 8.4.3, GraphPad Software, CA, USA). The normal-
ity of each data set was assessed using the Shapiro–Wilk 
test and outliers (defined by the ROUT method, Q = 1%) 
were removed from normal distributions. CFC data were 
analysed using repeated measures two-way ANOVA with 
post hoc Bonferroni’s test for pairwise comparisons (fear 
acquisition groups) and Student’s t-test (fear memory 
groups). For western blot and ELISA data, the means (in 
the case of normal distribution) or the ranks (in the case of 
non-normal distribution) of each condition were compared 
using Student’s t-test or Mann–Whitney U test, respectively. 
For Student’s t-test, Welch correction was applied in the case 
of significant difference of variances. For each western blot, 
data were normalized to the mean of CTRL-no shock group. 
Graphs represent average values ± standard error of the mean 
(SEM). Statistical significance was set at 0.05 (*p ≤ 0.05, 
**p ≤ 0.01, ***p ≤ 0.001).

Results

C57BI/6J mice were trained in the CFC paradigm. The 
fear acquisition group and respective control animals (fear 
acquisition, n = 18; CTRL-no shock, n = 8) were sacrificed 
2 to 4 h after fear conditioning, in the window of fear mem-
ory consolidation. The fear memory group and respective 
controls (fear memory, n = 21; CTRL-no shock, n = 10) 
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performed a fear memory retrieval test 24 h after fear train-
ing, to assess the retention of fear memory. Here, animals 
were sacrificed 2 to 4 h after fear memory retrieval, in the 
window of reconsolidation. Sacrifice of control and test ani-
mals was randomized to avoid bias in sample collection. Our 
goal was to study alterations in NT-3/TrkC and its intracel-
lular signalling during the formation of a contextual fear 
memory. To that end, we first quantified the levels of TrkC 
expression and activation (as measured by phosphorylation) 
in the brain fear circuit, comprising the amygdala, PFC and 
hippocampus, of fear conditioned mice during the periods 
of fear memory consolidation (fear acquisition group) and 
reconsolidation (fear memory group).

Consolidation of a Fear Memory Correlates 
with Decreased TrkC Activation in the Amygdala 
and PFC

For the fear acquisition group (Fig. 1a), repeated measures 
two-way ANOVA performed on the freezing levels revealed 
a statistically significant effect of US presentations (US1-
US5) (F (2.974, 71.38) = 8.36, p < 0.0001), treatment (CTRL-
no shock vs CFC, F (1, 24) = 14.32, p = 0.0009) and US x 
treatment interaction (F (5, 120) = 8.591, p < 0.0001). Post 
hoc comparisons revealed that freezing levels increased 
with successive shock presentations (CFC: US1 vs US5, 
t (17) = 5.387, p = 0.0007) and that the percentage of time 
freezing in the fear acquisition animals was increased as 
compared to CTRL-no shock animals (US5: CTRL-no shock 
vs CFC, t (17.43) = 6.049, p < 0.0001), confirming that a fear 
response was successfully induced in the animals in the 
experimental condition.

During fear memory consolidation, no significant dif-
ferences were found in the expression and phosphoryla-
tion levels of TrkC between fear acquisition and CTRL-
no shock mice in the hippocampus (pTrkC, t (22) = 0.6664, 
p = 0.5121; full-length TrkC, t (22) = 0.8627, p = 0.3976; 
pTrkC/full-length TrkC ratio, U = 59, p = 0.8362; Fig. 1b-
e). However, in the amygdala (Fig. 1f-i) we observed 
a significant decrease in the relative phosphorylation 

of TrkC in fear acquisition animals when compared 
to CTRL-no shock (pTrkC/full-length TrkC ratio, t 
(23) = 2.583, p = 0.0166) and a trend for decrease in 
the total levels of phosphorylated TrkC (t (23) = 1.945, 
p = 0.0641), while the levels of full-length TrkC showed 
no alterations (U = 46, p = 0.3261). Likewise, in the PFC 
(Fig. 1j-m) contextual fear conditioning is associated 
with a decrease in the pTrkC/full-length TrkC ratio (t 
(7.513) = 2.531, p = 0.037), accompanied by a significant 
increase in the levels of full-length TrkC (t (23) = 2.184, 
p = 0.0394), but no differences in total phosphorylated 
TrkC (t (23) = 1.850, p = 0.0772).

