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Abstract
In recent years, we have studied by immunohistochemistry, intracellular recording, and western blotting the role of the 
muscarinic acetylcholine receptors (mAChRs; M1, M2, and M4 subtypes) in the mammalian neuromuscular junction (NMJ) 
during development and in the adult. Here, we evaluate our published data to emphasize the mAChRs’ relevance in devel-
opmental synaptic elimination and their crosstalk with other metabotropic receptors, downstream kinases, and voltage-gated 
calcium channels (VGCCs). The presence of mAChRs in the presynaptic membrane of motor nerve terminals allows an 
autocrine mechanism in which the secreted acetylcholine influences the cell itself in feedback. mAChR subtypes are coupled 
to different downstream pathways, so their feedback can move in a broad range between positive and negative. Moreover, 
mAChRs allow direct activity-dependent interaction through ACh release between the multiple competing axons during 
development. Additional regulation from pre- and postsynaptic sites (including neurotrophic retrograde control), the agonis-
tic and antagonistic contributions of adenosine receptors (AR; A1 and A2A), and the tropomyosin-related kinase B receptor 
(TrkB) cooperate with mAChRs in the axonal competitive interactions which lead to supernumerary synapse elimination 
that achieves the optimized monoinnervation of musculoskeletal cells. The metabotropic receptor-driven balance between 
downstream PKA and PKC activities, coupled to developmentally regulated VGCC, explains much of how nerve terminals 
with different activities finally progress to their withdrawal or strengthening.

Keywords  Postnatal synapse elimination · Axonal competition · Acetylcholine release · Muscarinic acetylcholine 
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Introduction

During the nervous system development, an overproduction 
of neurons and synapses generates an extensive connectiv-
ity that is corrected by an activity-dependent reduction that Josep Tomàs, Neus Garcia, and Maria A. Lanuza contributed 

equally to this work.
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refines the specificity of the neuronal circuit [1–4]. The 
final specificity is attributable to the appropriate matching 
between the origin and the target of the nerve fibers. Thus, 
Hebbian competition between nerve endings with different 
activities leads to the elimination or strengthening of their 
synapses [5–7]. This developmental synaptic elimination 
occurs throughout the nervous system, representing a basic 
mechanism of sinaptogenesis [2, 8–14].

During development, skeletal myocytes start polyinner-
vated by several axons [15–17], but after their competitive 
interactions, neuromuscular junctions (NMJ) finally become 
innervated by only one axon [6, 13, 14, 18]. There are many 
reviews about synapse elimination mainly focused on the 
NMJ [1, 18–27]. Several relevant cues of the molecular and 
cellular mechanisms involved in the elimination of super-
numerary nerve terminals have been investigated and col-
lected in the cited reviews. The non-competitive reduction 
in the number of nerve endings which a motoneuron can 
support has been studied and characterized. Moreover, it 
seems also that there is an initial and continuous exchange 
of the appropriate nerve terminals to produce homogenous 
fiber-type motor units. At this motorneuron level, [22, 28] 
show that neuromuscular synapse elimination was acceler-
ated in mutant mice lacking connexin 40, a developmentally 
regulated gap junction protein, expressed in motor and other 
spinal neurons, to facilitate electrical coupling.

A major factor, however, is the level of activity of each 
nerve terminal in a poliinnervated NMJ, and, on the whole, 
the axonal loss is retarded at low levels of activity and accel-
erated at increased levels. During the axonal competition, 
the various nerve endings in a NMJ have a mutual influence 
on one another and on the postsynaptic muscle cell and the 
terminal Schwann cell. In adults, terminal Schwann cells 
sense the release of ACh and ATP from the nerve through 
M1 and A1 receptors and in turn influence transmitter release 
[29, 30]. Terminal Schwann cells have been involved also 
in axonal competition during development. Glial activity 
induces synaptic potentiation (through presynaptic adeno-
sine 2A receptors) of strong input in dual junctions but not 
in weak terminals [31]. Roche et al., [32] using mice lacking 
Nfasc155, a glial protein detected a delay in postnatal syn-
apse elimination at the NMJ. Moreover, neuregulin-1 sign-
aling between terminal axons and glia during development 
influences glial cell activation and interposition between the 
terminal and muscle [23] affecting axon loss. Recently, Jung 
et al. [33] proposed a model that reproduced synapse elimi-
nation showing that synapse elimination is accelerated by 
increased areas of teloglial cell vacancies. Activity-induced 
changes in the stability of the muscle cell postsynaptic 
nAChRs can contribute to reduce the synaptic efficacy of 
ruled-out nerve terminals [34–36]. Several pre- (calcitonin 
gene-related peptide, CGRP, [37]) and postsynaptic-derived 
signals (BDNF, [38, 39]) can also influence supernumerary 

axonal loss by rewarding or punishing certain nerve termi-
nals. Je et al. [40] using genetic manipulations and phar-
macological studies show the involvement of endogenous 
proBDNF and mBDNF in synapse elimination.

Several presynaptic receptors—mainly muscarinic ace-
tylcholine (ACh) autoreceptors (mAChR), adenosine auto-
receptors (AR), and tropomyosin-related kinase B receptor 
(TrkB)—allow the multiple developing nerve terminals to 
communicate in the competition that leads to synapse loss in 
the NMJ [41–43]. This communication can occur directly or 
with the intermediation of the postsynaptic or Schwann cell 
components of the tripartite synapse. In particular, mAChRs 
in the motor terminals seem to permit direct competitive 
interaction between multiple nerve endings through differ-
ential activity-dependent ACh release in the shared narrow 
developing synaptic cleft. The more active endings may 
directly punish the less active ones and reward themselves 
[24, 34, 43–45], and asynchronous activity seems to opti-
mize this interaction to promote synapse elimination [46].

