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Abstract
Alzheimer’s disease (AD) is closely related to type 2 diabetes (T2D). This study investigated the impact of high-intensity 
interval training (HIIT) on diabetes-induced disturbances in AD-related factors (including AMP-activated protein kinase 
(AMPK), glycogen synthase kinase-3β (GSK3β), and tau protein) in the hippocampus, with the main focus on adiponectin 
signaling.
In total, 28 male Wistar rats at the age of 8 weeks were randomly assigned to four groups (n = 7 in each group): control (Con), 
type 2 diabetes (T2D), HIIT (Ex), and type 2 diabetes + HIIT (T2D + Ex). T2D was induced by a high-fat diet plus a single 
dose of streptozotocin (STZ). Rats in Ex and T2D + Ex groups performed 8 weeks of HIIT (running at 8–95% of Vmax, 4–10 
intervals). Insulin and adiponectin levels in serum and hippocampus were measured along with hippocampal expression of 
insulin and adiponectin receptors, phosphorylated AMPK, dephosphorylated GSK3β, and phosphorylated tau. Homeostasis 
model assessment for insulin resistance (HOMA-IR), homeostasis model assessment for insulin resistance beta (HOMA-β), 
and quantitative insulin sensitivity check index (QUICKI) were calculated to assess insulin resistance and sensitivity. T2D 
decreased insulin and adiponectin levels in serum and hippocampus, as well as the hippocampal levels of insulin and adi-
ponectin receptors and AMPK, but increased GSK3β and tau in the hippocampus. HIIT reversed diabetes-induced impair-
ments and consequently decreased tau accumulation in the hippocampus of diabetic rats. HOMA-IR, HOMA-β, and QUICKI 
were improved in Ex and T2D + Ex groups. Overall, our results confirmed that T2D has undesirable effects on the levels of 
some Alzheimer’s-related factors in the hippocampus, and HIIT could ameliorate these impairments in the hippocampus.

Keywords HIIT · Type 2 diabetes · Alzheimer’s disease · Hippocampus · Adiponectin

Introduction

Sedentary lifestyles and an increased tendency toward high-
calorie and high-fat foods contribute to obesity [1], a risk 
factor for many diseases, including diabetes and cardio-
vascular disease. Diabetes is a metabolic disease that dis-
rupts fat metabolism, increases adipose tissue (especially 
visceral), and causes glucose intolerance [2]. Usually asso-
ciated with obesity, type 2 diabetes (T2D) is a disease in 
which the body does not respond to insulin normally. This 
insulin resistance (IR) is the main cause of T2D [1]. In addi-
tion to IR, diabetes can disrupt adipokine production and 
secretion [3]. Adipokines are cytokines secreted by adipose 
tissue acting at autocrine/paracrine and endocrine levels 
[4]. Adipokines have a role in regulating glucose and lipid 
metabolism, energy homeostasis, healthy behavior, insulin 
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sensitivity, inflammation, immune system function, fat accu-
mulation, vascular function, coagulation, and cognitive func-
tion [5]. Evidence suggests that obesity and T2D can lead 
to cognitive disorders by disrupting adipokines’ functions 
[4]. Today, the number of people with cognitive disorders is 
estimated to be around 55 million worldwide and will reach 
more than 131 million by 2050 [6, 7]. In total, 98% of people 
with cognitive disorders such as Alzheimer’s disease (AD) 
suffer from one or more common diseases such as obesity 
and diabetes. Type 2 diabetes increases the risk of cognitive 
disorders by about 1.6 times [8, 9].

Adiponectin is an adipokine that mediates the cross-talk 
between adipose tissue and the central nervous system and 
is considered the leading player in diabetes-induced cog-
nitive disorders. Two adiponectin receptors, AdipoR1 and 
AdipoR2, have been identified in the brain [10]. Based on 
the available evidence, adiponectin crosses the blood–brain 
barrier. It binds to its receptors to activate cellular path-
ways, including insulin metabolism, mitochondrial biogen-
esis, and oxidative stress through AMP-activated protein 
kinase (AMPK) [11]. On the other hand, phosphorylation 
of p38-mitogen-activated protein kinases (p38-MAPK) stim-
ulates neurogenesis through glycogen synthase kinase-3β 
(GSK3β). In addition, there is a cross-talk between the 
AMPK and GSK-3β signaling pathways in which GSK-3β 
suppresses AMPK [11].