Reconsolidation of a Fear Memory Correlates 
with Decreased TrkC Activation in the Hippocampus

In the fear memory group, during the fear acquisition 
phase (Fig. 2a), we observed a significant effect of US 
presentations (F (5, 145) = 8.919, p < 0.0001), treatment 
(F (1, 29) = 6.166, p = 0.0191) and US x treatment inter-
action (F (5, 145) = 7.810, p < 0.0001) in the percentage 
of time spent freezing. Again, successive US presenta-
tions increased the time spent freezing in the fear condi-
tioned animals (US1 vs US5, t (145) = 8.684, p < 0.0001) 
and the percentage of time freezing in the fear memory 
animals was increased as compared to CTRL-no shock 
animals (US5: CTRL-no shock vs CFC, t (174) = 5.318, 
p < 0.0001). Twenty-four hours later, animals were 
placed back into the training chamber to assess fear 
memory retrieval. Here, conditioned mice displayed sig-
nificantly higher freezing levels than CTRL-no shock 
mice (Fig. 2b, t (20.33) = 7.869, p < 0.0001), demonstrating 
proper retention and recall of fear memory.

During fear memory reconsolidation, we observed a 
decrease in relative TrkC phosphorylation levels in the hip-
pocampus of conditioned animals (t (30) = 3.018, p = 0.0051) 
and a trend for decrease in total levels of phosphoryl-
ated TrkC (t (29) = 1.780, p = 0.0856), with no differences 
observed in the levels of full-length TrkC (t (28.74) = 1.319, 
p = 0.1974; Fig. 2c-f). In the amygdala (Fig. 2g-j), overall 
no differences were detected in the expression or activation 
levels of TrkC (pTrkC/full-length TrkC ratio, t (28.84) = 1.992, 
p = 0.0559; full-length TrkC, t (29) = 0.1586, p = 0.8751; 
pTrkC, U = 89, p = 0.5189). In the PFC (Fig. 2k-n), the total 
levels of phosphorylated TrkC were significantly decreased 
in conditioned animals (U = 33, p = 0.0042), with no dif-
ferences found in the relative phosphorylation (U = 88, 
p = 0.7899) or in the levels of full-length TrkC (t (28) = 1.43, 
p = 0.1639).

Overall, our data points to a downregulation of TrkC sig-
nalling in key brain regions of the fear network during the 
formation of a fear memory.

Fig. 1  Expression and activation of TrkC in the fear circuit dur-
ing contextual fear memory consolidation. (a) Fear acquisition mice 
(n = 18) underwent contextual fear conditioning, while CTRL-no 
shock mice (n = 8) did not receive any foot-shocks. The percentage 
of time spent freezing was assessed during the initial 2 min before US 
presentation (basal) and in the 15 s after each shock (US1-US5). (b, f, 
j) Representative western blot images of pTrkC and TrkC performed 
in (b) hippocampus, (f) amygdala and (j) prefrontal cortex total 
protein extracts from fear acquisition (n = 18) and CTRL-no shock 
(n = 8) mice sacrificed during fear consolidation. Quantification of (c, 
g, k) pTrkC/full-length TrkC ratio, (d, h, l) levels of phosphorylated 
TrkC and (e, i, m) total full-length TrkC levels. β-actin was used as a 
loading control. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001. CTRL, control; 
pTrkC, phosphorylated TrkC; US, unconditioned stimulus

◂
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Fear Memory‑Related Decrease in TrkC 
Phosphorylation in the Brain Fear Circuit 
is not Associated with a Reduction in NT‑3 Levels 
or Increase in Truncated TrkC Isoform

Next, we used ELISA to measure the levels of NT-3, which 
binds TrkC with high affinity, in lysates from brain regions 
highly implicated in the processing of fear and where the 
relative activation of TrkC was found to be altered at specific 
timepoints, i.e. amygdala during the fear consolidation phase 
(Fig. 1f, g) and hippocampus during fear reconsolidation 
(Fig. 2c, d). Statistical analysis did not reveal differences 
in the NT-3 levels between fear acquisition and CTRL-no 
shock animals in the amygdala (U = 60, p = 0.5308; Fig. 3a) 
or between fear memory and CTRL-no shock animals in the 
hippocampus (t (29) = 0.014, p = 0.9889; Fig. 3f). Although 
we did not observe differences in total NT-3 levels, both 
during consolidation and reconsolidation of fear, we cannot 
exclude changes in the activity-dependent secretion of NT-3 
that are more likely to account for synaptic plasticity effects.