The presence of mAChRs in the motor nerve terminal 
presynaptic membrane is a clear example of an autocrine 
mechanism in which a secreted product of a cell can exter-
nally influence itself as a feedback modulation both dur-
ing development and in the adult. Interleukin-2 is another 
example, being produced by and acting on T lymphocytes 
themselves (in addition of its paracrine action on target mac-
rophages and other immune cells) [47, 48]. In the case of the 
cholinergic autoreceptors, the presence of several muscarinic 
subtype molecules coupled to different downstream path-
ways can move the autoregulation of the neurosecretion in a 
broad range between positive and negative effects [49–53]. 
Because of all these reasons, mAChRs are a relevant com-
ponent of the complex regulation through pre- and post-
synaptic activities of the supernumerary synapse elimina-
tion conducting to the optimized monoinnervation of the 
musculoskeletal system.

We have been working in developmental axonal com-
petition and synapse elimination since the late 1970s (for 
instance [54, 55]), and the molecular mechanisms are far 
from being fully elucidated today though many questions 
have been answered [4, 6, 18]. In recent years, we have 
studied by immunohistochemistry, intracellular recording 
electrophysiology, western blotting, subcellular fractiona-
tion and co-immunoprecipitation, the involvement of the 
mAChR subtypes in the mammalian NMJ functionality dur-
ing development and in the adult [3, 56–61]. In the adult, 
we characterized how M1 and M2 mAChRs regulate the 
PKA subunits (catalytic and regulatory), the PKC (PKCβI 
and ε isoforms), and their exocytotic targets (Munc18-1, 
SNAP-25, and MARCKS phosphorylation) showing a co-
dependent balance between muscarinic auto receptors which 
orchestrates transmitter release regulation [62, 63]. We ana-
lysed also the involvement of altered metabotropic receptor 
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signaling in amyotrophic lateral sclerosis SOD1-G93A mice 
[64]. Here, we review previously published data to evaluate 
the relevance of mAChRs during development in synapse 
elimination and their crosstalk with other receptors, the 
downstream kinases, and the targeted voltage-gated calcium 
channels (VGCC).

Our contribution to the understanding of the synapse 
elimination process can be summarized in this review: 
(1) the characterization of the presumably most relevant 
membrane receptors involved, the mAChRs and adenosine 
receptor subtypes (both allowing a direct paracrine influence 
between activity-different neighbor competing nerve end-
ings) and the trophic factor receptor TrKB allowing the ret-
rograde influence through BDNF (2) the characterization of 
the changes in the downstream PKC/PKA ratio (cPKCβI and 
nPKCε favor axonal retraction) in the competing nerve ter-
minals as a relevant point of the process, and (3) the specific 
involvement of several VGCC in determining the transmitter 
release capacity and the retraction of the nerve endings.

mAChR in Developing NMJ

mAChR Subtypes in Transmitter Release During 
Development

We studied the effect of mAChR subtype modula-
tion—mainly in the rodent Levator auris longus muscle 
(LAL)—by comparing neurotransmission at the newborn 
stage (P7-P9) versus in the monoinnervated mature NMJs 
(P30). Axonal elimination almost occurs during the first 
2 weeks after birth, although a residual 3% of multiply 
innervated synapses remains at the end of the first month. 
The period P7-P9 corresponds to the middle of the axonal 
loss process and the nerve terminal elimination coincides 
with the morphological maturation of the postsynaptic 
component on the NMJ. At birth, nearly all of the NMJs 
(96%) in the LAL muscle are innervated by more than one 
axon, and at the end of the first week, the percentage of 
polyinnervation is reduced to nearly 50%. Newborn P7-P9 
neurotransmission study includes developing monoinner-
vated NMJ and developing polyinnervated ones, mainly 
dual junctions passing the last process of axonal competi-
tion. In the latter, strong and weak nerve terminals can 
be identified by their evoked endplate potentials (EPP), 
with the least quantal content originating from the weak 
terminal in dually-innervated junctions [39, 59, 65–68]. 
Intracellular recordings using muscarinic agonists and 
blockers show that some of the mAChR subtypes (M1, 
M2, and M4) influence ACh release both in developing 
[58–61] and in adult NMJs [41, 69, 70]. Table 1 shows 
the list of substances used in the described experiments.

In the adult, the M1 receptor increases ACh release 
because its selective block with pirenzepine [PIR] or 
muscarinic toxin-7 [MT-7] reduces it. On the contrary, 
the M2 receptor reduces ACh release because its selec-
tive inhibition with methoctramine [MET] or AFX-116 
increases it [41, 52, 58, 71]. The M3 (4-DAMP) and 
M4 (tropicamide [TRO] and muscarinic toxin-3 [MT-
3]) blockers do not produce any effect in transmitter 
release. Thus, in the adult, M1 and M2 receptors influ-
ence ACh secretion in a positive and negative feedback, 
respectively.