Adiponectin function in the central nervous system and 
its relation to cognitive disorders has not yet been fully 
understood. However, because IR is commonly seen in 
early AD (hence called type 3 diabetes [12]), adiponectin 
might be a vital player in AD [13]. Adiponectin levels have 
been reported to increase [14], decrease [15], and in some 
cases, remain unchanged in AD [16]. To compensate for the 
increase in IR in the central nervous system, plasma adi-
ponectin levels increase to stimulate the decreased activity 
of insulin receptors (i.e., a compensatory response) [17]. 
However, after crossing the blood–brain barrier and activat-
ing AMPK and p53-MAPK cascades, adiponectin increases 
the phosphorylated and toxic form of tau protein, which 
leads to neuronal and synaptic cell death. Therefore, both 
positive and negative role is imaginable for adiponectin in 
cognitive disorders [17, 18].

Exercise effectively counteracts various metabolic prob-
lems, age-related loss of function, and physiological issues. 
Various studies have shown that different modalities of 
exercise, such as treadmills [19–21], voluntary exercise 
[22–24], and swimming [25, 26], are effective in AD and 
T2D diseases. Among all interventions, exercise could be 
used as a preventive strategy, does not have side effects, and 
has many positive physiological and psychological effects 
[27]. Regular exercise training could control dysglycemia 
and hyperinsulinemia, increase insulin sensitivity, decrease 
body fat, and decrease blood pressure [28–31]. Exercise 

effects on metabolic disorders could be mediated through 
adiponectin [32]. Research has also shown that adiponectin’s 
role in T2D and AD is remarkable [17] and can be consid-
ered a link between the two diseases. Thus, exercise could 
be a preferred choice for preventing T2D-induced cogni-
tive disorders. However, the therapeutic effect of exercise 
shows a dose–response pattern, meaning that training vari-
ables should be manipulated carefully to reach the desirable 
adaption. It has been shown that adiponectin response to 
exercise is intensity dependent, with high-intensity interval 
training (HIIT) as the most effective. It has been demon-
strated that 12 weeks of HIIT increased adiponectin lev-
els and insulin sensitivity more than the same amount of 
moderate intensity in obese individuals [33]. In addition, 
Martinez et al. [34],while a high-fat diet disrupted heart lev-
els of adiponectin, exercise training could ameliorate this 
change. They suggested that the effect of exercise might be 
type-dependent. This study investigated the effect of 8-week 
HIIT on adiponectin signaling and phosphorylated AMPK, 
dephosphorylated GSK3β, and phosphorylated tau protein 
in hippocampus of male rats with T2D.

Material and Methods

Animal Care

In the present study, we purchased 28 8-week-old male 
Wistar rats with an average weight of 200 g from the animal 
farm of Kerman University of Medical Sciences (KUMS) 
and kept them at 23 ± 2 °C and a 12:12 dark–light cycle in 
special polycarbonate cages. All animals had free access to 
water and food. The ethics committee of KUMS approved 
the study protocol prior to any experiments being carried out 
(ethics approval code: IR.KMU.REC.1399.503).

After being habituated to the laboratory environment, the 
animals were randomly assigned to four groups (n = 7 in 
each group): control (Con), type 2 diabetes (T2D), exercise 
(Ex), and type 2 diabetes + exercise (T2D + Ex). The Ex and 
T2D + Ex groups performed 8 weeks of HIIT.

