
Vol.:(0123456789)1 3

https://doi.org/10.1007/s12035-022-03175-w

Molecular Hydrogen: an Emerging Therapeutic Medical Gas for Brain 
Disorders

Chongyun Wu1 · Peibin Zou1 · Shu Feng1 · Ling Zhu1 · Fanghui Li2 · Timon Cheng‑Yi Liu1 · Rui Duan1 · Luodan Yang1 

Received: 26 August 2022 / Accepted: 14 December 2022 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Oxidative stress and neuroinflammation are the main physiopathological changes involved in the initiation and progression 
of various neurodegenerative disorders or brain injuries. Since the landmark finding reported in 2007 found that hydrogen 
reduced the levels of peroxynitrite anions and hydroxyl free radicals in ischemic stroke, molecular hydrogen’s antioxidative 
and anti-inflammatory effects have aroused widespread interest. Due to its excellent antioxidant and anti-inflammatory prop-
erties, hydrogen therapy via different routes of administration exhibits great therapeutic potential for a wide range of brain 
disorders, including Alzheimer’s disease, neonatal hypoxic-ischemic encephalopathy, depression, anxiety, traumatic brain 
injury, ischemic stroke, Parkinson’s disease, and multiple sclerosis. This paper reviews the routes for hydrogen administra-
tion, the effects of hydrogen on the previously mentioned brain disorders, and the primary mechanism underlying hydrogen’s 
neuroprotection. Finally, we discuss hydrogen therapy’s remaining issues and challenges in brain disorders. We conclude that 
understanding the exact molecular target, finding novel routes, and determining the optimal dosage for hydrogen administra-
tion is critical for future studies and applications.
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Background

As the smallest gas molecule and the world’s most abun-
dant element, molecular hydrogen comprises two electrons 
and two protons held together by a non-polar covalent mol-
ecule [1]. Hydrogen first showed its therapeutic effects in 
a mouse squamous cell carcinoma model after 2 weeks of 
hyperbaric hydrogen therapy [2]. In 2007, the antioxidative 
effect of hydrogen was demonstrated and aroused increas-
ing concern by reducing cytotoxic oxygen radicals [3]. In 
the same study, the brain injury was significantly attenuated 
by inhaled hydrogen through buffering the cytotoxic oxida-
tive stress-induced oxidative damage in an acute ischemia/
reperfusion injury rat model [3]. Following this important 
finding, extensive work reported excellent anti-inflammatory 

effects and antioxidative stress of hydrogen in various brain 
disorders [1].

Oxidative stress is indispensable in aging and various 
neurological disorders [4]. In Alzheimer’s disease (AD), 
oxidative stress has been considered an early and essential 
pathogenic operator of AD [5]. In both transgenic and non-
transgenic AD animal models, the reactive oxygen species 
(ROS) induce oxidative damage to proteins, lipids, and 
nucleic acids generating protein carbonyls, lipid peroxides, 
and DNA/RNA modifications [5–7]. ROS-induced oxida-
tive damage contributes to neuronal degeneration in the 
cortex and hippocampus [5–7]. Similarly, oxidative stress 
contributes to the damage and degeneration of dopaminergic 
neurons in Parkinson’s disease (PD) [8]. The dysfunction of 
redox potential disrupts the normal function of essentially 
biological processes and finally leads to the loss of dopa-
minergic neurons [8, 9]. Additionally, substantial evidence 
suggests that oxidative stress is implicated in multiple brain 
injuries, including ischemic stroke, traumatic brain injury 
(TBI), and neonatal hypoxic-ischemic encephalopathy (HIE) 
[7, 10, 11]. For instance, excessive ROS contributes to sec-
ondary injury after TBI, and targeting the ROS generation 
attenuates secondary brain injury and inhibits epilepsy [12, 
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13]. Similar results are found in HIE and global cerebral 
ischemia [10, 14]. These findings suggest that oxidative 
stress constitutes essential pathophysiology in multiple brain 
diseases and is recognized as an important target for the 
prevention and treatment of brain disorders [7].

Neuroinflammation and oxidative stress are intimately 
related [15]. The excessive release of ROS and reactive 
nitrogen species (RNS) activates the signaling pathways 
that induce the activation of glial cells, including microglia 
and astrocytes [16]. The inflammatory cytokines released 
by excessively activated glial cells further increase oxida-
tive stress and damage mitochondria. This process induces 
vicious cycles and maintains the increased or high secretion 
of proinflammatory cytokines [17, 18]. Like oxidative stress, 
neuroinflammation is a typical pathology that contributes to 
the initiation and progression of multiple neurodegenerative 
diseases and brain injury [10, 11, 19, 20]. According to pre-
vious studies, microglia mediate Aβ propagation at the early 
stage of AD and contribute to the accumulation of Aβ at 
the following stage [21–23]. Additionally, astrocyte, another 
primary glial cell type, mediates myelin phagocytosis and is 
implicated in the pathogenesis of ischemic neuronal death 
[24–26]. In the photothrombotic stroke model, the neuro-
inflammation-induced harsh microenvironment enhances 
stroke development and inhibits post-stroke recovery [11, 
27]. Notably, anti-inflammatory therapy show promise in 
slowing down the disease progression in the animal model of 
multiple sclerosis (MS), a neurodegenerative disease char-
acterized by neuroinflammation [28].

In a nutshell, oxidative stress and neuroinflammation 
are prominent traits of various neurodegenerative diseases 
and brain injuries [29, 30]. The excellent anti-inflammatory 
effects and antioxidative stress of hydrogen suggest that 
hydrogen is a promising therapeutic medical gas for brain 
disorders [1]. Although hydrogen therapy’s effectiveness and 
underlying mechanism have witnessed tremendous progress 
since 2007, the current understanding of the exact underly-
ing mechanism and the optimal administration of hydrogen 
in neurodegeneration and brain injuries is still limited. This 
review summarizes the existing routes for hydrogen admin-
istration, provides an extensive review of hydrogen in vari-
ous brain disorders, and discusses the remaining issues and 
challenges in future studies and applications.