However, during development, all the selective M1 
and M2 blockers were tested to reduce the release both 
in the recently monoinnervated NMJ and in the strong-
est endings of dual junctions (Fig. 1) that are still in the 
competition at P7-P9. Interestingly, the effect of any M1 
antagonist was not additive with the effect of any M2 
antagonist, suggesting the operation of the same mecha-
nism in both cases (i.e., the effect of PIR is completely 
prevented by a preincubation with MET and viceversa). 
This suggests the commitment of all muscarinic pathways 
to promote neurotransmission in these nerve endings 
during maturation. Nevertheless, in the weakest nerve 
contact in dual junctions, only the M2 blockers reduce 
release whereas M1 and M4 blockers increase the EPP 
(Fig. 1) [39, 58–61]. We sequentially added PIR and TRO 
to the muscle and found that their respective effects on 
the weak nerve terminals were additive, showing that M1- 
and M4-mediated pathways are different in these endings. 
However, like in the strong and in the monoinnervated 
junctions, the effect of the M1 and M2 drugs is still mutu-
ally exclusive and not additive. Thus, the two additive 
M4 and M1 mechanisms result in a powerful inhibitory 
modulation that probably overcomes the M2 mechanism, 
which enhances neurotransmission in all kinds of end-
ings during development. Finally, as stated, in the adult 
monoinnervated NMJs, M2 and M1 receptors change their 
coupling to regulate neurotransmission by negative and 
positive feedback, respectively.

In summary (Fig. 1), an advantage of the more differ-
entiated nerve terminals seems to be the commitment of 
all mAChR subtypes (M1 and M2 in this case) to enhance 
ACh release, and using this autocrine mechanism, the 
strongest endings may reinforce themselves to win the 
competition. However, the weakest axon may be nega-
tively influenced by ACh release from the strongest 
axons through the M1 and M4 subtype pathways. The 
described evidence argues in favor of the relevance of 
local factors explaining, in fact, how an axon that fails at 
one muscle endplate can win the competition at another 
[72]. So, a developmentally regulated specific expression 
of the mAChR subtypes seems to be a relevant mecha-
nism in synaptogenesis.

1582 Molecular Neurobiology  (2023) 60:1580–1593

1 3



Table 1   Substances list. Muscarinic, purinergic, TrkB, PKC, PKA 
substances, calcium channel modulators, calcium ions modulators, 
and their targets. Stock solutions were prepared using PBS or DMSO 

in accordance with the commercial product information after prepar-
ing the working solution

Substance list

Muscarinic substances Abbreviations Function Product information Stock solution Working solution

Pirenzepine dihydrochloride 
(PIR)

PIR M1 antagonist 1071, Tocris Bio 10 mM 10 µM

Methoctramine MET M2 antagonist M105, Sigma- Aldrich 1 mM 1 µM
Muscarinic toxin 3 MT-3 M1 and M4 antagonist M-140, Alomone 50 µM 100 nM
Muscarinic toxin 7 MT-7 M1 antagonist Peptides International 50 µM 100 nM
1,1-dimethyl-4-diphenylace-

toxypiperidinium iodide
4-DAMP M3 antagonist 0482, Tocris Bio 100 mM 1 µM

Tropicamide TRO M4 antagonist 0909, Tocris Bio 10 mM 1 µM
Purinergic substances

  8-cyclopentyl-1,3-dipro-
pylxanthine

DPCPX A1 R antagonist C101, Sigma-Aldrich 50 mM 100 nM

  2-(2-furanyl)-7-(2-
phenylethyl)-7H-
pyrazolo[4,3-e][1, 2, 4] 
triazolo[1,5-c] pyrimidin-
5-amine (SCH-58261)

SCH-58261 A2A R antagonist 2270, Tocris Bio 100 mM 50 nM

TrkB substance
  Recombinant human trkB/

Fc Chimera
trkB-Fc TrkB receptor-related sub-

stance
688-TK, R&D Systems 100 µg/ml 5 µg/m

PKC substances
  Chelerytrine Che PKCs antagonist C-400, Alomone 10 mM 1 µM
  Calphostin C CaC PKCs antagonist C6303, Sigma-Aldrich 2.5 mM 200 nM
  Peptide βIV5–3 βIV5–3 PKCβI selective antagonist Mochly Rosen, Standford 

University
10 mM 10 µM

  Peptide εV1–2 εV1–2 PKCε selective antagonist 539,522, Calbiochem 1 mM 10 µM
  Bryostatine-1 BRY PKCs agonist 2283, Tocris Bio 10 µM 1 nM
  Phorbol 12-myristate 

13-acetate
PMA PKCs agonist P1585, Sigma 10 mM 10 nM

  12-deoxyphorbol-13-pheny-
lacetate-20-acetate

dPPA PKCβI selective activator BML-PE-182–0001, Enzo 1 mg/mL 0.2 µg/mL

  2-((2-Pentylcyclopropyl) 
methyl) cyclopropaneoc-
tanoic acid

FR236924 PKCε selective activator 3091, Tocris Bio 100 mM 100 nM

PKA substances
  N-[2-(p-Bromocinna-

mylamino)ethyl]-5-iso-
quinolinesulfonamide 
dihydrochloride

H89 PKA antagonist 19–141, Millipore-Merck 5 mM 5 µM

  8-Bromoadenosine-3′,5′ 
cyclic monophosphoro-
thioate

Rp8 RI-PKA selective antagonist 129,735–00-8, Biolog 5 mM 100 µM

  Adenosine-3′,5′-cyclic 
monophosphorothioate

Rp RII-PKA selective antago-
nist

A002S, Biolog 5 mM 100 µM

  Adenosine 3’,5’-cyclic 
monophosphorothioate,8-
bromo-Sp-isomer

Sp8Br PKA agonist 116,818 Calbiochem 5 mM 10 µM

Calcium channel modulators
  Nitrendipine (NT) NT L-type channel blocker N144, Sigma-Aldrich 50 mM 1 µM
  ω-conotoxin-GVIA ω-CON N-type channel blocker C9915, Calbiochem 1 mM 1 µM
  ω-Agatoxin IVA ω-AGA​ P/Q-type channel blocker STA-500, Alomone 100 nM 100 nM