Induction of Diabetes

T2D + Ex and T2D groups were fed a high-fat diet (HFD) 
for 2 months (Table 1). After 2 months, the animals fasted 
for 12 h, and a single dose of 35 mg/kg streptozotocin (STZ) 
was injected intraperitoneally. Animal blood glucose was 
measured three days after STZ injection using a glucometer. 
Animals with fasting blood glucose (FBG) above 300 mg/
dl were considered diabetic and included in the study [35]. 
Animals’ FBG were measured before starting the interven-
tion (month 0), after diabetes induction (2 months of high-fat 
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diet and STZ injection), and 48 h after the training period 
using a glucometer (Accu-Chek, USA).

Exercise Protocol

All animals were familiarized with the motorized tread-
mill. They ran on the treadmill at 8 m/min with an incline 
of 0% and 10 min/day for 5 consecutive days prior to the 
experiments. The Ex and T2D + Ex groups performed an 
incremental running test to determine their maximum speed 
(Vmax). They ran for 2 min at a 6 m/min speed, and every 
2 min, 2 m/min was added to the speed until they became 
exhausted. The last min tolerated speed was considered Vmax. 
Finally, the HIIT protocol was carried out five times a week 
for 8 weeks by rats in Ex and T2D + Ex groups [30]. Rats’ 
Vmax was measured every 2 weeks, and the new Vmax was 
used to calculate relative speed in the next 2 weeks. This 
protocol was designed in our lab, and we named it the K1 
protocol (Table 2).

Serum and Tissue Sampling

A total of 48 h after the last training session, animals were 
anesthetized by intraperitoneal injection of ketamine(80 mg/
kg) and xylazine(10 mg/kg) and blood samples were taken 
from the animal’s heart after 12 h of fasting, and hippocam-
pal tissues were harvested. Blood samples were then placed 
at room temperature for 30 min and then centrifuged at 
1000 g for 20 min at 4 °C, and serum samples were stored 
at a temperature of – 80 °C. The hippocampus was washed 
in PBS (1.37 M NaCl, 27 mM KCl, 100 mM Na2HPO4, 
18 mM KH2PO4, and PH: 7.4) solution. An ultrasonic 

homogenizer performed homogenization in Ripa buffer 
(150 mM NaCl, 1.0% IGEPAL® CA-630, 0.5% sodium 
deoxycholate, 0.1% SDS, 50 mM Tris, and PH: 8.0) solution 
with protease inhibitor on ice. The homogenate was centri-
fuged at 4 °C at 17,982 g for 20 min, and the supernatant 
was kept at – 80 °C.

Western Blot

Western blotting was used to measure the amount of phos-
phorylated AMPK, dephosphorylated (Santa Cruz Biotech-
nology Inc., sc-33524), GSK3-β (Santa Cruz Biotechnol-
ogy Inc., sc-81462), AdipoR1 (Santa Cruz Biotechnology 
Inc., sc-518030), AdipoR2 (Santa Cruz Biotechnology 
Inc., sc-514045), and the phosphorylated form of tau pro-
tein (Santa Cruz Biotechnology Inc., sc-21796) and insulin 
receptor beta subunit (InsRB) (Santa Cruz Biotechnology 
Inc., sc-57342). The total protein concentration in the hip-
pocampal samples was measured by the Lowry method, 
while bovine serum albumin was used as standard. After 
matching the concentrations, 40 μg of protein from each 
sample was mixed with a buffer sample. Then electro-
phorese was performed for 75 min using 11% SDS-PAGE 
gel. After that, the proteins separated in the gel were trans-
ferred to PVDF paper. The membrane was then incubated 
in a 2% block solution overnight (at 4 °C). In the next step, 
the membrane was quenched four times each, washed with 
TBST (tris-buffered saline with tween 20) solution as a 
detergent for 5 min, and incubated for 3 h with the initial 
antibody (concentration 1:200) for each of the mentioned 
proteins. Then, the membrane was exposed to a secondary 
antibody (with a concentration of 1:1000) for 1 h. In the 