Routes for Hydrogen Administration

Hydrogen Gas Inhalation Inhalation of hydrogen gas is 
one of the most commonly utilized hydrogen administra-
tion methods [31]. In previous studies, hydrogen in various 
concentrations has been employed, including 1% [3], 1.3% 
[32], 2% [3, 33], 2.1% [34], 4% [3], and 66.7% [35]. Inhaled 
hydrogen gas enters the lungs, diffuses into the alveoli, and 

then transfers throughout the body via the vascular system 
[36]. For safety concerns, the most widely studied hydrogen 
is maintained within 1–4% [36]. The inhaled hydrogen dif-
fuses, transfers rapidly, and responds efficiently to defend 
against acute oxidative stress [36]. In terms of safety, eight 
healthy adult participants underwent 2.4% hydrogen for 72 h 
via a high-flow nasal cannula in a previous study [36]. Prom-
isingly, hydrogen inhalation does not cause adverse effects, 
suggesting that hydrogen administration via gas inhalation 
is safe and well tolerated. However, a protocol with a higher 
concentration and longer time should be analyzed in the 
future [36].

Hydrogen‑Rich Water Drinking Although gas inhalation is 
one of the most straightforward approaches for hydrogen 
administration, it is not practical for continuous hydrogen 
therapy or preventive use [37]. Therefore, in previous stud-
ies, hydrogen-rich water has gained much attention [38]. 
Hydrogen administration via drinking hydrogen-rich water is 
more portable and safer than hydrogen gas inhalation for pre-
ventive use in daily life. The solubility of molecular hydro-
gen in water is up to 0.8 mM at room temperature under 
atmospheric pressure [37]. Because molecular hydrogen is a 
neutral molecule, its solubility is relatively low. Therefore, as 
reported previously, hydrogen with high pressure (0.4 MPa) 
was applied to increase the concentration of hydrogen to a 
supersaturated level and stored in an aluminum bag without 
dead volume [39]. Notably, the hydrogen-rich water should 
be stored in an aluminum container rather than a glass or 
plastic one because hydrogen penetrates the glass or plastic 
walls of the container rapidly and almost disappears around 
8 h [37]. In addition, hydrogen-rich water can be made by 
electrolysis or by placing a magnesium metal or hydride 
into drinking water [40]. Although only 41% of hydrogen 
in hydrogen-rich water can be utilized within the body [41], 
water with a low concentration of hydrogen is also effective 
in improving cellular and metabolic processes [39].

Hydrogen‑Dissolved Saline Injection Although hydrogen 
administration via inhalation and drinking is portable, safe, 
and easy to use, the intake dose to a specific target area 
is limited [42]. Hydrogen-dissolved saline injection is an 
approach that can provide a substantial amount of hydrogen 
to the affected area. In previous animal studies, intraperito-
neal injections of hydrogen-rich saline showed neuroprotec-
tive potential in multiple brain disorders [43, 44]. However, 
because the hydrogen-dissolved saline injection is invasive, 
it is challenging to be accepted as a way for preventive use or 
daily hydrogen treatment [42]. Furthermore, frequent injec-
tions of hydrogen-dissolved saline have the risk of cross-
infection and would be very dangerous if hydrogen-dissolved 
saline were injected directly into the vein [42].
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Primary Mechanism of the Neuroprotective 
Effect of Hydrogen

Anti‑inflammatory Properties The anti-inflammatory effect 
of hydrogen is one of the primary reasons for the application 
of molecular hydrogen in various brain diseases [45–48]. 
Usually, inflammation is considered a defense mechanism 
that protects the tissue from infection and damage and is 
involved in activating immune cells and releasing inflam-
matory cytokines [42]. In the brain, neuroinflammation is 
prevalent in neurodegenerative diseases and a common fea-
ture in brain injuries [7]. The overactivation of glial cells 
and excessive release of inflammatory factors contribute to 
the initiation of several neurodegenerative diseases (e.g., 
multiple sclerosis) [7]. They are also essential factors that 
affect the pathogenesis and progression of brain injury [7]. 
The anti-inflammatory effects of hydrogen have been widely 
studied [45–48]. For example, the increased proinflamma-
tory cytokines, including IL-1β, IL-6, and TNF-α, and the 
reactive astrogliosis induced by spinal cord injury are attenu-
ated by hydrogen-rich saline injection [49]. In addition, the 
overactivation of microglia is attenuated, and the microglia 
polarization is promoted toward the anti-inflammatory M2 
phenotype in a middle cerebral artery occlusion model 
[50]. Similar phenotypes (A1 and A2 astrocytes) are also 
observed in astrocytes [51]. The M1/M2 microglial polari-
zation affects the transformation of A1/A2 astrocytes [51], 
indicating that hydrogen has the potential to regulate A1/
A2 transformation.

Antioxidant Properties Since the discovery of hydrogen’s 
cytoprotective and antioxidant effects in a focal stroke model 
[3], molecular hydrogen has been widely studied in neuro-
science due to its ability to scavenge powerful oxidants in 
brain diseases [52]. The disequilibrium between the pro-
duction of free radicals and the endogenous antioxidant 
defense system is considered one of the essential pathologi-
cal processes in most brain diseases [7, 10]. The hydrogen 
worked as an electron donor for RNS and ROS to scavenge 
ONOO- and ·OH [3]. In most cases, hydrogen only selec-
tively scavenges the excessive hydroxyl radical by reaction 
of  H2 + •OH =  H2O + •H. The produced •H is removed by 
another reaction of •H +  O2

−  =  HO2
− [53]. It is also possible 

that •H reacts with •OH to form  H2O [54]. Other necessary 
ROS and RNS for normal signaling regulation are preserved 
[53]. In addition, the regulation of the KEAP1/NRF2/ARE 
signaling pathway contributes to the antioxidative effects of 
hydrogen [55]. Under normal physiological conditions, the 
KEAP1 binds to NRF2 and modulates NRF2 levels by ubiq-
uitination and proteasomal degradation within the cytoplasm 
[56]. In response to oxidative stress, the cysteine modifica-
tion-induced conformational changes in KEAP1 allow NRF2 

to evade degradation and escape from KEAP1 trapping [5]. 
The phosphorylated NRF2 moves from the cytoplasm to 
the nucleus and binds to ARE, promoting the transcription 
of detoxification and cytoprotective genes [5]. Hydrogen-
rich water, hydrogen gas, and the injection of hydrogen-rich 
saline activate the KEAP1/NRF2/ARE pathway and promote 
the antioxidant capacity in various brain diseases, including 
TBI [57], depression [58], and anxiety [58].

