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Abstract
Neurodegenerative diseases (NDs) are a cluster of diseases marked by progressive neuronal loss, axonal transport blockage, 
mitochondrial dysfunction, oxidative stress, neuroinflammation, and aggregation of misfolded proteins. NDs are more preva-
lent beyond the age of 50, and their symptoms often include motor and cognitive impairment. Even though various proteins 
are involved in different NDs, the mechanisms of protein misfolding and aggregation are very similar. Recently, several stud-
ies have discovered that, like prions, these misfolded proteins have the inherent capability of translocation from one neuron 
to another, thus having far-reaching implications for understanding the processes involved in the onset and progression of 
NDs, as well as the development of innovative therapy and diagnostic options. These misfolded proteins can also influence 
the transcription of other proteins and form aggregates, tangles, plaques, and inclusion bodies, which then accumulate in the 
CNS, leading to neuronal dysfunction and neurodegeneration. This review demonstrates protein misfolding and aggregation 
in NDs, and similarities and differences between different protein aggregates have been discussed. Furthermore, we have 
also reviewed the disposal of protein aggregates, the various molecular machinery involved in the process, their regulation, 
and how these molecular mechanisms are targeted to build innovative therapeutic and diagnostic procedures. In addition, 
the landscape of various therapeutic interventions for targeting protein aggregation for the effective prevention or treatment 
of NDs has also been discussed.

Keywords  Aggregates · Chaperone · Heat shock proteins · Misfolded protein · Neurodegenerative diseases

Introduction

One of the biggest challenges in the field of neuroscience is 
the disease-modifying treatment which include several neu-
roprotective and neurorestorative interventions that focus on 
slowing the progression of NDs. NDs are a plethora of debil-
itating and degenerative diseases, including Alzheimer’s dis-
ease (AD), Parkinson’s disease (PD), amyotrophic lateral 
sclerosis (ALS), Huntington’s disease (HD), frontotemporal 

dementia (FTD), traumatic encephalopathy, dementia with 
Lewy bodies, and prion diseases [1]. Despite having a dif-
ference in pathogenesis and clinical manifestation, these 
NDs share several common attributes, such as increased 
prevalence with age, progressive nature, selective neuronal 
loss, and synaptic dysfunction [2–6]. Importantly, the most 
prevalent and common feature of these NDs is the occur-
rence of misfolded proteins and their gradual accumulation, 
which is thought to be the main cause of these disorders 
[7–14]. Alpha-synuclein (α-Syn), amyloid-beta (Aβ), hun-
tingtin (HTT), TAR DNA-binding protein 43 (TDP-43), Tau, 
and superoxide dismutase (SOD) are some of the proteins 
that are misfolded and accumulate in NDs [10–14]. In this 
review, we focused on Aβ, tau, α-Syn, HTT, and TDP-43, as 
they are the most common protein aggregates involved in the 
pathogenesis and progression of NDs. The distribution of the 
misfolded proteins involved in several diseases throughout 
the brain is depicted in Fig. 1, and Table 1 lists the different 
NDs caused by protein misfolding.
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One of the key components of these misfolded proteins 
is that during misfolding from their native states, they form 
intermolecular β-sheet-rich structures, ranging from small 
oligomers to large fibrillar aggregates, in NDs [7]. Protein 
misfolding results either in the loss of protein function or a 
gain of toxic function (via aggregation), resulting in cellular 
responses (for instance, synaptic dysfunction, inhibition of 
axonal transport, mitochondrial damage, and membrane dis-
ruption) that are toxic to cells leading to the progression of 
NDs [3, 15–18]. Alternatively, to deal with the accumulation 
of misfolded proteins, the cell adopts multiple mechanisms, 
including their synthesis, degradation, and clearance from 
the cell, to prevent their misfolding and aggregation [19, 20]. 
Multiple therapeutic strategies that can prevent or reverse the 
progression of NDs are currently being studied. The primary 

target of these studies is misfolded proteins and the aggre-
gates formed by these proteins [21–27]. However, due to the 
dynamic nature of these proteins, targeting them remains a 
challenge [28]. This review discusses the common misfolded 
proteins, cellular mechanisms to deal with the generation of 
misfolded proteins, and degradation and clearance of these 
misfolded proteins as a therapeutic target for NDs.