Table 1  Regular and high-fat 
diet ingredients

Diet ingredients Fat Carbohydrate Protein Fiber Minerals Vitamins

Regular diet 10% 70% 20% 50 g 50 g 3 g
High-fat diet 60% 20% 20% 50 g 50 g 3 g

Table 2  K1 protocol

Week Slope Frequency Intervals High-intensity 
interval duration 
(min)

Low-intensity 
interval duration 
(min)

High-intensity 
interval velocity 
(%Vmax)

Low-intensity 
interval velocity 
(%Vmax)

Total exercise 
time in a session 
(min)

1 0 5 4 2 1 80 50 12
2 0 5 4 2 1 85 50 12
3 0 5 6 2 1 85 50 18
4 0 5 6 2 1 90 50 18
5 0 5 8 2 1 90 50 24
6 0 5 8 2 1 95 50 24
7 0 5 10 2 1 95 50 30
8 0 5 10 2 1 100 50 30
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next step, immune detection was recorded using Chemi Doc 
XRS + imaging system (Bio-Rad Company, USA) and ana-
lyzed by ImageJ software [36]. β-actin was used as a control, 
and the final data was corrected by β-actin expression.

ELISA

The adiponectin and insulin levels were assessed using 
ELISA in the serum. According to the manufacturer’s 
instructions, serum and tissue adiponectin and insulin were 
assayed using relevant kits. Adiponectin (Rat ELISA Kit, 
Eastbiopharm) and insulin (Rat ELISA Kit, Eastbiopharm) 
[36–38].

Calculation of Insulin Resistance/Sensitivity Indices

The homeostasis model assessment (HOMA) was used 
to assess insulin resistance (HOMA-IR) and homeosta-
sis model assessment of β-cell function (HOMA-β). Spe-
cifically, HOMA-IR and HOMA-β scores were calculated 
using the following formula: HOMA-IR = [(fasting glu-
cose (mmol/l) × fasting insulin (μU/ml))/22.5]. HOMA 
β-cell = [(20 × fasting insulin (μU/ml))/(fasting glucose 
(mmol/l) – 3.5) [39]. The quantitative insulin sensitivity 
check index (QUICKI) was also used as it has a better lin-
ear correlation with glucose clamp determinations of insu-
lin sensitivity than minimal-model estimates. QUICKI was 
calculated using Katz et al. formula [40] (i.e., 1/[log (fasting 
insulin in μU/ml) + log (fasting glucose in mg/dl)]).

Statistical Analysis

The data are reported as mean ± standard deviation (SD). 
Statistical analysis was performed using SPSS version 21. 
Normality and homogeneity of variances were assessed 
using Shapiro–Wilk and Leven tests, respectively. Two-way 
ANOVA followed by Tukey’s post hoc was used to analyze 

the data. P-values less than 0.05 were considered statistically 
significance.

Results

Animal Weight and Blood Glucose

We assessed FBG to confirm our diabetes induction method. 
Our results showed that blood glucose was significantly 
increased after diabetes induction (2 months of high-fat 
diet and STZ injection) (month 2) compared with before 
baseline (month 0) in T2D and T2D + Ex group (P = 0.000), 
with no significant difference between these groups. In addi-
tion, HIIT reduced blood glucose significantly (P = 0.000) 
(Fig. 1A). Animals’ weight showed a significant increase 
in T2D and T2D + Ex groups after diabetes induction 
(2 months of high-fat diet and STZ injection) (P = 0.000). 
In addition, the weight was decreased in T2D and T2D + Ex 
groups (P = 0.000), with more decrease in the T2D group 
(P = 0.02) (Fig. 1B).