Endogenous Hydrogen Produced by Gut 
Microbiota

Gut bacteria are one of the primary sources of endogenous 
hydrogen [59]. Members of the Enterobacteriaceae family, 
strains of the genus Clostridium, and anaerobic cocci contrib-
ute to the most percentage of hydrogen production released by 
gut bacteria [59]. As mentioned previously, hydrogen gas can 
reduce the expression of proinflammatory cytokines, neutral-
ize hydroxyl radicals, and exerts cytoprotective effects [3, 51]. 
The role of endogenous hydrogen in brain disorders has been 
investigated in neurodegenerative disorders. For example, a 
previous study found that PD patients lacked Prevotella and 
Clostridium (hydrogen-releasing bacteria) and compromised 
gut microbiota was always accompanied by a worse motor 
ability [59, 60]. This finding indicates that endogenous hydro-
gen released by gut microbiota is involved in the progression 
of PD. Similarly, endobacteria-produced hydrogen is funda-
mental for proper neuronal function, and the changes in endo-
bacteria-produced hydrogen also contribute to AD pathogen-
esis [61]. Although there are relatively few studies regarding 
the role of endogenous hydrogen produced by gut microbiota 
in brain disorders, the findings mentioned previously suggest 
that exogenous hydrogen may represent a potential agent for 
neurodegenerative diseases and brain injury.

The solubility of hydrogen depends on temperature and 
pressure. As mentioned previously, the solubility of molecu-
lar hydrogen in water is up to 0.8 mM at room temperature 
under atmospheric pressure [37]. The hydrogen solubility in 
the plasma and the blood is around 6.44 μmol/L/kPa at 37 °C 
[62]. The hydrogen solubility and the half-life of hydrogen in 
the body fluids are significant for the endogenous/exogenous 
hydrogen conferring its neuroprotective and practical appli-
cation. However, the hydrogen solubility in cerebrospinal 
fluid and the half-life of hydrogen in various body fluids 
remain unclear and deserve further investigation.

Molecular Hydrogen Therapy in Alzheimer’s 
Disease

As one of the most common forms of dementia in the elderly, 
AD affects more than 6 million individuals in the USA and 
more than 50 million worldwide [6, 63]. It is characterized 
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by progressive cognitive decline, extracellular β-amyloid 
plaques, intracellular neurofibrillary tangles, neuroinflam-
mation, mitochondrial dysfunction, and oxidative stress [6]. 
In AD, the Aβ accumulation and tau pathology contribute 
to mitochondrial function, leading to the excessive produc-
tion of reactive oxidative species and ATP depletion, which 
promote Aβ deposition and tau hyperphosphorylation [6]. 
Evidence indicates that maintaining the cellular redox bal-
ance is essential for AD prevention and therapy [6, 64].

A growing number of studies reveal that hydrogen pos-
sesses antioxidant and anti-inflammatory effects, indicating 
its therapeutic potential in AD [1, 65]. In a rat model of Aβ 
intracerebroventricular injection-induced AD, hydrogen-rich 
saline exhibited its beneficial effect by significantly improv-
ing spatial learning and memory [66]. Moreover, long-term 
potentiation, an essential process in the context of synaptic 
plasticity supporting learning and memory functions, was 
impaired in the Aβ-treated group. However, interestingly, 
hydrogen-rich saline significantly enhanced long-term 
potentiation and improved the synaptic information storage 
processes [66]. Hydrogen’s beneficial role in AD is insepa-
rable from its antioxidant and anti-inflammatory effects. 
For instance, Aβ intracerebroventricular injection induces 
pronounced lipid peroxidation, oxidative DNA damage, and 
neuroinflammation, which were alleviated by hydrogen-rich 
saline treatment [66, 67]. Furthermore, previous studies have 
indicated that inhibiting the c-Jun N-terminal kinases sign-
aling pathway, an imperative in stress signaling pathways 
implicated in neuronal plasticity, neuronal degeneration 
regeneration, and cellular apoptosis, is a potential approach 
for AD treatment [68]. Intriguingly, the hydrogen inhibits 
the JNKs pathway, indicating that the therapeutic effects of 
hydrogen in AD may be mediated by the inhibition JNK 
pathway [68].

Moreover, the gender-dependent neuroprotective effect 
is found in a transgenic AD mouse model. As reported by 
a previous study, hydrogen-rich water administration only 
improves cognitive function in the female APP/PS1 mice 
without affecting male transgenic AD mice [69]. Consistent 
with this finding, the hydrogen-rich water attenuated oxida-
tive stress and neuroinflammation. However, these effects are 
more profound in female AD mice than males [69]. Further 
analysis suggested that the sex-specific effects of hydrogen 
may rely on the changes in brain estrogen levels, estrogen 
receptor beta (ERβ), and the brain-derived neurotrophic fac-
tor (BDNF) [69]. The estrogen levels, Erβ, and BDNF levels 
in the female AD mice decreased, but no apparent changes 
are detected in male AD mice [69]. Although the change of 
BDNF in the male AD mice is inconsistent with other stud-
ies and needs further analysis in this mouse model [70, 71], 
the hydrogen reverses the changes in estrogen levels, Erβ, 
and BDNF levels. These findings suggest that the gender-
dependent neuroprotective effect of hydrogen may partly 

depend on the activation of ERβ-BDNF signaling in AD 
pathogenesis [69].

Furthermore, an in vitro study using cultured human 
neuronal cells confirms the neuroprotective role of hydro-
gen [72]. For example,  H2O2 exposure induces excessive 
hydroxyl radicals in human neuroblastoma, which is amelio-
rated prominently by hydrogen [72]. Notably, in the in vitro 
model of AD, the Aβ-induced cellular apoptosis is signifi-
cantly attenuated in the hydrogen-rich cell culture medium 
[72]. The mechanistic study found that the activation of the 
AMPK/SIRT1/FOXO3a signaling pathway contributes to 
the protective effect of hydrogen [72]. Worked as a critical 
molecular sensor and modulator, AMPK is involved in the 
anti-aging signaling network. Similar to AMPK, the Sirt1-
FoxO3a axis is a well-studied pathway that responds to oxi-
dative stress and favors cell survival [72, 73].