1583Molecular Neurobiology  (2023) 60:1580–1593

1 3



Table 1   (continued)

Substance list

Muscarinic substances Abbreviations Function Product information Stock solution Working solution

  1,4-Dihydro-2,6-dimethyl-
5-nitro-4- (2-trifluoro-
methylphenyl) pyridine-
3-carboxylic acid methyl 
ester

Bay-K8644 L- type calcium channel 
agonist

B-350, Alomone 50 mM 5 µM

  (2R)-2-[(6-{[(5-Methyl-
thiophen-2-yl) methyl]
amino}-9-propyl-9H-pu-
rin-2-yl)amino]butan-1-ol

GV-58 CaV2.2 and CaV2.1 
Ca2+ Channels activator

G-140, Alomone 20 mM 20 µM

Calcium ions modulators
  1,2-Bis(2-aminophenoxy) 

ethane-N,N,N',N'-
tetraacetic acid tetrakis 
acetoxymethyl ester

BAPTA-AM Ca 2+ chelator Ab120503, Abcam 10 mM 5 µM

Fig. 1   Representation of two neighboring axon terminals in a dually 
innervated NMJ during development in the common endplate. The 
strong ending (that evokes the largest EPP) is in green and the weak 
one (that evokes the smallest EPP) is in yellow. In these nerve end-
ings, muscarinic receptor subtypes and their coupling to ACh release 
behave differently. In the strong ending (and also in the single end-
ings at the end of the competitive process), both M1 and M2 enhance 
ACh release. Using this autocrine mechanism, the strongest endings 
may reinforce themselves to win the competition. In the weak end-

ings, only M2 stimulates the release, whereas M1, with the additional 
involvement of M4, reduces the EPP size. Thus, the weakest nerve 
endings may be negatively influenced by the ACh release from the 
strongest axons. Inside the nerve terminals, green arrows indicate 
transmitter release potentiation, and red arrows depression. The 
effects of M1 and M4 in weak endings are additive whereas the effects 
of M1 and M2 in the strong ones are not. Nicotinic ACh receptors 
(nAChRs) are represented in the postsynaptic membrane

1584 Molecular Neurobiology  (2023) 60:1580–1593

1 3



mAChR in the Physical Withdrawal 
of Supernumerary Axons

How the described evidence of the developmental mus-
carinic modulation of ACh release can be related with 
supernumerary axon elimination from the NMJ? We favor 
the hypothesis of the final strengthening and consolida-
tion of the strongest endings in dual junctions because 
their molecular and functional similarity with the solitary 
endings in the most mature NMJ. Thus, both M1 and M2 
receptors are coupled to potentiate release in these end-
ings along with the expression in these nerve terminals 
of a more differentiated VGCC stoichiometry and serine-
threonine kinases coupling to ACh release (see later). To 
investigate this, we made axonal counts in confocal LAL 
preparations from B6. Cg-Tg (Thy1-YFP)16 Jrs/J mice 
that express spectral variants of GFP (yellow-YFP) at high 
levels in motor neurons [43]. Muscles were processed to 
detect also the postsynaptic nicotinic acetylcholine recep-
tors (nAChRs) with TRITC-α-BTX (Bungarotoxin). We 
counted the percentage of singly-, dually-, and triply- (or 
more) innervated synapses at P7, P9, and P15 after 2 
(days 5, 6), 4 (days 5–8), and 10 (days 5–14) subcuta-
neous applications over the LAL muscle surface of the 
considered muscarinic substance [3, 56, 57].

In P7 mice, we observed that when M1 or M4 receptors are 
selectively blocked by PIR or MT3, axonal loss is accelerated 
(but not when M2 is blocked with MET). Thus, at P7 (con-
sidering the effect on neurotransmission of the muscarinic 
receptors, see Fig. 1), M2 favors ACh release and possibly 
the competitive force, related with more transmitter release, 
in all axons although not affecting the axonal elimination 
rate. However, M1 increases release in the strong axon and 
decreases it in the weak one (together with M4 in this case), 
and these tonic effects resulting in a delay in axon loss (evi-
denced by a conspicuous acceleration when M1 or M4 recep-
tors are selectively blocked) [43]. We do not know which one 
can be the prevalence of any of these muscarinic receptors in 
the different nerve endings at this period, but it is conceivable 
that mAChR subtypes would participate and even be involved 
in determining competitive interactions rather than speeding 
up axonal elimination around P7 [3]. Thus, it appears that at 
P7, mAChRs-mediated competitive axonal interactions (and 
also interactions mediated by AR and TrkB receptors—see 
later) are taking place with the result of an initial delay in 
synapse elimination because effective axon loss is not yet 
occurring in most synapses at this moment.