Misfolded Protein Aggregates in NDs

Numerous clinical and experimental studies have provided 
comprehensive and compelling evidence that the key events 
that cause pathogenic abnormalities in the brain are protein 
misfolding, oligomerization, and accumulation during NDs 

Fig. 1   Distribution of unfolded 
protein in the brain in neuro-
degenerative diseases: Specific 
misfolded proteins are distrib-
uted through particular regions 
of the brain

Table 1   Protein misfolding and aggregation associated with neurodegenerative diseases

S. No Aggregated 
protein(s)

Diseases Affected regions of 
the brain

Clinical hallmarks Aggregate cellular 
locations

Transmission mode Ref

1 α-synuclein Parkinson disease, 
multiple system 
atrophy, dementia 
with Lewy body

Hypothalamus, 
substantia nigra

Movement disorder Cytoplasmic Rarely inherited, 
mostly sporadic

[31]

2 Tau Alzheimer disease, 
Parkinson dis-
ease, fronto-tem-
poral dementia 
with parkinson-
ism

Hippocampus, 
cerebral cortex

Progressive 
dementia

Extracellular, 
cytoplasmic

Inherited (6%) or 
sporadic (94%)

[32, 33]

3 Amyloid-β Alzheimer disease Cerebral cortex, 
hippocampus

Progressive 
dementia

Cytoplasmic, 
extracellular

Inherited (5%) or 
sporadic (95%)

[15]

4 Superoxide dis-
mutase (SOD)

Amyloid lateral 
sclerosis

Brainstem, motor 
cortex

Movement disorder Cytoplasmic Inherited (9%) or 
sporadic (91%)

[34]

5 Huntingtin Huntington, Tar 
DNA-binding 
protein 43 (TDP-
43)

Striatum, cerebral 
cortex

Dementia, psychi-
atric and motor 
problems

Nuclear Autosomal domi-
nated (inherited)

[18, 35]

6 Prion Cretzfeld–Jakob 
disease

Depending on the 
disease, differ-
ent regions are 
involved

Ataxia, insomnia, 
dementia, or psy-
chiatric problems

Extracellular Infectious (3%), 
inherited (7%), or 
sporadic (89%)

[36]
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[9–11, 29, 30]. The misfolded protein aggregates commonly 
implicated in NDs include Aβ (in AD); tau (in AD, fronto-
temporal dementia, chronic traumatic encephalopathy, etc.); 
α-Syn (in PD, multiple system atrophy, and dementia with 
Lewy bodies); TAR DNA-binding protein 43 (TDP-43) (in 
ALS and frontotemporal dementia); and HTT (in HD and 
prion proteins in Creutzfeldt–Jakob disease (CJD), bovine 
spongiform encephalopathy, chronic wasting disease, and 
scrapie) (Table 1). The commonly implicated protein aggre-
gates are discussed below.

Amyloid‑beta

AD is a progressive degenerative disease in elderly indi-
viduals characterized by the predominant neuropathological 
feature of the extracellular deposition of misfolded proteins 
in the brain [15, 21, 37]. There are two major types of aggre-
gates found in AD: (1) intracellular aggregates formed of 
Tau protein (neurofibrillary tangles) and (2) extracellular 
aggregates of Aβ (senile plaques) [16, 38, 39]. Both neurofi-
brillary tangles and plaques formed by the aggregation of 
misfolded proteins increase the severity of dementia [2, 16, 
38]. Increased production or downregulation of the clearing 
pathway (via ubiquitin proteosome pathway) of misfolded 
proteins leads to their deposition and accumulation within 
the organism. The accumulation of such proteins within the 
organism is toxic and affects many vital physiological path-
ways, such as lipid metabolism, mitochondrial dynamics, 
synaptic functions, and the release of neurotransmitters [40, 
41]. Increasing clinical and experimental data suggest that 
oligomers, rather than fibers, are the main species causing 