Molecular Hydrogen Therapy in Neonatal 
Hypoxic‑Ischemic Encephalopathy

Neonatal hypoxic-ischemic encephalopathy (HIE) is one of 
the most common but severe brain injuries that result in 
a high morbidity and mortality rate [10]. The HIE occurs 
when the neonatal brain is deprived of the blood and oxygen 
[10]. The impaired cerebral blood flow and oxygen depriva-
tion lead to mitochondrial dysfunction, ATP depletion, oxi-
dative stress, cellular damage, and neuronal apoptosis [74]. 
The progression of HI injury can be divided into primary 
and secondary energy failure [75]. The primary energy fail-
ure occurs when the hypoxic-ischemic insults initiate. When 
the ATP is deprived rapidly due to the decreased oxidative 
phosphorylation, the neurons change to anaerobic metabo-
lism, resulting in lactic acid and hypoxanthine accumula-
tion [75]. The rapid depletion of ATP causes the failure of 
numerous essential process that maintains cellular integrity, 
particularly the failure of sodium/potassium pumps. Next, 
the failure of Na/K pumps and the accumulation of metabo-
lites induce depolarization of neurons, followed by excessive 
release of excitatory amino acids on the extracellular side 
and an additional influx of sodium and calcium [75, 76]. 
These changes finally induced cellular edema and early cell 
apoptosis.

Moreover, the primary energy failure-induced changes 
contribute to the secondary energy failure phase several 
hours to days after ischemia and hypoxia after the initial 
injury. During this process, mitochondrial dysfunction, 
excessive production of free radicals, and increased inflam-
mation are involved in secondary energy failure and con-
tribute to late cell death [75, 76]. Mitochondrial dysfunction 
and oxidative stress are crucial in brain damage following 
hypoxia and ischemia [77]. Although the low concentra-
tions of reactive oxygen species ROS and RNS worked as 
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signaling molecules under physiological conditions, exces-
sive free radicals induced oxidative damage to DNA, protein, 
and lipids during hypoxic-ischemic injury [77]. However, 
the mitochondria changes and oxidative damage contribute 
to the secondary phase of injury after ischemia and hypoxia, 
which induces persistent inflammation and mitochondrial 
dysfunction, exacerbating the neuronal injury [78].

Evidence suggests antioxidant treatments may allevi-
ate neuronal damage following hypoxia–ischemia [78]. As 
mentioned previously, molecular hydrogen is one such anti-
oxidant therapy for HIE [79]. In a neonatal HIE rat model, 
hydrogen therapy with 2% hydrogen is employed immedi-
ately following the hypoxic-ischemic insult. Intriguingly, 
hydrogen inhalation significantly reduced the infarct brain 
area and alleviated neuronal apoptosis time dependently 
in the cortex and hippocampus [80]. The neuroprotective 
effects of the hydrogen can be detected even with 30-min 
hydrogen inhalation [80]. As reported in the same study, 
30-min hydrogen therapy significantly inhibits the activity 
of caspase-3 and caspase-12. Notably, caspase-12 is a vital 
regulator of ER stress-induced cellular apoptosis. It is pro-
teolytically activated under ER stress-induced cellular apop-
tosis [81]. Therefore, the inhibitive effect of hydrogen on 
caspase-12 suggests the potential role of hydrogen in allevi-
ating ER stress-induced apoptosis [80]. Another work using 
3% hydrogen supports the neuroprotective effects of hydro-
gen in neonatal rats following HI insults [82]. The motor 
deficits and impaired learning and memory function were 
significantly attenuated by 3% hydrogen [82]. Moreover, 
similar to hydrogen therapy with 2% hydrogen, hydrogen 
therapy with 3% also exhibited a time-dependent neuropro-
tective effect, showing the most significant protective result 
with 90-min hydrogen inhalation, compared to 30-min and 
60-min therapy immediately after HI insults [82]. Notably, 
hydrogen therapy may have a neuroprotective time window 
in HIE treatment [82]. For example, the protective effect 
of 90-min hydrogen therapy decreased if the treatment is 
initiated 12 h after HI insults and nearly disappeared 24 h 
following injury [82]. In vitro study further confirmed the 
neuroprotective role of hydrogen in the oxygen–glucose dep-
rivation/reperfusion (OGD/R) model using cultured PC12 
cells [82]. The OGD/R-induced PC12 apoptosis was promi-
nently attenuated by 90 min  H2 therapy, and the protective 
role of hydrogen is abolished by heme oxygenase-1 (HO-1) 
knockdown. HO-1 is a critical enzyme in protecting against 
oxidative stress [83]. A further mechanistic study supports 
the MAPK/HO-1/PGC-1α pathway as one of the possible 
molecular mechanisms underlying hydrogen therapy’s anti-
inflammatory, anti-apoptotic, and antioxidative effects [82].

Therapeutic hypothermia is a standard treatment for HIE. 
However, hypothermia has limited efficacy, and nearly 50% 
of the neonates receiving the treatment still suffer from 
severe disability and death [10]. However, hydrogen can 

enhance the therapeutic benefits of hypothermia therapy 
against HI insults [84]. In a neonatal HI piglet model, 
hydrogen ventilation combined with mild hypothermia is 
administered 24 h after HI insults [84]. Interestingly, the 
combination therapy with hypothermia and hydrogen sig-
nificantly alleviates the neurological deficits, and animals 
with hypothermia therapy alone only displayed a tendency 
for improvement [84]. Although hypothermia therapy alone 
cannot alleviate cellular apoptosis in the dorsal cortex, com-
bination therapy with hypothermia and hydrogen ventilation 
significantly reduced the cellular apoptosis induced by HI 
insults [84].

However, hydrogen does not always show its neuroprotec-
tive effect in HIE. In addition to the treatment duration and 
therapeutic time window, the results of hydrogen therapy 
may also depend on the disease severity. For example, a 
previous study finds that post-hydrogen treatment with 
2.9% hydrogen inhalation is ineffective in protecting neo-
nates against moderate and severe neonatal HIE [85]. No 
significant changes are detected in the infarct volume and 
the lipid peroxidation marker following hydrogen therapy in 
HIE [85]. Unlike other preconditioning or pretreatment regi-
mens, hydrogen preconditioning exacerbates the HI insult-
induced brain damage, suggesting hydrogen therapy may 
only work as a treatment rather than a pretreatment approach 
to improve resistance to hypoxic-ischemic insults [85].

Molecular Hydrogen Therapy in Depression 
and Anxiety

Growing evidence suggests that oxidative stress and neuroin-
flammation are pivotal in the pathogenesis of depression and 
anxiety [86]. Patients or animals with depression or anxiety 
display increased neuroinflammation and oxidative stress 
in the brain and the periphery systems [87–89]. Consistent 
with this, studies found that pharmacological agents that 
induce oxidative stress in rats cause anxiety-like behavior 
and depression [90–92], suggesting that antioxidants may 
be a potential treatment approach for depression and anxi-
ety [91, 93].