Two days later (P9), the continued exposition to PIR or 
MET (but not to the M4 blocker MT3) for 4 days results in a 
clear delay in axon loss. This indicates that both M1 and M2 
receptors acquire during this period the role of promoting the 
full sequence of axonal elimination. Interestingly, MET has a 
greater ability than PIR to delay the final monoinnervation, 

indicating the powerful effect of the M2 on axon loss at P9, 
probably potentiating the strongest nerve endings [43]. Joint 
inhibition of M2 and M1 (MET + PIR) pathways show that 
their effect on axonal elimination is not additive, suggesting 
a shared downstream mechanism at this developmental stage 
(see below) and the commitment of all muscarinic receptors 
to promote axon elimination. In the adult, mAChRs show 
some G protein promiscuity [73, 74] suggesting that M2–M1 
shared developmental mechanism may relate with G pro-
tein sharing. The effect on the ACh release of these two 
receptors may reinforce the increasingly stronger endings 
and be detrimental to the weak ones. The presence of the 
M4 mAChR subtype in the weakest ending at P7 and their 
functional disappearance at P9 along with the shift of the 
M1 function (from ACh release reduction in the weakest 
endings to favoring ACh release in the endings that become 
stronger) can be important changes in synapse elimination. 
Interestingly, the progressive change in M4 and M1 function 
during NMJ maturation coincides with the slightly later shift 
of the M2 function that will change to negatively modulate 
ACh release around P15 and for the rest of the adult stage 
[43]. Therefore, the functional shift of all mAChR types dur-
ing the maturation of the neuromuscular synapses argues 
in favor of their relevance in this process. The shift mecha-
nism must be able to explain how M2 changes from posi-
tive to negative action on ACh release whereas M1 changes 
reciprocally. The possibility that a change in the expression 
(protein level) of the M1 and M2 mAChRs themselves may 
contribute to explain their functional change needs to be 
seriously considered. However, the movement of both M1 
and M2 receptors between the extreme positive and nega-
tive influences on ACh release during maturation raises 
some concerns about the possible relevance of the protein 
level change to fully explain these extreme changes in their 
downstream coupling. Alternatively, as stated, these metabo-
tropic receptors are GPCR, and a developmentally regulated 
displacement of their coupling between Gs and Gi proteins 
seems to be an attractive hypothesis. This mechanism may 
be facilitated because several GPCR function within lipid 
raft plasma membrane microdomains, which may be impor-
tant for regulating their signal transduction. In a previous 
study in the mature NMJ, however [75], we show that the 
disruption of lipid rafts (methyl-beta-cyclodextrin, 2%) 
does not change the normal coupling and mutual relations 
of adenosine receptors and mAChRs on ACh release.

Relation of the mAChR with AR (A1, and A2A) 
and TrkB Receptor on Developmental Axonal 
Elimination

Even the continued application of M1 and M2 inhibitors can-
not stop axonal loss, which is completed around P15 [43]. 
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This suggests the complex involvement of multiple other 
pathways including postsynaptic-derived factors [39, 43, 56, 
57]. We found that, in addition to the presynaptic mAChR 
M1, M2, and M4, at least adenosine receptors (AR; A1 and 
A2A) and the tropomyosin-related kinase B receptor (TrkB), 
cooperate in synapse elimination [56, 57]. It seems that this 
multiple signaling would define the conditioning factors of 
the axonal competition and thus, the final fate of the indi-
vidual nerve terminals. However, the achievement of the 
monoinnervated NMJ may be constitutively regulated.

Concerning to transmitter release, AR is present in the 
motor terminals of the newborn and adult NMJs [76, 77] 
and, during development, released adenosine from dif-
ferent components of the synapse may activate both A1R 
and A2AR and have a facilitatory action on ACh release. 
Unfortunately, we do not know the specific involvement 
of these receptors in the strong and weak nerve endings. 
Neurotrophins and their receptors are also expressed in 
both development and adulthood [78–83]. Low doses of 
BDNF rapidly induce a TrkB-dependent potentiation at 
developing NMJs in culture [84] and, in ex vivo develop-
ing NMJ, BDNF increases ACh release in both the weak 
and strong endings around P7 [68]).

Concerning to developmental axonal elimination, specific 
inhibitors reveal that both AR delay axonal loss at P7 but 
accelerate it at P9. This effect is similar to that of mAChRs. 
The BDNF-TrkB pathway also plays a biphasic role because 
BDNF initially delays elimination and subsequently acceler-
ates it at P9 [3]. Thus, several metabotropic receptors over-
lap and share the common function of modulating a major 
mechanism of synaptogenesis as can be the definition of the 
final matching of the synaptic partners. Interestingly, for all 
receptors, an initial delay in axonal elimination observed 
at P7 is followed by the acceleration at P9, pointing to the 
existence of a multifactorial and redundant mechanism 
aimed at ensuring the specific NMJ monoinnervation. For 
instance, all receptors (except M4) directly accelerate axonal 
loss at P9. Ranked according to their importance (from more 
to less), these are M2-M1-A1-A2A-TrkB [3].