toxicity and are involved in disease seeding and spread [42, 
43]. Physiologically, the accumulation of Aβ induces oxi-
dative stress and the generation of ROS resulting in dys-
functional mitochondria, the characteristic hallmark of AD 
[7, 44]. Aβ also induces the activation of the IkB a/NF-kB 
inflammatory pathway, resulting in a vicious cycle of neu-
roinflammation and oxidative stress culminating in mito-
chondrial dysfunction, neurodegeneration, and cognitive 
impairment [44–46].

Aβ commonly occurs in two variants, Aβ40 and Aβ42. 
Aβ is formed from amyloid precursor protein (APP), a mem-
brane-bound protein, by the action of β- and γ-secretase, 
known as the amyloidogenic pathway (Fig. 2) [47, 48]. In 
amyloidogenesis, APP is cleaved by β-secretase, generating 
APPsβ and β-C-terminal fragments followed by the action 
of γ-secretase, generating Aβ and amyloid precursor protein 
intracellular domain (AICD) by acting on the transmem-
brane domain [47, 48]. However, in the non-amyloidogenic 
pathway, α-secretase cleaves APP within the sequence of Aβ 
and thereby limits its production [49]. Briefly, α-secretase 
cleaves the ectodomain of APP, generating the APPsα frag-
ment and α-CTF. α-CTF is then cleaved by γ-secretase into 
AICD and P3 peptides [38, 49]. Most of the Aβ in the human 
brain under normal conditions contains Aβ40, while in dis-
eased conditions, excess Aβ42, the major constituent of 
amyloid plaques, is formed. The presence of 42-residue Aβ 
(1–42) results in severe neurotoxicity and aggregates faster 
than the 40-residue peptide Aβ (1–40) [29]. Although the 
exact function of Aβ (1–42) is not clear, few studies report 
that these monomers are neuroprotective in nature [50]. 
Monomeric Aβ lacks toxicity, and thus, the prevention of 
monomer aggregation can prevent toxic species formation. 

Fig. 2   Processing of APP: (i) 
In amyloidogenic pathway, 
the transmembrane protein 
secretase act on Amyloid 
Precursor Protein (APP) and 
cleave to release APPsβ and 
β-CTF (C-terminal fragment). 
The latter is then cleaved by 
γ-Secretase and produce P3 
and AICD (amyloid precursor 
protein intracellular domain). 
(ii) In non-amyloidogenic path-
way, the transmembrane protein 
α-Secretase act on Amyloid 
Precursor Protein (APP) and 
cleave to release APPsα and 
α-CTF (C-terminal fragment). 
The latter is then cleaved by 
γ-Secretase and produce P3 
and AICD (amyloid precursor 
protein intracellular domain)
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The primary structure of Aβ comprises an N-terminal hydro-
philic region, a central region containing hydrophilic and 
hydrophobic residues, and a C-terminal hydrophobic end. 
The N-terminal region contains a β-sheet region [7, 51, 52]. 
The partially folded protein units combine by hydrophobic 
and hydrogen bonds, resulting in the formation of the peri-
nucleus, which has the potential to associate with other Aβ 
molecules to form a structure called the protofibril. Protofi-
brils can also self-assemble to form long fibrillar aggregates 
[51, 52]. The formation of long fibrillar aggregates depends 
on the concentration of monomeric units and oligomers. Aβ 
monomers aggregate to form oligomers that act as interme-
diates that, upon further aggregation, lead to the formation 
of fibrils by primary nucleation. Once a particular concentra-
tion of the fibrils is attained, they catalyze the formation of 
oligomers on the surface (secondary nucleation) [53].