The truncated isoform of TrkC, which cannot be phos-
phorylated, can act as a dominant negative by sequester-
ing NT-3 and preventing the activation of full-length TrkC 
receptors [44, 45]. To investigate the possibility that the 
overall decrease in TrkC phosphorylation, observed in the 
brain regions of the fear circuit of fear conditioned animals, 
is accompanied by an increase of the dominant negative 
truncated TrkC isoform, we measured its expression lev-
els. During fear consolidation, no differences were detected 
between fear acquisition and CTRL-no shock animals in the 
ratio of full-length TrkC/truncated TrkC (U = 60, p = 0.8826) 
or in the expression levels of truncated TrkC (t (23) = 1.059, 
p = 0.3007) in the amygdala (Figs. 1f and 3b, c). Likewise, 
no differences were found between groups in the hip-
pocampus (full-length TrkC/truncated TrkC, t (23) = 0.0354, 
p = 0.9721; truncated TrkC, t (23) = 0.2729, p = 0.7874; 
Fig. 1c; supplementary Fig. 1a, b) or in the PFC (full-length 

TrkC/truncated TrkC, U = 46, p = 0.1597; truncated TrkC, 
t (24) = 1.349, p = 0.19; Fig. 1j; supplementary Fig. 1c, d).

During fear reconsolidation, also no differences were 
observed in the total or relative expression levels of trun-
cated TrkC between fear memory and CTRL-no shock ani-
mals in the hippocampus (full-length TrkC/truncated TrkC, 
t (30) = 0.5184, p = 0.6080; truncated TrkC, t (28.88) = 1.319, 
p = 0.1974; Figs. 2c and 3g, h), amygdala (full-length TrkC/
truncated TrkC, t (29) = 0.6821, p = 0.5006; truncated TrkC, t 
(29) = 1.270, p = 0.2143; Fig. 2g; supplementary Fig. 1e, f) or 
PFC (full-length TrkC/truncated TrkC, U = 87, p = 0.7558; 
truncated TrkC, t (27.21) = 0.8677, p = 0.3932; Fig. 2k; sup-
plementary Fig. 1 g, h).

Overall, there is no evidence for an association between 
the observed decrease in TrkC phosphorylation levels, dur-
ing the consolidation and reconsolidation of a contextual 
fear memory, and alterations in the expression of TrkC trun-
cated isoform.

No Alterations in the Expression Levels 
of the Trk‑Targeting Phosphatase PTP1B

PTP1B is a phosphatase that targets, among others, Trk 
receptors, dephosphorylating them [46]. To investigate the 
possibility that the observed decrease in TrkC activation 
during the (re)consolidation of a contextual fear memory is 
associated with an increased expression of the TrkC-target-
ing PTP1B phosphatase, after fear acquisition or fear mem-
ory retrieval, we measured its expression levels, by western 
blot, in brain regions and timepoints where a decrease in 
TrkC activation was observed. We did not observe any dif-
ferences between conditioned and CTRL-no shock animals 
in the levels of PTP1B in the amygdala during fear consoli-
dation (U = 47, p = 0.4551; Fig. 3d, e) or in the hippocam-
pus during fear reconsolidation (t (22) = 0.5175, p = 0.61; 
Fig. 3i, j). These results provide no evidence for an associa-
tion between the observed decrease in TrkC phosphoryla-
tion levels, during the consolidation and reconsolidation of 
a contextual fear memory, and alterations in the expression 
of PTP1B.