Insulin Resistance/Sensitivity Indexes

To assess if T2D and Ex could improve insulin sensitivity, 
we evaluated insulin sensitivity indices (i.e., HOMA-IR, 
HOMAβ, and QUICKI). Our result showed that T2D and Ex 
increased and decreased HOMA-IR, respectively (P < 0.05). 
In addition, a significant interaction was seen between T2D 
and Ex (P < 0.05) (Fig. 2A). Also, HOMAβ decreased by 
T2D and increased by Ex (P < 0.05). T2D and Ex showed 
significant interaction (P < 0.05) (Fig. 2B). Furthermore, a 
significant decrease was seen in QUICKI after T2D induc-
tion decreased but it increased after Ex. T2D and Ex interac-
tion was also significant (P < 0.05) (Fig. 2C). All in all, these 
results suggested that T2D increased IR but Ex decreased it.

Fig. 1  Fasting blood glucose (A) and body weight (B) before start-
ing the intervention (month 0), after diabetes induction (2  months 
of high-fat diet and STZ injection) (month 2), and 48 h after the last 
training session (month 4) in all groups (mean ± SD). FBG: Fasting 

blood glucose, Con: control, T2D: type 2 diabetic (STZ injected), Ex: 
exercise only, and T2D + Ex: type 2 diabetic + exercise. * shows a sig-
nificant difference between T2D and T2D + Ex with other groups
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Insulin and Adiponectin Levels in Serum

Our results showed that serum insulin levels were signifi-
cantly decreased by T2D and increased by Ex (P < 0.05) 
(Fig. 3A). In addition, T2D and Ex showed significant inter-
action (P < 0.05). Our results showed that serum adiponectin 
levels were significantly decreased by T2D and increased by 
Ex (P < 0.05). In addition, T2D and Ex showed significant 
interaction (P < 0.05). (Fig. 3B).

InsRB, APNR1, and APNR2 Expression 
in Hippocampus

Our results showed that InsRB levels in hippocampus 
were significantly decreased by T2D and increased by Ex 
(P < 0.05). In addition, T2D and Ex showed significant 
interaction (P < 0.05) (Fig. 4A). APNR1 and APNR2 levels 
showed a significant decrease and increase by T2D and Ex, 

respectively (P < 0.05). Furthermore, our results showed sig-
nificant interaction for T2D and Ex (P < 0.05) (Fig. 4B and C).

Phosphorylated AMPK and Dephosphorylated 
GSK3β Expression in the Hippocampus

Phosphorylated AMPK levels decreased by T2D and 
increased by Ex (P < 0.05). In addition, a significant interac-
tion was seen for T2D and Ex (P < 0.05) (Fig. 5A). Dephos-
phorylated GSK3β levels increased by T2D and decreased 
by Ex (P < 0.05). In addition, a significant interaction was 
seen for T2D and Ex (P < 0.05) (Fig. 5B).

Phosphorylated Tau Expression in the Hippocampus

Phosphorylated tau levels increased by T2D and decreased 
by Ex (P < 0.05). In addition, a significant interaction was 
seen for T2D and Ex (P < 0.05) (Fig. 6).

T2D effect: p<0.05, Ex effect: p<0.05, interaction: p<0.05 

BA C

Fig. 2   HOMA-IR (A), HOMAβ (B), and QUICKI (C) (mean ± SD). Con, control; T2D, type 2 diabetic; Ex, exercise; T2D + Ex, type 2 dia-
betic + exercise

Fig. 3  Insulin and adiponectin 
levels (mean ± SD) in serum and 
hippocampus. Ins, insulin; Con, 
control; T2D, type 2 diabetic; 
Ex, exercise; T2D + Ex, type 2 
diabetic + exercise
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Discussion

This study was designed to investigate the effect of 
8-week HIIT on adiponectin signaling and AD risk fac-
tors in the hippocampus of male rats with T2D. Our 
results showed that diabetes reduced both insulin and 
adiponectin levels in serum. Diabetes also reduced the 
expression of adiponectin and insulin receptors and 
AMPK and increased dephosphorylated GSK3-β and tau 
in the hippocampus. HIIT recovered these impairments 
fully or partially. HOMA-IR, HOMA-β, and QUICKI 
(i.e., indices of insulin resistance, β cell function, and 
insulin sensitivity, respectively) were also improved 
by HIIT. In line with our results, Ghiasi et  al. [41] 
reported that while HOMA-IR increased and QUICKI 
and HOMA-β decreased in diabetes, HIIT returned these 
indices to the normal ranges.