Tau Protein

Tau protein, a microtubule-associated protein, represents 
another misfolded protein found commonly in NDs such as 
AD, PD, HD, and frontotemporal dementia with parkinson-
ism (FTDP) [15, 39, 54]. Under physiological conditions, 
tau is located in the axon; however, disruption of either the 
structure or function of the tau results in the accumulation 
of tau in the soma or dendrites of neurons [55, 56]. The 
presence of hyperphosphorylated forms of tau within the 
neurons that aggregate to form NFTs is another hallmark of 
AD [13]. The accumulation of tau increases with age and 
is correlated with cognitive decline, forebrain atrophy, and 
neuronal loss in the hippocampus and neocortex region of 
the brain [57]. It is believed that the amount of tau present 
in the brain increases approximately 10–15 years before the 
onset of the symptom of the disease [58].

Humans express six different Tau isoforms between 50 
and 70 kDa in size, the shortest of which is present within 
the fetal brain, while the adult brain contains all six isoforms 
[33]. The variable number of specific inserts at the N-termi-
nal region and in the microtubule-binding region (MTBR) 
is responsible for the presence of 6 different tau isoforms. 
Although all 6 isoforms are present in diseased condition 
such as AD, they may be present in variable quantity [33]. 
These tau isoforms are encoded by the microtubule-associ-
ated protein tau (MAPT) gene, which is present on chromo-
some 17 [8]. Tau mRNA contains 16 exons comprising an 
N-terminal domain, 3 or 4 microtubule-binding domains (3R 
or 4R), a proline-rich domain, and the C-terminal region 
[59]. The tau inclusions are ultrastructurally made of paired 
helical filaments (PHFs) and straight filaments (SFs). The 
core of these filaments is made of identical subunits that 
comprise nearly 350 tau proteins. These are known to adopt 
a cross β/βhelix structure [60]. Tau contains approximately 

90 phosphorylation sites in the longest isoform that is known 
to be phosphorylated by 20 kinases [61, 62]. Tau binds to 
microtubules and aids in the anterograde and retrograde 
transport of biomolecules. Enhanced expression of tau 
obstructs kinesin-dependent trafficking in neuronal cells. It 
enhances dynein binding to the microtubule by binding to 
the dynein-activator complex. A low level of tau promotes 
kinesin binding to microtubules, which facilitates transport 
along the axon [63]. At the synaptic junction, increased 
concentrations promote kinesin release, thereby facilitating 
the binding of dynein to microtubules. Hyperphosphoryla-
tion results in loss of biological activity of tau, microtubule 
destabilization, and damage to protein transport, thus result-
ing in the aggregation of toxic molecules [62].

Tauopathy is also observed in HD patients. A study con-
ducted by Nogales et al. (2014) found that the amount of 
the 3R binding domain isoforms in the cortex of normal 
and HD patients was similar; however, a marked increase in 
the 4R binding domain in HD patients was observed. Simi-
larly, the 4R binding domain was found to be much more 
elevated than 3R isoforms in the striatum of HD patients 
[64]. An increase in 4R/3R is also observed in the postmor-
tem patients who recently had undergone transplantation 
surgeries [65]. These experiments prove that an imbalance 
of 4R/3R tau binding domains results in HD.

Tau is secreted from damaged neurons in the extracel-
lular medium (CSF; blood serum). Extracellular Tau is 
responsible for toxicity and can also result in damage to 
other neuronal cells. Extracellular tau expression increases 
phosphotidylserine signal on the neuronal cells that induce 
neuronal loss. Furthermore, extracellular Tau protein acti-
vates microglia’s phagocytic activity and enhances its pro-
liferation. Since, in cultures where microglia were depleted, 
neuronal loss was not observed, microglial cells are consid-
ered to be accountable for tau-induced neurotoxicity [39]. 
This finding indicates that neuronal loss caused by tau is 
due to the activation of microglia. It is also believed that 
microglia-mediated inflammation causes tau pathology 
[66]. Co-existence of microglia activation along with tau 
accumulation indicates that microglial cell activation that is 
considered as a part of the repertoire of immune response 
not only acts as an inflammatory epiphenomenon but also 
drives tau pathology [67].