Downregulation of Hippocampal NT‑3/TrkC‑ERK 
Pathway During Reconsolidation of Contextual Fear 
Memory

Given the results described above showing alterations in 
TrkC activation associated with the formation of a contex-
tual fear memory, we aimed at investigating possible altera-
tions in intracellular signalling pathways activated by the 
NT-3/TrkC system. To this end, we measured the expression 
and phosphorylation levels of the endpoint molecules Erk, 
Akt and PLC-γ in brain regions of the fear network during 
fear consolidation and fear reconsolidation timepoints.

Fig. 2  Expression and activation of TrkC in the fear circuit dur-
ing contextual fear memory reconsolidation. (a) Fear memory mice 
(n = 21) underwent contextual fear conditioning, while CTRL-no 
shock mice (n = 10) did not receive any foot-shocks. The percentage 
of time spent freezing was assessed during the initial 2  min before 
US presentation (basal) and in the 15 s after each shock (US1-US5). 
(b) Percentage of time spent freezing was measured in conditioned 
and control mice during a 2-min fear retrieval session 24 h after CFC. 
(c, g, k) Representative western blot images of pTrkC and TrkC per-
formed in (c) hippocampus, (g) amygdala and (k) prefrontal cortex 
total protein extracts from fear memory (n = 21) and CTRL-no shock 
(n = 10) mice sacrificed during fear reconsolidation. Quantification 
of (d, h, l) pTrkC/full-length TrkC ratio, (e, i, m) levels of phospho-
rylated TrkC and (f, j, n) total full-length TrkC levels. β-actin was 
used as a loading control. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001. Panel 
c), non-contiguous lanes from the same membrane. CFC, contextual 
fear conditioning; CTRL, control; pTrkC, phosphorylated TrkC; US, 
unconditioned stimulus
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During the consolidation phase, in the amygdala no dif-
ferences were found between fear acquisition and CTRL-
no shock animals in the expression and phosphorylation of 

Erk (Fig. 4a, d; pErk-1/Erk-1, t (23) = 0.4727, p = 0.6409; 
total Erk-1, U = 55, p = 0.4747; pERK-1, t (23) = 0.7439, 
p = 0.4645; pErk-2/Erk-2, U = 40, p = 0.1104; total Erk-2, 
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t (23) = 0.4921, p = 0.6273; pErk-2, U = 60, p = 0.834), Akt 
(Fig. 4b, d; pAkt/Akt, t (23) = 0.1627, p = 0.8722; total Akt, 
t (22) = 0.2265, p = 0.8229; pAkt, U = 65, p = 0.8867), or 
in the expression of total PLC-γ (Fig. 4c, d; t (23) = 1.5, 
p = 0.1473).

In the PFC, there were no differences between fear acquisi-
tion and CTRL-no shock animals in the expression and phos-
phorylation of Erk-1 (Fig. 4e, h; pErk-1/Erk-1, t (23) = 0.9776, 
p = 0.3385; total Erk-1, U = 57, p = 0.4285; pErk-1, t 
(24) = 0.1666, p = 0.8691). We did observe an increase in the 
pErk-2/Erk-2 ratio in fear acquisition animals as compared 
to CTRL-no shock (Fig. 4e, h; U = 24, p = 0.0131), though 
we did not detect differences between groups in the levels of 
total Erk-2 or phosphorylated Erk-2 (Fig. 4e, h; total Erk-2, 
t (24) = 0.0991, p = 0.9219; pErk-2, t (22) = 1.739, p = 0.096). 
No differences between groups were observed in the expres-
sion and phosphorylation of Akt (Fig. 4f, h; pAkt/Akt, t 
(21) = 0.2019, p = 0.842; total Akt, U = 41, p = 0.3411; pAkt, 
t (21) = 1.18, p = 0.2512) or in the expression of total PLC- γ 
(Fig. 4g, h; t (22.94) = 0.8122, p = 0.425).

In the hippocampus, we did not observe any differences 
between fear acquisition and CTRL-no shock experimen-
tal groups in the expression and phosphorylation of Erk-
1/2 (Fig. 4i, l; pErk-1/Erk-1, U = 55, p = 0.367; total Erk-1, 
U = 55, p = 0.367; pErk-1, t (24) = 1.416, p = 0.1696; pErk-2/
Erk-2, U = 42, p = 0.1021; total Erk-2, t (24) = 0.0333, 
p = 0.9737; pErk-2, U = 52, p = 0.2852), Akt (Fig. 4j, l; pAkt/
Akt, t (22) = 0.1373, p = 0.8921; total Akt, t (23) = 0.1541, 
p = 0.8789; pAkt, t (22) = 0.9498, p = 0.3525) or in the expres-
sion of total PLC- γ (Fig. 4k, l; t (20.96) = 0.9924, p = 0.3323).