It has been suggested that diabetes-induced peripheral 
IR could finally lead to central IR. This can explain the 

decrease in insulin receptor expression in the T2D group, 
consistent with Biessels et al. results [42].

One study suggested that hypoadiponectinemia is asso-
ciated with a decrease in hippocampus volume in patients 
with T2D [34], and adiponectin levels are critical for 
brain function. Pousti et al. [43] revealed that adiponectin 
modulates synaptic plasticity in the hippocampal dentate 
gyrus. Furthermore, Weisz et al. [44] demonstrated that 
adiponectin signaling could regulate hippocampal synaptic 
transmission. The recovery of adiponectin receptors in the 
hippocampus of diabetic rats through exercise, reported in 
the present study, shows that HIIT may be used as a non-
pharmacological strategy for the prevention and treatment 
of hippocampus function impairments induced by diabe-
tes/AD. At the behavioral level, diabetes can adversely 
affect cognitive-related functions, such as the results of the 
Morris water maze [8], and adiponectin improved animal 
performance in this test [45, 46]. Our results also showed 
a negative effect of diabetes on adiponectin receptors in 

Fig. 4  InsRB (A), APNR1 (B), and APNR2 (C) expression 
(mean ± SD) in the hippocampus. APNR1, adiponectin receptor1; 
APNR2, adiponectin receptor2; Co, control; T2D, type 2 diabetic; 

Ex, exercise; T2D + Ex, type 2 diabetic + exercise. The western bond 
order is as follows: Con, T2D, Ex, and T2D + Ex

Fig. 5  Phosphorylated AMPK 
(A) and dephosphoryl-
ated GSK3β (B) expression 
(mean ± SD) in the hippocam-
pus. P-AMPK, phosphorylated 
AMP-activated protein kinase; 
Co, control; T2D, type 2 dia-
betic; Ex, exercise; Ex + T2D, 
type 2 diabetic + exercise. 
The western bond order is as 
follows: Con, T2D, Ex, and 
T2D + Ex
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the hippocampus, which are in agreement with other stud-
ies [47–49].

In line with our results, many studies have shown that 
exercise can improve HOMA indices and IR [50, 51]. In 
addition, it has been suggested that HIIT can improve insulin 
sensitivity and increase insulin secretion [52]. Our observa-
tions also confirmed the positive effects of HIIT on insulin 
sensitivity and insulin secretion. Hemmatinafar et al. [53] 
reported that HIIT is a time-efficient method for increasing 
adiponectin levels and reducing body fat, considering the 
point that exercise intensity is the vital variable in affecting 
adiponectin. It means that the more exercise intensity the 
more increase in adiponectin. Added to this, the interval 
nature of HIIT allows to repeat several bouts of high-inten-
sity exercises, reinforcing the HIIT associate advantages 
[54].

In addition, we saw increased p-tau levels in the hip-
pocampus in T2D, which is in line with Hobday et al. [55] 
results. P-AMPK/DeP-GSK-3β pathway dysfunction is 
considered the main reason for increased tau accumulation 
because of increased DeP-GSK-3β activity, which finally 
leads to its hyper-phosphorylation [56]. Adiponectin could 
also stimulate p-AMPK in the hypothalamus, and increases 
food intake [57]. This may justify the weight loss we saw in 
diabetic animals.