Given the observed downstream shared effect of these 
receptors, we simultaneously applied two selective antago-
nists to reveal the cooperation between mAChR, AR, and 
TrkB receptors and the possible additive (synergistic) or 
occlusive (antagonic) crosstalk between them (Fig. 2) [4, 
43, 56, 57]. Studying the adult NMJ, we identified sev-
eral links between purinergic receptors and mAChRs and 

Fig. 2   Retracting axon terminal around P9. Metabotropic receptors 
at the left have downstream pathways linked to PKC activation (M1, 
A1, and TrkB; M4 is included here because its effect is similar to the 
M1 effect, see the text). The PKC isoforms in the NMJ presynaptic 
component are cPKCβI and nPKCε. Receptors at the right are linked 
with PKA inhibition (M2 and A2A). The individual action of all these 
six receptors (M4 indirectly) promotes or accelerates axonal retraction 
and loss. Thus, a metabotropic receptor-driven balance between PKA 
and PKC activities regulates axonal withdrawal. Synergistic or antag-

onistic crosstalk between mAChR, AR, and TrkB can be revealed by 
inhibiting two receptors at a time. In the figure, the receptors that are 
related with a blue link (M1/M4 with M2, A1 with TrkB, and TrkB 
with A2A) seem to share the same pathway because their dual inhibi-
tion produces the same effect as their individual inhibition over axon 
loss. On the other hand, M1/M4 show a synergistic additive behavior 
(green link) with TrkB, A1, and A2A. Finally, both AR, A1, and A2A 
show an antagonistic relationship and are mutually occlusive (red 
link)
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found that the functional integrity of mAChRs coupling 
to the neurotransmission depends on normal purinergic 
receptors operation. This indicates the clear interaction 
between both receptor families in the adult [75]. In the 
newborn, the main results show a synergistic role of the 
M1 mAChR, which potentiates the effect of both AR (A1, 
58% and A2A 36%) and TrkB (25%) on axonal elimina-
tion. On the other hand, though the M4 subtype is not 
directly involved in axonal loss as previously stated, it 
strongly potentiates the effect of AR (A1, 33% and A2A 
32%) and TrkB (23%) thus acting similarly as to the M1 
receptor. Interestingly, a comparable effect of M1 and M4 
is observed on the ACh release capacity of the weakest 
nerve terminals in dual junctions as shown above (see also 
Fig. 1). However, as previously stated, M2 has the most 
powerful effect on axon loss and the inhibition of both 
AR or TrkB receptor does not affect their function. When 
the TrkB inhibitor TrkB-Fc is associated with one of the 
AR inhibitors (DPCPX for A1, or SCH58261 for A2A), the 
final effect is just the same as the individual effect of one 
of them on axon loss. When both ARs are blocked simul-
taneously, occlusion is complete, and the final result is no 
different from that of the untreated control [57].

Thus, taking these data into consideration, we represented 
in Fig. 2 the observed relations of the considered receptors 
that modulate developmental supernumerary axonal loss. In 
Fig. 2, the receptors that are related with a blue link (M1/M4 
with M2, A1 with TrkB, and TrkB with A2A) seem to share 
the same pathway because their dual inhibition produces the 
same effect as their individual inhibition over axon loss. On 
the other hand, M1/M4 show a synergistic additive behavior 
(green link) with TrkB, A1, and A2A. Finally, both AR, A1, 
and A2A show an antagonistic relationship and are mutu-
ally occlusive (red link). All these receptors are involved in 
promoting supernumerary axonal elimination, and we inves-
tigate their downstream links.

mAChR Coupling to Serine Kinases During 
Synapse Elimination

The mAChR downstream signaling converges in intracel-
lular effector kinases, mainly the serine-threonine protein 
kinases A and C (PKA and PKC), which phosphorylate tar-
gets involved in synaptic function and axon loss. Receptors 
and kinases may coordinately regulate the developmental 
synapse elimination. Generally, M1 operates by stimulating 
PKC whereas M2 and M4 inhibit PKA. It is known that, in 
most cells, A1, M1, and TrkB operate mainly by stimulat-
ing the phospholipase C (PLC) and, therefore, PKC and the 
inositol triphosphate (IP3) pathway, whereas A2A, M2, and 
M4 inhibit the adenyl cyclase (AC) and PKA pathway [50, 
51, 85, 86].

At the left of Fig. 2, we represented the receptors cou-
pled to activate PKC (M1, A1, and TrkB—we added M4 due 
to a connection with M1—), and on the right, those that 
downregulate PKA (M2 and A2A), and we investigated the 
hypothesis of the reciprocal involvement of these kinases 
in synapse elimination. In dually innervated, developing 
NMJs, the block of PKC (for instance, with calphostin C or 
chelerytrine) increases ACh release from the weakest nerve 
terminals (roughly 80%) but does not change ACh release 
from the strong nerve terminal or even from the more mature 
monoinnervated junctions. Moreover, after blocking PKC, 
the mean number of functional axon terminals per synapse 
increases by about 50%, indicating some recruitment of 
silent synapses at this time that are probably in the process 
of disconnection [39, 58–60, 67, 87]. Thus, PKC is involved 
in reducing neurotransmission in certain weak nerve end-
ings which may facilitate axonal elimination. Recently, we 
found [88] that PKC favors axon loss through cPKCβI and 
nPKCε isoform activity (as judging by the effect of their 
general [Bry-1 or PMA] and specific activators [dPPA, 
FR236924] and inhibitors [βIV5–3 and εV1–2] respectively) 
whereas PKA-I and II activity (as judging by the effect of 
their specific blockers [H-89, Rp8-Br, and Rp-cAMPs] and 
activator [Sp8Br], respectively) delay axonal loss in P9 mice. 
Furthermore, no significant differences exist between the 
effects of PKA activators and PKC inhibitors, or between 
PKA inhibitors and PKC activators, on changing axon 
loss rate [25]. Moreover, a similar level of PKA inhibition 
and PKC potentiation (mainly of the cPKCβI and nPKCε 
isoforms that are strictly localized on the presynaptic site 
[89–91]) seems to be required to advance in axonal loss, 
clearly suggesting the complementarity of these kinases. On 
the contrary, the increase of the PKA activity, the reduc-
tion of the PKC activity, or, in most cases, both situations 
simultaneously can reduce synapse elimination [57]. Thus, 
a metabotropic receptor-driven balance between PKA and 
PKC activities seems to be involved in synapse elimination 
and axonal withdrawal as represented in Fig. 2.