In sum, during the consolidation phase we observed an 
increase in the pErk2/Erk2 ratio in the PFC of fear acquisi-
tion animals as compared to CTRL-no shock animals, where 
TrkC changes were not detected, indicating that two path-
ways are most probably unrelated in these conditions.

During the reconsolidation window, in the amygdala we 
did not detect differences between fear memory animals and 
CTRL-no shock in any of the molecules studied. In detail, 
there were no differences between groups in the expression 
and phosphorylation levels of Erk-1/2 (Fig. 5a, d; pErk-1/
Erk-1, t (24) = 0.5526, p = 0.5856; total Erk-1, t (24) = 0.984, 
p = 0.3349; pErk-1, t (24) = 1.649, p = 0.1121; pErk-2/Erk-2, t 
(24) = 0.2231, p = 0.8254; total Erk-2, t (24) = 0.1558, p = 0.8775; 
pErk-2, t (24) = 0.0318, p = 0.9749), Akt (Fig. 5b, d; pAkt/Akt, 
t (24) = 1.129, p = 0.27; total Akt, U = 77, p = 0.8971; pAkt, t 
(24) = 1.081, p = 0.2904) or in the expression of total PLC- γ 
(Fig. 5c, d; t (24) = 0.8548, p = 0.4011).

In the PFC, no differences were found in the expression and 
phosphorylation of Erk-1/2 between fear memory and CTRL-
no shock groups (Fig. 5e, h; pErk-1/Erk-1, t (21) = 0.0792, 
p = 0.9376; total Erk-1, U = 48, p = 0.3686; pErk-1, t (21) = 1.145, 
p = 0.2652; pErk-2/Erk-2, t (21) = 0.1265, p = 0.9005; total Erk-2, 
t (19) = 0.816, p = 0.4246; pErk-2, t (19) = 1.002, p = 0.3292). We 
observed a decrease in total Akt expression in the fear memory 
group (Fig. 5f, h; total Akt, t (20) = 2.311, p = 0.0316), without 
differences in the phosphorylation of Akt (Fig. 5f, h; pAkt/Akt, 
t (19) = 1.085, p = 0.2916; pAkt, t (19) = 0.0506, p = 0.9601). We 
did not observe differences in the expression levels of total 
PLC- γ (Fig. 5g, h; t (19) = 0.273, p = 0.7878).

In the hippocampus, we observed a significant decrease in 
the expression levels of total Erk-1 (Fig. 5i, l; t (28) = 3.368, 
p = 0.0022) and in the levels of phosphorylated Erk-1 (t 
(28) = 3.545, p = 0.0014) in fear memory animals, although 
no differences were found in the pErk-1/Erk-1 ratio (t 
(28) = 0.1893, p = 0.8512). In addition, we observed a decrease 
in the pErk-2/Erk-2 ratio in fear memory animals (t (28) = 2.062, 
p = 0.0486), without differences observed in the expression 
levels of total Erk-2 (t (28) = 0.7121, p = 0.4823) or levels of 
phosphorylated Erk-2 (t (28) = 1.424, p = 0.1655) between the 
two conditions. Furthermore, no differences were found in the 
expression or phosphorylation levels of Akt (Fig. 5j, l; pAkt/
Akt, t (29) = 1.569, p = 0.1274; total Akt, U = 102, p = 0.9173; 
pAkt, t (29) = 1.16, p = 0.2555) or in the expression levels of 
total PLC-γ (Fig. 5k, l; U = 85, p = 0.4164).

In sum, we observed an overall decrease in the activation of 
Erk-1/2 in the hippocampus during fear reconsolidation con-
current with a decrease in the activation of TrkC. Also, the 
observed reduction in the expression of Akt in the PFC should 
not be related to TrkC signalling as no changes in TrkC activa-
tion were detected in the PFC and this pathway is not expected 
to affect Akt expression levels.