Hydrogen is a potential therapeutic gas for depression 
and anxiety due to its antioxidative, anti-inflammatory, and 
anti-apoptotic effects [42]. In a previous study, water or 
hydrogen-rich water is supplied to the animal at the com-
mencement of the chronic unpredictable mild stress (CUMS) 
procedure [94]. Rats receiving a 4-week CUMS procedure 
exhibited apparent depressive-like behavior, including 
decreased sucrose preference and extended immobility 
[94]. Interestingly, hydrogen-rich water significantly pre-
vents the CUMS-induced depressive-like behavior [94]. 
Further studies found significantly decreased IL-1β levels, 
caspase-1 activity, and ROS production in the hippocampus 
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and prefrontal cortex [94]. The caspase-1 is a cysteine pro-
tease that promotes the secretion of proinflammatory, includ-
ing IL-1β [95]. The inhibited activation of caspase-1 in the 
hydrogen-treated group alleviates neuroinflammation and 
contributes to the attenuation of oxidative stress [94].

Repeated inhaling of high concentrations of hydrogen can 
also increase stress resilience [58]. For example, the mice 
receiving 1-h or 3-h daily hydrogen treatment with high con-
centrations (67%) for 14 days exhibit increased resilience 
to acute and chronic stress-induced anxious-depressive-like 
behavior [58], as evidenced by decreased immobility in the 
tail suspension and forced swimming test, improved novelty-
suppressed feeding, and increased time spent in the central 
zone assed by the open field test [58]. Consistent with the 
previously mentioned time-dependent neuroprotective effect 
in HIE, mice receiving 3-h daily hydrogen are more resil-
ient to acute stress [58]. The hypothalamic–pituitary–adre-
nal (HPA) axis is an indispensable adaptive neuroendocrine 
system in stress resilience and vulnerability [48]. Repeated 
inhalation of hydrogen significantly inhibited the chronic 
stress-induced changes of corticosterone and adrenocorti-
cotropic hormone [48], the major hormones contributing to 
the HPA axis’s response to stress [96, 97]. In line with the 
previous study, chronic stress-induced neuroinflammation is 
alleviated by hydrogen inhalation [48]. More interestingly, 
hydrogen inhalation-induced resilience to acute stress in 
adolescence can be detected in early adulthood, suggesting 
the benefits of hydrogen have long-lasting effects [48].

Molecular Hydrogen Therapy in Multiple 
Sclerosis

MS is a chronic and progressive inflammatory disease 
characterized by mistaken attacks of reactive inflamma-
tory cells against the brain tissue, resulting in pronounced 
demyelination, axonal degeneration, and extensive inflam-
mation [98]. Indeed, multiple inflammatory cells play a 
pathogenic role in MS, including CD4 and CD8 T lym-
phocytes, macrophages, and microglia [99]. Currently, the 
most widely accepted concept of MS lesion formation is 
that acute demyelination is induced by phagocytes that 
internalize and degrade myelin sheaths with infiltrating 
T cells. The recruitment of inflammatory cells is an early 
or initial event in MS progression. Other studies proposed 
that extensive apoptosis of oligodendrocytes and exces-
sive activation of glial cells are the major pathological 
changes in the newly formed MS lesion [100, 101]. There-
fore, inflammation-related changes play a central role in 
the initiation and progression of MS [100]. The inflamma-
tory changes in MS also induce the exaggerated expression 
and release of reactive oxygen species [100]. For example, 
the activation of microglia and infiltration of macrophages 

can contribute to the release of large amounts of oxida-
tive stress-related molecules, including superoxides, nitric 
oxide, hydrogen peroxide, and hydroxyl radicals [100]. 
In addition, numerous studies revealed the association 
between oxidative stress and MS lesion formation [100]. 
For example, prominent immunoreactivity for oxidized 
DNA and lipids was found in the area of initial demy-
elination, suggesting the essential role of oxidative stress 
in the early stages of MS [102]. Notably, in an animal 
model of MS, experimental autoimmune encephalomyeli-
tis (EAE) rats treated with ROS scavengers significantly 
alleviated the autoimmune inflammatory lesions, indicat-
ing that therapeutic manipulation of oxidative stress may 
be a potential approach for the treatment of MS [103]. 
Many currently used MS medications are expensive and 
often have side effects [104], which prompted efforts to 
identify novel therapies for MS patients.

Molecular hydrogen’s anti-inflammatory and antioxi-
dant properties have attracted increased research attention 
and interest in MS prevention and treatment [104]. In the 
experimental autoimmune encephalomyelitis model, one 
of the most widely used animal models for MS, hydrogen-
rich water orally twice a day significantly delayed the ini-
tiation and attenuated the severity EAE and attenuated the 
severity of EAE, as evidenced by prominently improved 
clinical scores in the hydrogen-treated group [104]. Fur-
ther analysis confirmed the prophylactic and therapeutic 
effects of hydrogen on demyelination following hydrogen 
administration [104]. Notably, the effects of hydrogen on 
the disease severity are exhibited in a dose-dependent 
manner within a specific range [104]. Consistent with 
the previous study, another study using the EAE animal 
model also found the effects of hydrogen on alleviating 
the severity of EAE and demyelination [46]. Intriguingly, 
the expression of CNPase, a myelin-associated enzyme, is 
preserved by hydrogen treatment, indicating that hydro-
gen administration inhibited myelin-associated changes 
in EAE [46]. In addition, hydrogen-rich saline inhibits 
glial activation and reduces the levels of inflammatory 
cytokines (i.e., TNF-α, IL-1β, IL-6, and HMGB1), sug-
gesting that the anti-inflammatory effects were involved in 
alleviating disease severity [46]. Furthermore, the antioxi-
dant capacity also contributed to the beneficial effects of 
the hydrogen in MS [46]. Hydrogen-rich saline improved 
the activity of antioxidant enzymes and reduced the gen-
eration of oxidative stress-induced lipid peroxidation 
and oxidative DNA damage, confirming the antioxidant 
effect of hydrogen in MS [46]. Further analysis found that 
the activation of the NRF2-ARE signaling pathway was 
responsible for the upregulated antioxidant capacity, and 
the NRF2 inhibitor abolished the improved antioxidant 
capacity [46].
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Molecular Hydrogen Therapy in Parkinson’s 
Disease

As the second most common neurodegenerative disease, 
Parkinson’s disease (PD) is characterized by motor dys-
function and non-motor symptoms, including sleep dis-
turbances, depression, and constipation [105]. The patho-
logical hallmarks of PD include the loss of dopaminergic 
neurons in the substantia nigra pars compacta (SNc) and 
the abnormal intracellular accumulation of misfolded and 
aggregated α-synuclein-induced Lewy bodies [106]. Like 
other neurodegenerative diseases, oxidative stress and 
inflammation play an indispensable role in PD’s genera-
tion and progression [7]. Several lines of evidence sug-
gest that pathological changes in dopamine metabolism, 
inflammation, and mitochondrial dysfunction contribute 
to oxidative stress and damage in PD [107].