It is known that reduction of the postsynaptic activity or 
contraction results in a delay in synapse elimination during 
NMJ development [18, 92–95]. In line with this, we made 
experiments blocking the muscle cell’s contractile activity 
with μ-conotoxin GIIIB which blocks muscle cell sodium 
channel but preserves neurotransmission because does not 
influence the nAChR [26]. Accordingly, incubation with 
μ-conotoxin GIIIB also results in a delay in axon loss. Thus, 
a contractile activity-related retrograde influence from the 
postsynaptic site may contribute to the synapse elimination. 
The simultaneous application of one presynaptic cPKCβI or 
nPKCε activator and μ-conotoxin GIIIB fully prevents the 
postsynaptic contraction block effect on axon loss. Thus, 
the axonal loss can be altered by acting directly in presyn-
aptic targets (and receptors like mAChRs). Possibly, the 
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above-cited presynaptic PKCs may be modulated by ret-
rograde control (for instance, through BDNF production). 
This argues in favor of a complex regulation through pre- 
and post-synaptic activity of the serine-threonine kinases 
as mediators of the synapse elimination. The regulation of 
these kinases by mAChR and neurotrophic receptors affect-
ing their phosphorylating activity on targets of the exocytotic 
vesicular release apparatus (as synapsin I and the SNARE/
SM proteins Munc18-1 and SNAP-25) has been described 
by us in the adult NMJ [96, 97].

mAChR Coupling to Calcium Channels 
During Synapse Elimination

mAChR and Calcium Channels in Transmitter 
Release During Development

During development, P/Q, N, and α1D-L subtypes of the 
VGCC are present in the nerve terminals on the LAL mus-
cle. The protein expression of all these channels increases 
during the development P5-P7 time period. Western blots 
at P30 show that the P/Q level is at its highest whereas 

α1D-L and N channel proteins stabilize at a lower level 
[26].

In dually innervated fibers during NMJ maturation 
(P7-P9), the block of any of these three VGCC reduces 
about 2/3 of the EPP produced by the strongest ending 
[65, 66], indicating the multichannel dependence of cal-
cium entry to promote ACh release in these endings. In 
the early monoinnervated endplates, the P/Q-type channel 
blocker ω-Aga-IVA and the N-type blocker ω-CgTx-GVIA 
still reduce the EPP amplitude (~ 80% and ~ 60%, respec-
tively) whereas the L-type blocker nitrendipine does not 
anymore. Finally, in the adult (at P30), only the P/Q-type 
VGCC functionally persists being the only one that, when 
blocked, strongly inhibits ACh release [69]. However, in 
the weak ending of dual NMJs, the block of any VGCC 
channel results in an increase of the size of the evoked 
EPP, indicating that a part of the calcium entry through all 
channels can negatively influence transmitter release and 
even may contribute to disconnect these endings [65, 66].

Figure 3 shows that in the strongest endings, there is a 
differential coupling of the calcium channels with the M1 
and the M2 receptors. M1 receptors need the P/Q- and the 
L-types VGCC whereas the M2 effect needs the P/Q- and 

Fig. 3   Differential coupling of VGCC and mAChRs in the strong 
and weak endings in a common endplate. The effect of the mAChR 
and VGCC on ACh release is shown in green (potentiation) or red 
(depression). The links between receptors and channels indicate the 
mutual dependence between these molecules to produce the final 
effect. In the strongest nerve terminal (shadowed in green), M1 recep-
tors need the P/Q- and the L-type VGCC, whereas the M2 need the 
P/Q- and N-type VGCC to potentiate ACh release. The weak nerve 
ending (in yellow) is represented with the mAChR (M1, M2, and M4) 
and the VGCC (P/Q, N, and L) subtypes that are operative in these 

endings. The M2 function (also potentiation in these endings), sim-
ilarly depends on P/Q- and N-type channels, but not on the L-type 
channel. A leading role for the L channel in axonal loss seems to 
emerge because of their unique coupling to M1 and M4 mAChRs, 
which clearly reduces neurotransmission in the weak nerve terminals 
presumably in process of elimination. Moreover, the coupling of all 
muscarinic and metabotropic receptors studied to promote axonal 
elimination at P9 had a multichannel dependence (P/Q- and L-type) 
with a relevant role of the L channel
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N-types VGCC. As previously stated, in these strongest end-
ing in dually-innervated synapses, both M1 and M2 mAChR 
have an ACh release potentiating effect (see Fig. 1). In the 
monoinnervated junctions, the ACh release potentiating 
effect of both M1 and M2 mAChR relies only on the P/Q-
type VDCC because the effect of the receptors is occluded 
only when this channel is inhibited, even in the presence of 
high Ca2+ concentration [59]. However, in the weak endings, 
the function of tropicamide-sensitive M4 mAChRs did not 
depend on the P/Q-type VDCCs, although it did depend on 
the normal function of the L- and N-type channel [39, 58, 
59, 61]. In the same weak endings, the pirenzepine-sensitive 
M1 mAChRs function had multichannel dependence (P/Q-, 
N-, and L-types), and the methoctramine-sensitive M2 func-
tion also had a multichannel dependence (P/Q- and N-type 
channels but not the L-type channel). As previously stated, 
in the weakest nerve contact in dual junctions, only the M2 
has an ACh release potentiating effect whereas M1 and M4 
reduce release (Fig. 1).