Discussion

The fear conditioning paradigm has been a powerful model to 
study the neuronal mechanisms of fear learning and memory. 
A distributed network of brain regions is involved in learning 

Fig. 3  Expression levels of different modulators of TrkC activation. 
(a, f) Quantification by ELISA of NT-3 levels (pg/mL) in protein 
extracts from (a) the amygdala of fear acquisition animals sacrificed 
during fear consolidation and (f) the hippocampus of fear memory 
animals sacrificed during fear reconsolidation, and respective con-
trols. (b, c, g, h) Quantification of (b, g) full-length TrkC/truncated 
TrkC ratio and (c, h) truncated TrkC levels in total protein extracts 
from (b, c) the amygdala of fear acquisition animals sacrificed dur-
ing fear consolidation and (g, h) the hippocampus of fear memory 
animals sacrificed during fear reconsolidation. Representative west-
ern blot images showing full-length TrkC and truncated TrkC under 
CTRL-no shock and fear acquisition/fear memory conditions are 
shown in Figs.  1f and 2c. (d, i) Representative images of PTP1B 
western blot performed in total protein extracts from (d) the amyg-
dala of fear acquisition animals sacrificed during fear consolidation 
and (i) the hippocampus of fear memory animals sacrificed dur-
ing fear reconsolidation. (e, j) Quantification of expression levels of 
PTP1B. β-actin was used as a loading control in western blots. CTRL, 
control; ELISA, enzyme-linked immunosorbent assay; NT-3, neuro-
trophin 3; WB, western blot
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Fig. 4  Expression levels of endpoint molecules of TrkC-recruited 
signalling pathways in the brain fear network during contextual fear 
consolidation. Representative western blot images of (a, e, i) pErk-1/2 
and Erk-1/2, (b, f, j) pAkt and Akt, and (c, g, k) PLC-γ performed 
in the (a-c) amygdala, (e–g) prefrontal cortex and (i-k) hippocam-
pus total protein extracts from fear acquisition (n = 18) and CTRL-

no shock (n = 8) mice, sacrificed during fear consolidation. (d, h, l) 
Quantification of the ratio of phosphorylated/total protein levels, lev-
els of phosphorylated proteins and total protein levels in (d) amyg-
dala, (h) prefrontal cortex and (l) hippocampus. β-actin was used as a 
loading control. *p ≤ 0.05. CTRL, control
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Fig. 5  Expression levels of endpoint molecules of TrkC-recruited 
signalling pathways in the brain fear network during contextual fear 
reconsolidation. Representative western blot images of (a, e, i) pErk-
1/2 and Erk-1/2, (b, f, j) pAkt and Akt and (c, g, k) PLC-γ performed 
in the (a-c) amygdala, (e–g) prefrontal cortex and (i-k) hippocampus 
total protein extracts from fear memory (n = 16–21) and respective 

CTRL-no shock (n = 10) mice, sacrificed during fear reconsolidation. 
(d, h, l) Quantification of the ratio of phosphorylated/total protein 
levels, levels of phosphorylated proteins and total protein levels in the 
(d) amygdala, (h) prefrontal cortex and (l) hippocampus. β-actin was 
used as a loading control. *p ≤ 0.05, **p ≤ 0.01. CTRL, control; panel 
i), non-contiguous lanes from the same membrane

3517Molecular Neurobiology (2023) 60:3507–3521



1 3

and expressing fear responses (reviewed in [13]). In the pre-
sent work, we focus on the amygdala, PFC and hippocam-
pus, brain regions recruited during learned fear and sites of 
intense synaptic plasticity events, where neurotrophins play 
a critical role. We report an overall downregulation of TrkC 
activation in the brain fear network both in the consolida-
tion and reconsolidation phases of fear memory formation, as 
compared to their respective controls. Moreover, we did not 
find differences in the levels of NT-3, the dominant negative 
truncated TrkC isoform or the TrkC-targeting phosphatase 
PTP1B, between fear conditioned and control animals, factors 
that could explain the observed differences in TrkC activation. 
Though we cannot completely exclude their involvement as 
we did not assess activity-dependent NT-3 release, truncated/
full-length TrkC interaction or PTP1B activity. Importantly, 
during reconsolidation hippocampal TrkC downregulation 
was accompanied by a downregulation of ERK, suggesting 
a potential role for this intracellular signalling pathway in 
the physiological regulation of fear reconsolidation, which 
deserves further investigation.