According to previous studies, dopamine metabolism 
disruption is one of the sources of oxidative stress in PD 
[108]. Under normal conditions, dopamine is generated 
from tyrosine by aromatic amino acid decarboxylase and 
tyrosine hydroxylase and then stored in synaptic vesicles. 
However, under pathological changes, the cytosolic dopa-
mine in damaged neurons is metabolized by auto-oxida-
tion and monoamine oxidase, generating excessive ROS 
[108, 109]. Mitochondria dysfunction is another primary 
source of oxidative stress in PD. For example, complex I 
deficiency has been detected in the substantia nigra pars 
compacta of PD patients and results in unfavorable neu-
ronal apoptosis [110]. As one of the most widely used 
neurotoxicant inducers of PD, 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) is a complex I inhibitor [107]. 
MPTP can be transferred into  MPP+ by monoamine oxi-
dase-B and accumulated in the dopaminergic neurons of 
SNc, which result in ROS release by the mitochondria, 
including hydroxyl radicals, hydrogen peroxide, nitric 
oxide, and superoxide anion [108]. Moreover, mitochon-
dria-associated gene mutations affect mitochondrial func-
tion and structure [111]. For example, parkin mutations 
impair mitochondrial complex I activity [112]. However, 
parkin overexpression attenuates dopamine neuronal loss 
induced by MPTP through mitochondrial protection and 
alleviates α-synuclein aggregation [113]. These findings 
indicate that mitochondria-related changes and excessive 
oxidative stress are essential in neuronal dopamine loss 
and PD progression [108].

Due to the prominent role of excessive oxidative stress 
in the pathological changes of PD, increasing studies 
detected the potential therapeutic effects of antioxi-
dants in PD treatment [114]. As mentioned previously, 
hydrogen is one of the most potent natural antioxidants. 
It has recently garnered heightened attention due to its 

antioxidant and anti-inflammatory properties [115, 116]. 
In an MPTP-induced PD model, hydrogen-rich water alle-
viated acute MPTP administration-induced neurotoxic-
ity, as evidenced by a significant attenuation in the loss 
of dopaminergic neurons in substantia nigra pars [115]. 
Moreover, hydrogen-rich water significantly improved 
chronic MPTP administration-induced behavioral deficits 
[115]. Notably, the mechanism underlying the beneficial 
effects of hydrogen-rich water is involved in alleviating 
oxidative stress. For example, the ROS-derived oxidative 
products, including 8-oxoguanine (a marker of DNA dam-
age) and 4-hydroxynonenal (a marker of lipid peroxida-
tion), were inhibited by hydrogen-rich water, confirming 
the antioxidant effects of hydrogen in the PD [115]. Simi-
larly, the effect of hydrogen-rich water in the PD animal 
model was also dose dependent, with a better effect at 
a lower concentration than the saturated concentration 
[115]. The dose-dependent effects of hydrogen are also 
confirmed in clinical trials. For example, PD patients who 
received 1000 mL of hydrogen water per day for 48 weeks 
significantly improved Parkinson’s features [117]. How-
ever, a more extended hydrogen water treatment did not 
show any effects in patients with PD [118]. The negative 
results of hydrogen therapy are also found in one of the 
clinical trials using inhaled hydrogen [119], indicating 
that the duration, concentration, and routes for hydrogen 
administration are essential in hydrogen therapy. Interest-
ingly, a Si-based agent that can generate hydrogen con-
tinually further enriched the routes of hydrogen therapy 
[120]. In a 6-hydroxydopamine (6-OHDA)-induced PD 
mouse model, Si-based agent treatment alleviated dopa-
minergic neurodegeneration and ameliorated 6-OHDA-
induced behavioral impairment, suggesting Si-based agent 
that continues generating molecule hydrogen may be a 
potential approach to treat PD [120].

Molecular Hydrogen Therapy in Ischemic 
Stroke

Stroke is one of the most common cerebrovascular dis-
eases with high morbidity and disability rate [121]. It can 
be divided into ischemic and hemorrhagic strokes [121]. 
Ischemic stroke accounts for 85% of total strokes and occurs 
when blood vessels are blocked by a blood clot or other 
particles [122]. When an ischemic stroke occurs, initial 
inflammation is triggered by cellular debris and dying cells 
in the ischemic area [123]. Increasing evidence indicates 
that postischemic inflammation exacerbates brain injury and 
contributes to the secondary damage of neurons [124].

Oxidative damage is another specific change induced 
by ischemic insults [125]. Rapid production of ROS fol-
lowing acute ischemic stroke overwhelms the antioxidant 
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capacity, causing further brain damage [125]. Excessive 
oxidative stress damaged cellular macromolecules and led 
to autophagy, cellular apoptosis, and necrosis [125]. Fur-
thermore, the rapid and prolonged reperfusion leads to the 
second burst of ROS generation and contributes to reper-
fusion-induced secondary neuronal damage [7, 125]. Neu-
roinflammation and oxidative stress in ischemic stroke are 
interactive and play an essential role in ischemic/reperfu-
sion-induced injury [126]. Substantial evidence suggests that 
approaches targeting neuroinflammation and oxidative stress 
are potential treatment options for ischemic stroke [126].