Alpha‑Synuclein Protein

Alpha-synuclein is a key component that is found in the 
aggregates of misfolded proteins in PD [31]. Three members 
of the synuclein family, alpha, beta, and gamma, are present. 
Alpha and beta are concentrated in the neuronal terminals, 
while gamma is present throughout the neuron [31]. Alpha 
and beta can inhibit phospholipase D224, which is involved 
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in cytoskeletal regulation and endocytosis. Thus, these forms 
are responsible for vesicular transport.

Alpha-synuclein is approximately 140 amino acids long 
and is known to play a vital role in vesicular transport. α-syn 
consists of 3 regions — the central hydrophobic terminal 
flanked by an acid carboxyl-terminal and the N-terminal 
that contains seven repeats of KTKEGV, which forms the 
membrane-binding domain [68–70]. The central region is 
responsible for fibrillization, and any deletion in this area 
explains fibrillization under stress conditions [71]. The cir-
cular dichroism (CD) spectra of mutant E46 monomers were 
found to be randomly coiled, while it exists in the β-pleated 
structure under assembly conditions indicating that in the 
oligomeric form, the structure of the protein changes to a 
β-pleated structure similar to Aβ [72]. The polymerization 
of α-syn is similar to that of Aβ and is nucleation dependent. 
Figure 3 depicts the polymerization of α-syn in the Lewy 
body. When misfolded, α-syn monomers form a β-pleat 
structure that shows a high affinity for the other monomers, 
thus resulting in the formation of oligomers. These oligom-
ers act as intermediates and are later formed into protofibrils, 
fibrils, and finally Lewy bodies via nucleation. Lewy bod-
ies are the insoluble fibrillar species containing intracellular 
globular cytoplasmic inclusions (consists of proteins, lipids, 
and membranous organelles). The process of polymerization 
can be divided into 3 phases. The first phase is slow that 

allows α-syn monomers to form partially folded oligomers 
ad ordered oligomers. During the second phase (elongation 
phase), the ordered proteins cause misfolding of other mono-
mers resulting in formation of larger fibrils. The last phase 
is fast and fibrils attain their maximum size, beyond which 
they do not grow [73]. Postmortem brain reports show a 
similarity between α-syn and Aβ. Like amyloid fibrils, these 
are unbranched, contain an anti-parallel β-sheet structure, 
and are resistant to proteolysis, which is even seen in prion 
proteins. Alpha-synuclein also binds to thioflavin-T, which 
is a characteristic feature of Aβ [72]. Under acidic condi-
tions, the net charge is neutral, decreasing the intramolecular 
repulsions, which makes it prone to aggregation [70, 74]. 
Furthermore, postmortem reports of patients suffering from 
PD suggest that α-syn undergoes posttranslational modifica-
tions such as ubiquitination, phosphorylation, and nitration 
[75]. However, Bartels et al. (2011) demonstrated that α-syn 
purified from the brain could form aggregates and that post-
translational modification did not alter the process of aggre-
gation [76]. This indicates that modifications of the protein 
do not affect the polymerization of the protein.