Decreased Activation of TrkC in the Fear Circuit 
During the (re)Consolidation of a Fear Memory

As mentioned above, we found here an overall decrease in 
TrkC activation in brain regions of the fear circuit, during the 
formation of a contextual fear memory. In particular, the most 
relevant differences were observed in the amygdala during 
the consolidation phase and in the hippocampus during the 
reconsolidation phase of fear memory. In fact, consolidation 
and reconsolidation of contextual fear memories are dually 
dissociable processes that recruit different pathways. While 
BDNF is selectively required for consolidation, the transcrip-
tion factor Zif268 is selectively required for reconsolidation 
[10]. Contextual fear retrieval induces expression of several 
activity regulated genes (Zif268, c-Fos, and JunB) specifically 
in the CA1 dorsal hippocampus [47, 48], which are thought 
to regulate neuronal plasticity during reconsolidation. The 
observed hippocampal alterations in TrkC activation during 
contextual fear memory reconsolidation are consistent with a 
specific role of this region in the process of reconsolidation, 
mediated by regulation of neuronal plasticity. Consolidation 
of contextual fear memories, on the other hand, occurs both 
in the basolateral amygdala and the hippocampus. However, 
it is thought that initial consolidation occurs in the amygdala, 
and only afterwards the representation of the memory is pro-
jected to the hippocampus, consolidating for a second time 
here, a process essential for retention of long-term memories 
[49]. In fact, regulation of synaptic plasticity in the amygdala 
after contextual fear conditioning is key to the consolidation 
and long-term retention of fear memories [50], consistent with 
our results showing alterations in TrkC in the amygdala 2–4 h 

after contextual fear conditioning. In future work it would be 
important to show a causal link between TrkC inactivation and 
fear (re)consolidation.

Decrease in TrkC Activation is Accompanied 
by Decreased Erk Expression and Phosphorylation 
in the Hippocampus

TrkC activation recruits three main intracellular signalling 
pathways whose endpoint molecules are Erk-1/2, Akt and 
PLC-γ [26]. We studied the levels of expression (for Erk-1/2, 
Akt and PLC-γ) and activation (for Erk-1/2 and Akt) of these 
proteins in brain regions where we have observed alterations 
in the activation of TrkC. During fear consolidation, we did 
not observe any differences in Erk1/2 expression or activa-
tion in the amygdala between fear conditioning and control 
animals. During fear reconsolidation, we observed an overall 
decrease in the activation of Erk-1/2, which is concurrent with 
a decrease in TrkC activation, suggesting that they might be 
correlated. A previous study found that there is a biphasic 
hippocampal activation of Erk critical in the consolidation of 
contextual fear memory [51], with peaks 15 min and 9 h after 
training. In between, 3 to 6 h after training, the pErk/Erk ratio 
is back to basal levels. Although consolidation and recon-
solidation are two different processes, mediated by distinct 
mechanisms, we could speculate that TrkC could contribute to 
a necessary phase of downregulation of Erk phosphorylation 
during fear memory reconsolidation.

Overall, we did not observe differences in the expression and 
phosphorylation of Akt. Previously, an increased activation of 
Akt was observed in the amygdala 15 min after contextual fear 
conditioning [22], however, to the best of our knowledge, the 
activation of Akt had never been studied at the later timepoint in 
focus in our study. Few studies have explored the role of PLC-γ 
in fear conditioning. One study found that PLC-γ activation 
is increased in the hippocampus 30 min after contextual fear 
conditioning [52]. Additionally, transgenic mice overexpressing 
TrkB show enhanced contextual fear learning, which is associ-
ated with an increase in the activation of PLC-γ1 in the hip-
pocampus and the cerebral cortex [53]. Again, no study focused 
on the timepoint investigated. At this timepoint, we found no 
alterations in the expression of PLC-γ. However, we could not 
find a working antibody to study PLC-γ phosphorylation.