The antioxidative and anti-inflammatory effects of 
molecular hydrogen have attracted increasing attention in 
ischemic stroke over the past few years [127]. In a previous 
study, the primary culture of neocortical cells underwent 
oxygen–glucose deprivation (OGD) followed by reperfusion 
with a cell medium containing normal  O2 and glucose was 
employed to mimic ischemia–reperfusion injury [3]. The 
cell culture model with ischemia–reperfusion induced prom-
inently increased hydroxyl radicals (.OH), the most reactive 
oxygen species [3]. Intriguingly, the cell culture medium 
with dissolved molecular hydrogen notably alleviated this 
increase and promoted neuronal vitality and survival, indi-
cating that molecular hydrogen protects neurons against 
oxidative stress-induced neuronal death [3]. Furthermore, 
ROS was generated in a rat model of focal ischemic stroke 
and caused apparent brain injury. Notably, hydrogen inhala-
tion exhibited concentration-dependent protection on this 
brain injury, as evidenced by the most substantial reduction 
in infarct volume with hydrogen inhalation at 2–4% [3]. Of 
particular interest, hydrogen only exhibited its neuroprotec-
tive effect when the treatment is employed during reperfu-
sion and had no significant effect on infarct volume during 
ischemia, indicating that hydrogen therapy has its “thera-
peutic window” [3]. In addition, the protective effects of 
hydrogen on the brain injury were not only limited to the 
initial stage (ischemia and perfusion). After the ischemic-
perfusion insults, hydrogen also alleviated its progressive 
damage, as evidenced by significant improvement in the 
functional behavioral assessment and suppression of oxida-
tive stress and inflammation [3]. Similar findings are found 
in the global cerebral ischemia and reperfusion mouse model 
[32]. Mice subjected to global cerebral ischemia and reper-
fusion exhibited neurological deficits and severe neuronal 
injury in the hippocampal CA1 region, which are signifi-
cantly reduced in the hydrogen treatment group [32]. This 
neuroprotection of hydrogen involvs the alleviation of oxi-
dative DNA damage, lipid peroxidation, and postischemic 
autophagy in the CA1 region [32].

Another study clarified another possible mechanism 
underlying hydrogen neuroprotection using OGD/reperfu-
sion damaged hippocampal neurons [128]. Similarly, the 
study found that hydrogen significantly alleviated ROS 

levels and cellular apoptosis following OGD/R insults. How-
ever, the hydrogen was provided by a cell culture incubator 
consisting of 60% hydrogen, suggesting neuroprotection of 
hydrogen can be achieved through different hydrogen admin-
istration routes [128]. Notably, the decreased mitochon-
drial membrane potential induced by OGD/R insults was 
attenuated by hydrogen therapy, indicating that hydrogen 
protects against mitochondrial dysfunction [128]. However, 
the neuroprotective effect of hydrogen is lost entirely when 
the mitophagy inhibitor is added, suggesting that mitophagy 
may mediate the improved mitochondrial function and the 
neuroprotective effects of hydrogen [128]. Further analysis 
detects the activation of the PINK1/Parkin pathway, a well-
understood mitophagy-associated pathway, which confirmed 
the essential role of mitophagy in hydrogen therapy [128]. 
Although further studies are still needed on how hydrogen 
affects the expressions of mitophagy-related proteins, these 
findings provided one of the possible mechanisms underly-
ing the neuroprotection of hydrogen.

Molecular Hydrogen Therapy in Traumatic 
Brain Injury

Traumatic brain injury (TBI) is one of the leading causes 
of disability and mortality among people of all age groups 
[129]. More than 50 million people suffer from TBI yearly, 
and almost 50% of the world’s population will experience 
mild TBI more than once [130]. TBI occurs when an exter-
nal force causes damage to the head, including closed head 
injury induced by a blow, jolt, or bump to the head and pene-
trating injury induced by objects penetrating the skull [131]. 
TBI-induced injury includes primary and secondary injuries 
[132]. Primary injury after TBI includes direct mechanical 
damage to brain tissue and blood vessels, causing neuronal 
loss and necrotic cell death [133]. Following the primary 
injury, the secondary injury further damages the brain tis-
sue, which occurs seconds to minutes following the primary 
injury, involving various biochemical processes, including 
oxidative stress, inflammation, mitochondrial dysfunction, 
and blood–brain barrier (BBB) disruption [133].

Mitochondrial dysfunction and oxidative stress are typi-
cal changes contributing to secondary cell injury in TBI [7]. 
Excessive release of ROS and RNS following TBI causes 
oxidative damage to the cell, including lipoperoxidation of 
the cell membranes, various organelles, and microstructures 
within neurons. These changes result in widespread neuronal 
injury and death [134]. Notably, the oxidative stress-induced 
lipid peroxidation of mitochondrial membranes led to the 
disruption of mitochondrial function [134]. In addition to 
serving as the powerhouse of the neurons, mitochondria are 
essential in maintaining calcium homeostasis [135]. The 
impaired mitochondrial function and disrupted intracellular 
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calcium homeostasis contribute significantly to the patho-
physiology of delayed neuronal damage and death following 
TBI [136]. Therefore, mitochondria-targeted antioxidants or 
antioxidant therapies have attracted considerable efforts in 
TBI studies [7, 137].

Several studies have reported that hydrogen’s anti-inflam-
matory and antioxidative effects are implicated in protecting 
against TBI [45, 47]. In a controlled cortical impact model, 
2% hydrogen therapy was employed from 30 min to 5 h fol-
lowing TBI [47]. Interestingly, TBI animals with hydrogen 
therapy exhibited a better neurological outcome, improving 
BBB integrity, and attenuating cerebral lesion volume and 
brain edema [47]. Further analysis found that hydrogen sig-
nificantly enhanced the activities of antioxidant enzymes and 
alleviated the release of oxidative products [47]. Notably, the 
microRNA-21 inhibitor inhibited these beneficial changes, 
indicating that miR-21 is critical in hydrogen therapy fol-
lowing TBI [47]. Another study demonstrated the beneficial 
effects of hydrogen-rich saline in ameliorating early brain 
injury in a TBI animal model [57]. The hydrogen-rich saline 
is administered for 72 h following TBI. Intriguingly, neuro-
logical deficits, brain edema, neuronal necroptosis, neuroin-
flammation, and oxidative stress are significantly alleviated 

in the hydrogen-treated groups [57]. Notably, hydrogen 
modulated necroptosis via the regulation of the ROS/HO-1 
signaling pathway, suggesting the neuroprotective effects of 
hydrogen partly depend on ROS/heme oxygenase 1 (HO-
1) signaling pathway-regulated necroptosis [57]. The HO-1 
is an antioxidant enzyme downstream of the Nrf2 pathway 
[138]. In the TBI animal model, hydrogen-rich water pro-
motes the disassociation of Nrf2 from Keap1, resulting in 
the Nrf2 nuclear translocation followed by binding to the 
antioxidant response element (ARE) and producing endog-
enous antioxidant enzyme, including HO-1 [55]. This find-
ing suggests that the modulation of the Keap1/Nrf2/ARE 
signaling pathway contributes to the antioxidative effects 
of hydrogen and is imperative to protect against TBI [55]. 
Similar to the findings in other brain diseases, the beneficial 
effects of hydrogen on TBI are also concentration-dependent 
[139]. For example, hydrogen therapy alleviated cerebral 
lesions following TBI in a concentration-dependent manner, 
wherein 4% hydrogen exhibites better effects in preserving 
brain tissue than 1% and 2% hydrogen [139], suggesting 
hydrogen therapy exists the optimal dosage, which needs 
more study.