Alpha-synuclein has been found to directly promote SNARE 
(Soluble NSF Attachment protein Receptor) complex assembly 
(plays an important role in vesicle fusion) that involves the bind-
ing of the N-terminal of α-syn to phospholipids and the C-termi-
nal to synaptobrevin. The SNARE complex assembly formation 

Fig. 3   Mechanism of formation of large sized aggregates in Parkin-
son disease: Under normal conditions, the protein (α-synuclein) is 
folded properly. However, environmental and genetic factors trig-
ger misfolding of protein which leads to the formation of aggregates 

which results in formation of Lewy body. Formation of Lewy body 
causes neuronal damage which results in neurodegenerative disease, 
Parkinson
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promotes the vesicle fusion. Loss of SNARE-mediated fusion 
leads to loss of neuronal function [77]. Thus, loss of function of 
α-syn is directly related to loss of neuronal function, and these 
functions of the protein are accomplished by interacting with the 
lipid bilayer. Pfefferkorn et al. (2010) studied the effect of trypto-
phan (Trp) mutation on the membrane-binding ability of α-syn. 
Trp contains an indole ring in its side chain, which is sensitive 
to the local environment; thus, Trp mutation is ideal to study the 
membrane-binding property of α-syn [78]. In the study, they sub-
stituted Trp and observed that although the membrane-binding 
affinity was not affected to a greater extent, Trp-4 and Trp-94 
showed high membrane affinity. It was also observed that the 
membrane affinity increased under acidic conditions.

Huntingtin Protein

Guo and his colleague (2018) described the structure of HTT 
by cryo-electron microscopy. According to them, HTT is an 
α-helical protein weighing approximately 350 kDa. It consists of 
three domains: the N-terminal, central, and C-terminal regions. 
The N-terminal bears 2 membrane-binding regions and contains 
repeats arranged in a solenoid. The C-terminus is also believed 
to contain multiple HEAT repeats. The terminals are joined by 
the salt bridge domain. They also identified HAP-40 (huntingtin-
associated protein 40) as the central regulator of proteins that 
stabilize HTT protein upon binding [9]. However, Guo believed 
that the heterogeneity in the conformation of HTT prevents a bet-
ter understanding of its structure. Costanzo (2013) also demon-
strated that transfer is cell_cell mediated [79]. The aggregation of 
these proteins is due to the expansion of polyglutamine residues 
in the N-terminal. The length of the repeat determines the ten-
dency of aggregation [80]. It is believed that when mutant HTT 
contains more than 35 polyQ repeats, it forms oligomers, which 
are responsible for collapsing proteostasis, such as autophagy and 
the ubiquitin_proteasome system (UPS) [35]. A major mode of 
regulation of several cellular processes is through posttransla-
tional modifications. These modifications include phosphoryla-
tion and acetylation, which affect the 3D structure of the protein 
and modulate the physiology of the protein. The cytoplasmic 
and nuclear localization of HTT is mediated by phosphorylation 
at serine and threonine residues, particularly Ser-13, Ser-16, and 
Thr-3 [81, 82]. Acetylation of lysine residues within the N-termi-
nal modulates aggregation of the protein and affects membrane 
binding [83].

TAR DNA‑Binding Protein 43

TDP-43 (TAR DNA-binding protein 43) is a versatile 
RNA/DNA-binding protein that is involved in RNA metab-
olism [84, 85]. In 2006, TDP-43 was identified as one of 

the key components of insoluble inclusions isolated from 
ALS patients. The TDP-43 protein is an approximately 
400 amino acid long peptide that encodes the TARDBP 
gene and is located on the 1st chromosome. TDP-43 has an 
N-terminal domain, two RNA recognition motifs, a nuclear 
export signal, and a C-terminal domain. The N-terminal 
domain has a nuclear localization signal that allows the 
protein to enter the nucleus. TDP-43 is primarily local-
ized in the nucleus but can export to the cytoplasm under 
specific conditions [86]. The C-terminal region has a glu-
tamine/asparagine-rich domain and a glycine-rich region 
[18, 87–89]. This protein has multiple functions and is 
involved in RNA metabolism (transcription, translation, 
mRNA stabilization, etc.) [4, 18]. TDP-43 proteinopa-
thies are distinguished by cytoplasmic localization of the 
protein, the presence of hyperphosphorylated and ubiqui-
tinated forms of the protein, the deposition of these forms, 
the formation of inclusion bodies, the formation of toxic 
C-terminal TDP-43 fragments, and protein aggregation.