Decrease in TrkC Activation is not Accompanied 
by Alterations in NT‑3, Truncated TrkC 
or Phosphatase PTP1B Expression

Truncated Trks are known to have a dominant negative 
effect and thereby preclude full-length Trk signalling by 
sequestering neurotrophin ligands [45]. In this scenario, 
an increase in truncated TrkC expression could explain the 
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observed reduction in TrkC activation, though we did not 
find differences in the expression levels of truncated TrkC 
between fear conditioned and control animals. However, a 
contribution of this isoform to the decreased TrkC activation 
observed during fear memory (re)consolidation cannot be 
excluded since the interaction between truncated and full-
length TrkC was not directly assessed.

Another possible cause for the observed decrease in TrkC 
activation could lie in alterations in the expression or avail-
ability of its ligand, NT-3. We did not find alterations in 
NT-3 expression in the amygdala during fear consolidation 
and the hippocampus during fear reconsolidation, our two 
main focuses. In spite of this, we cannot exclude a role for 
NT-3 in the activation of TrkC during the formation of a 
fear memory. First, we measured NT-3 concentrations dur-
ing the consolidation and reconsolidation phases, 2 to 4 h 
after fear training and fear retrieval, respectively, though the 
action of NT-3 may be more immediate, after which signal-
ling is carried on by intracellular mechanisms. Second, we 
studied whole tissue protein extracts, while we know that 
brain regions of the fear circuit have highly specialized sub-
circuits [12, 13]. It is possible that NT-3 may act locally and 
the alterations in its local availability may be diluted when 
we study the entire brain region. Of note, NT-3 is highly 
expressed in the hippocampus CA2 region [54], and is not 
expressed in the adult amygdala, unlike TrkC [55], suggest-
ing that NT-3 travels from other brain regions to the amyg-
dala to activate TrkC. In future studies it would be interest-
ing to measure local secretion of NT-3 during performance 
in fear conditioning.

It is known that fear conditioning increases BDNF in 
the fear circuit, accompanied by activation of TrkB and 
recruitment of intracellular signalling pathways that will 
regulate synaptic plasticity. Briefly, contextual fear condi-
tioning increases BDNF transcription in the CA1 region of 
the rat hippocampus [56, 57], while cued fear condition-
ing increases BDNF expression in the rat amygdala [58, 
59]. Additionally, Bdnf heterozygous null (Bdnf+/-) mice 
display impaired contextual fear conditioning, which is 
partially rescued by chronic administration of recombinant 
BDNF into the hippocampus [35], and blocking activation 
of TrkB in the rat amygdala impairs fear memory consoli-
dation [59] and retention [60]. Our data suggests that a 
possible role of NT-3/TrkC system in fear conditioning 
may differ from that of BDNF/TrkB.

Finally, TrkC inactivation is also not associated with 
an increase in the expression of the Trk-targeting phos-
phatase PTP1B [46], as we observed no differences in its 
levels. However, it is important to note that we did not 
measure the enzymatic activity of this phosphatase, which 
along with its level of expression is a main indicator of its 
impact on other proteins in the system. Other mechanisms 
could explain the decreased activation of TrkC, such as 

desensitization of TrkC receptors by internalization [61] 
and downregulation of TrkC cell-surface expression [62] 
that could be explored in the future.

In summary, TrkC activation is generally decreased in 
the brain fear circuit during fear consolidation and recon-
solidation, while no alterations are observed in the expres-
sion of NT-3, truncated TrkC or PTP1B phosphatase. 
Furthermore, during reconsolidation, this decrease is 
accompanied by an overall decrease in Erk expression and 
activation in the hippocampus. This spatio-temporal char-
acterization of TrkC activation state, and related up- and 
downstream factors, during fear (re)consolidation provides 
the first evidence associating TrkC with learned fear and 
per se represents a relevant contribution to the neurotro-
phin field, where for so many years the NT-3/TrkC system 
was left orphan. In the future, proving causality and elu-
cidating the underlying molecular mechanisms will have 
a major impact on the field of fear by bringing into scene 
a new molecular player with potential in mental health 
promotion.
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