Fig. 1  Primary mechanisms of molecular hydrogen therapies in brain 
disorders. Nearly all neurodegenerative diseases, brain injuries, and 
mood disorders are characterized by mitochondrial function and 
neuroinflammation. The dysfunction of mitochondria induces exces-
sive production of ROS and the excessively released inflammatory 
cytokines, which further damage mitochondria and active glial cells. 
All these changes induce oxidative damage to DNA, protein, and 

lipids, which finally induce cellular damage, neuronal degeneration, 
and neuronal loss. However, hydrogen works as an electron donor to 
selectively scavenge the excessive hydroxyl radical to reduce oxida-
tive stress directly. Additionally, hydrogen enhances the activity of 
antioxidant enzymes, reduces the release of proinflammatory factors, 
and activates other neuroprotective pathways
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Remaining Issues and Challenges

As mentioned previously, hydrogen therapy with various 
administration routes has shown great potential for neuro-
protection in brain disorders, including neurodegenerative 
diseases [66, 67, 140], brain injury [32, 57, 82], and men-
tal diseases [58, 94] (Fig. 1). However, several unresolved 
issues still need to be addressed.

The Exact Molecular Targets and Mechanisms Remain 
Unclear Although hydrogen’s antioxidant and anti-inflam-
matory properties have been widely studied in various brain 
disorders [32, 57, 66, 67, 82, 140], the crosstalk among anti-
inflammation, anti-oxidation, and other pathways are still 
unclear. Additionally, although studies have found the pro-
tective effects of hydrogen on mitochondria and the regu-
lation of various genes and proteins, further investigation 
is needed to determine whether these modulations are the 
cause or the results of the hydrogen’s anti-inflammatory and 
antioxidant effects [141].

No Consensus on Hydrogen Administration and Dose 
Regimes As mentioned previously, various routes of hydro-
gen administration have shown their preventive and thera-
peutic effects in various brain diseases [32, 57, 66, 67, 82, 
140]. The neuroprotective effects of hydrogen therapy in 
brain disorders are displayed in a dose-dependent, gender-
dependent, and time-dependent manner [69, 80, 104]. How-
ever, there is no consensus on the optimal hydrogen adminis-
tration and dose regimes [142]. Therefore, more studies are 
needed to further our understanding of the optimal routes for 
hydrogen administration, dosage, pharmacokinetics, toxicity, 
and biology in animal and clinical studies [142].

New Routes for  Hydrogen Administration Are 
Needed Although hydrogen administration via drinking or 
injection has shown its advantages in various brain diseases 
[32, 57, 66, 67, 82, 140], the solubility of molecular hydro-
gen in water and saline is relatively low [37]. Additionally, 
the storage of hydrogen-rich water or saline needs a specific 
container. For example, aluminum containers retain hydro-
gen longer than glass and plastic containers [37]. Moreo-
ver, the daily hydrogen-rich saline injection has the risk of 
infection and would be very dangerous if hydrogen-dissolved 
saline were injected directly into the vein [42]. Therefore, 
new routes for hydrogen administration are needed. For 
example, in previous studies, a Si-based agent that contin-
ues generating molecule hydrogen has been developed and 
exerts neuroprotective effects in a mouse model of Parkin-
son’s disease [120]. The new routes for hydrogen admin-
istration should have the following advantages: portable, 
easy to store, and reach a specific target area with expected 
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concentration and release hydrogen continuously. Nanopar-
ticles for hydrogen generation may hold great potential for 
hydrogen utilization in preventing or treating brain diseases 
[143].

The Effects of Hydrogen on Neurovascular Coupling 
Remains Unclear, and the Half‑Life of Hydrogen in Bio‑flu‑
ids Deserves Further Investigation Neurovascular coupling 
is defined as a tight coupling between cerebral blood flow 
and neural activity, which is intrinsically regulated by a 
complex interplay between neurophysiological and hemo-
dynamic signals [144]. The impaired neurovascular cou-
pling has been detected in various brain disorders, includ-
ing neurodegenerative disease, brain injury, and psychiatric 
disorders [145–147]. However, the effects of hydrogen on 
neurovascular coupling in physiology and pathological 
conditions remain unclear. Additionally, to investigate the 
effects of hydrogen in physiology and pathological condi-
tions, we should know the half-life of hydrogen in the bio-
fluids, including blood, plasma, and cerebrospinal fluid. 
Therefore, this issue should also be addressed in future 
studies.

Conclusions

As mentioned previously, the biological properties of 
hydrogen, especially the antioxidant and anti-inflamma-
tory effects, make it a promising candidate for various 
neurodegenerative diseases and brain injuries (Table 1) 
[45–47, 114, 127]. However, the short biological half-life 
and the low saturation make the administration complex 
[37, 42]. Additionally, the mechanisms underlying the neu-
roprotection of hydrogen, especially the exact molecular 
targets and mechanism, remain unclear [141]. Therefore, 
more preclinical studies are needed to understand the path-
ways and the biological changes impacted by molecular 
hydrogen therapy. Moreover, the optimal concentration, 
the mode of administration, pharmacokinetics, biology, 
and the clinical application of hydrogen are still lacking 
[45]. Nevertheless, it has been suggested that hydrogen 
has great therapeutic potential in treating various brain 
disorders [141].

Abbreviations AD:  Alzheimer’s disease; PD:  Parkinson’s dis-
ease; TBI: Traumatic brain injury; HIE: Neonatal hypoxic-ischemic 
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gen-glucose deprivation (OGD)/reperfusion; BBB: Blood-brain barrier
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