Thus, results indicate that the nerve ending that becomes 
strong during competition uses a specific coupling (different 
from the adult) of the M1 and M2 mAChR with a broad (the 
three VGCC are involved), well-defined VGCC stoichiom-
etry that favors ACh release. This configuration courses with 
the maintenance of these axon terminals. On the contrary, 
it seems that in the weakest nerve ending, the M2 release 
potentiating effect (linked to P/Q and N VGCC) is sur-
passed by the M1/M4 effect (linked to the three VGCCs) 
that depresses ACh release and favors axon elimination.

mAChR and Calcium Channels in the Withdrawal 
of Supernumerary Axons

The L and P/Q-type (but not the N-type) channels tonically 
enhance synapse elimination because their block prolongs 
the multiinnervation of the developing NMJ, whereas their 
exogenous stimulation (Bay-K8644 for L channel and GV-58 
for P/Q channels) results in a significant acceleration [26]. 
Moreover, the delaying effect on axon loss of the L and P/Q 
channels block is equal to that produced by intracellular 
calcium sequestration with BAPTA-AM. Thus, the calcium 
entry through these operative channels present in immature 
nerve endings results in their final loss. The [Ca2+]i increase 
contributes both to transmitter release reduction in certain 
weak axons (as shown above) as well as nerve terminal loss, 
and this coincidence argues in favor of a shared mechanism 
relating transmitter release and axonal competition. It is 
tempting to speculate about the involvement in the neurite 
retraction or growth during axonal competition of the differ-
entially expressed Ca(2 +) sensor proteins [NCS-1, Ca(2 +)/
calmodulin and several neuro-specific calmodulin-like 
Ca(2 +) sensor proteins as CaBP1] [98–100]. There is a clear 
relation between PKA, PKC, and VGCC for developmental 

axonal loss and synapse elimination. The result after the 
block of the L-channel (and also after intracellular calcium 
sequestration) is the same as the inhibition of cPKCβI [25] 
and from stimulation of PKA [88]. However, the inhibition 
of the nPKCε produces a greater delay in synapse elimina-
tion than the L or P/Q channel block or calcium sequestra-
tion. This suggests a VGCC-independent component of the 
PKC-induced enhancement of axonal withdrawal. In adult 
NMJ, we have seen that nPKCε promotes the phosphoryla-
tion of SNARE/SM proteins Munc18-1 and SNAP-25 in an 
activity-dependent manner [96, 97]. Similar to the block of 
L channels, the block of P/Q-type channels produces retar-
dation in axonal loss similar to that observed after cPKCβI 
inhibition. However, the effect of the P/Q block in delaying 
axonal loss is smaller than PKA activation, suggesting the 
relevant involvement of the PKA activity in axonal stabili-
zation [25].

Concluding Remarks

Axonal competition for synaptic sites is a basic develop-
ment process that is regulated to achieve optimal connectiv-
ity during neurogenesis. In the NMJ, supernumerary axon 
loss leads to the optimized monoinnervation of the volun-
tary muscle cells. This process involves activity-dependent 
autocrine, paracrine (between neighbor nerve terminals), 
and retrograde (from muscle cells) signalings impacting on 
the competing nerve terminals. The metabotropic mAChR 
(M1, M4, and M2 subtypes), purinergic receptors (A1 and 
A2A), and TrkB receptors ensure downstream changes in 
the balance between PKA (favors axonal strengthening) 
and presynaptic PKC isoforms (cPKCβI and nPKCε favor 
axonal retraction) activities. mAChRs and kinases path-
ways differentially couple to P/Q, N, and L subtypes of the 
VGCC to differently modulate ACh release in the developing 
nerve terminals (for instance, the strong and weak endings 
in a dual junction at a given moment during competition). 
Moreover, calcium inflow through L- and P/Q-type chan-
nels could affect nerve terminals depending on their activity, 
leading to their final withdrawal or strengthening.

Beyond the analyzed competitive interactions between 
the multiple axons, several uncertainties persist in the 
understanding of developmental synapse elimination as, for 
instance, the mechanism of functionality shifting of mus-
carinic receptors (and other receptors such as adenosine 
receptors) or the mechanism of calcium-induced retraction 
of the ruled-out axons along with the molecular mecha-
nism of rewarding strong endings. The described findings 
contribute to understanding several aspects of the punish-
ment-rewarding interactions between nerve endings and the 
contribution of postsynaptic retrograde involvement. It can 
be stated, however, that the inhibition of any one of these 
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pathways only changes the rate of axonal elimination that 
finally is completed about 2–3 weeks postnatal indicating 
the complex multifactorial nature of the process. We think 
that the high number of molecules and different pathways in 
the cholinergic peripheral NMJ that is directed to the com-
mon objective of supernumerary synapse elimination sug-
gests that some of these molecules may contribute to the 
same function in other neuronal systems. It seems that the 
multifactorial mechanism works with precision, though an 
alteration in many possible points may allow malfunctioning 
of receptors signaling, kinases ratio, or calcium channel bal-
ance resulting in the persistence of multiinnervation. In fact, 
this alteration has been suggested and even has been shown 
in a number of diseases such as autistic spectrum disorder 
(ASD) [101–104].
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