Our results also showed that the hippocampus level 
of adiponectin receptors and p-AMPK are reduced in 
diabetic rats, but HIIT seems to recover these changes. 
In peripheral tissue, adiponectin activates p-AMPK 
through AdipoR1. Furthermore, p-AMPK promotes Akt 

phosphorylation and GSK-3β inhibition, both of which 
increase insulin sensitivity. Activating this signaling 
pathway also suppresses apoptosis, oxidative stress, and 
neuroinflammation, and it could reduce neurodegenera-
tion. It has been shown that adiponectin could improve 
memory and synaptic plasticity in a rat model of demen-
tia, and p-AMPK is essential for the memory-improving 
effect of adiponectin [58]. Barone et  al. [59] showed 
that the interplay between oxidative stress, brain IR, and 
p-AMPK dysfunction contributes to neurodegeneration in 
T2D and AD. They reported a decrease in p-AMPK in the 
hippocampus of diabetic patients and consider decreased 
adiponectin, increased oxidative stress and inflammation, 
and increased DeP-GSK3B activity as the main players in 
this scenario [59]. Many studies [60, 61] have shown that 
HIIT can increase p-AMPK levels and expression in the 
skeletal muscle. Exercise has long been known to activate 
AMPK/Sirtuin1 (AMPK/SIRT1) pathway and enhance 
brain-derived neurotrophic factor (BDNF) production. The 
activation of AMPK/SIRT1 and BDNF plays an important 
role in the exercise-related mitigation of dementia pathol-
ogy. AMPK/SIRT1 and BDNF can directly affect intracel-
lular Aβ production, tau phosphorylation, and neurogen-
esis via regulating α-, β-, and γ-secretases, and GSK3 [62]. 
Activated GSK-3 phosphorylates and thereby inactivates 
glycogen synthase, an enzyme that converts glucose to 
glycogen for storage [63].

Insulin activates AKT/protein kinase B through a well-
defined mechanism mediated by the IRS1/PI3K pathway. 
This leads to the phosphorylation of GSK3B at serin9 
residual, resulting in its inactivation [64]. Our results 
showed increased expression of GDeP-GSK3β in the hip-
pocampus following T2D. Adiponectin can modulate the 
GDeP-GSK3β signaling pathway [63], and evidence sup-
ports GDeP-GSK3β’s role in producing some of AD’s 
characteristic hallmarks, such as extracellular accumula-
tion of amyloid-β protein (Aβ) and intraneuronal neurofi-
brillary tangles composed of hyper-phosphorylated tau and 
inflammatory markers. These effects contribute to synaptic 
and neuronal loss and memory decline [65]. GSK3β was 
recognized as a primary kinase involved in tau phospho-
rylation, as was apparent from the first study termed tau 
protein kinase-I. Thus, GDeP-GSK3β has been identified 
as one of the major enzymes mediating tau hyper-phos-
phorylation at the residues implicated in neurodegenera-
tive tauopathies, including AD [66]. Our results showed 
its increased expression in the hippocampus following 
T2D. Thota et al. [67] results are consistent with our data. 
The recovery of adiponectin levels and reduction of DeP-
GSK3β expression toward normal by HIIT in diabetic rats 
imply that this type of exercise would benefit patients with 
diabetes to prevent the progression of their memory loss 
during the course of the disease.

Fig. 6  Phosphorylated tau expression (mean ± SD) in the hippocam-
pus. P-TAU, phosphorylated TAU; Co, control; T2D, type 2 diabetic; 
Ex, exercise; T2D + Ex, type 2 diabetic + exercise. The western bond 
order is as follows: Con, T2D, Ex, and T2D + Ex
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Conclusion

Our results confirmed the destructive effects of T2D on the 
levels of specific Alzheimer’s-related markers in the hip-
pocampus through adiponectin signaling. T2D decreased 
insulin and adiponectin levels in serum as well as the hip-
pocampal levels of insulin and adiponectin receptors and 
p-AMKP but increased DeP-GSK3β and P-tau in the hip-
pocampus, and HIIT as a non-pharmacological interven-
tion could recover these impartments.

Limitations

Due to financial limitations, we could not perform an 
immunochemistry analysis. Using immunochemistry could 
show us the exact reign of molecular changes, which is 
important because, for example, CA1 is closely related to 
cognitive impairments. In addition, to reduce the number 
of animals (as suggested by the ethical committee), we had 
to use the whole hippocampus, not the special reign/s for 
western blotting.
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