Prions Such as the Nature of Misfolded 
Proteins and NDs

The seeding property was first established for infectious 
prion particles [90]; however, recent studies have dem-
onstrated that the seeding property is inherent to all mis-
folded protein aggregates involved in NDs [90–93]. Prion 
is composed of misfolded prion protein (PrPSc) aggregates 
that self-replicate and spread (seed) in the infected brain. 
The fact that seeding is a common attribute of the mis-
folded protein aggregates involved in NDs suggests that 
such protein aggregates have the potential to be infectious 
and result in conversion from the normal state to a mis-
folded state [90, 94]. Recently, scientists have also found 
prion-like proteins in other NDs that are not infectious [80, 
91, 93]. These proteins are known to seed by the formation 
of tunneling nanotubes [92] or by the process of endocyto-
sis [95]. The process of misfolded protein seeding during 
NDs is supported by the fact that inoculating brain tissue 
homogenates from ND patients or transgenic animals con-
taining Aβ, tau, and α-Syn protein aggregates resulted in 
disease induction in the recipient in vitro cellular model 
system or in vivo in animal models [95–97]. Of note, the 
transmission of synthetic or recombinant misfolded pro-
tein aggregates prepared in vitro has also been established. 
However, more efficient seeding has been witnessed with 
tissue homogenates than with purified or recombinant pro-
teins, signifying the role of other cellular mediators in 
the pathological transmission of NDs [97–99]. Last, the 
pathogenic spreading of ND has even been witnessed with 
the systemic administration of seeds. However, whether 
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spreading or seeding of protein misfolding is restricted to 
the protein aggregate accumulation of tissue damage and 
disease progression is an active area of research.

Cellular Response to Misfolding of Proteins

Misfolded proteins can have three fates — they may be 
degraded, refolded, or delivered to the quality control center 
that can sequester harmful misfolded proteins [20, 100]. The 
misfolded proteins present in the cytosol and the endoplas-
mic reticulum (ER) are recognized by cellular sensors that 
generate a response that blocks translation, recruits’ chap-
erones to refold the proteins, and if necessary, degrades the 
proteins or causes apoptosis [20, 101].

The unfolded protein response (UPR) is a process that 
maintains homeostasis within a cell. The UPR is activated 
under stress conditions, as in AD [102]. The ER membrane 
contains three proteins that act as sensors: PERK (protein 
kinase R-like endoplasmic reticulum kinase), IRE1 inositol 
requiring kinase 1), and ATF6 (activating transcription fac-
tor 6). These proteins are bound to another protein known 
as BiP that inactivates the proteins [100]. When BiP dis-
sociates under stress, these proteins are activated and cause 

modification of the transcription and translation process and 
prevent cellular damage, while BiP acts as a molecular chap-
erone and refolds proteins (Fig. 4) [103]. The protein level of 
BiP/GRP78 is increased in AD, where they assist in refold-
ing of the proteins [104]. The transmembrane protein PERK 
dimerizes and phosphorylates the translation initiation factor 
eIF2α, which blocks translation. PERK is also responsible 
for the activation of ATF4 which increases the expression of 
chaperones [105]. The expression of ATF4 for a longer dura-
tion is linked with apoptosis [100]. IRE1 homodimerizes and 
undergoes a conformational change that activates the RNase 
domain in the cytosolic region of the protein and modulates 
the expression of XBP-1, a transcription factor that trans-
activates genes related to UPR proteins [106]. Duran et al. 
(2017) demonstrated that IRE1 deletion resulted in reduced 
expression of APP in a mouse model, indicating the role of 
IRE1 in the pathogenesis of NDs [107]. Under stressful con-
ditions, ATF6 is transported to the Golgi body via vesicles 
where its cytoplasmic domain is cleaved in the cytosol. The 
domain is then transported to the nucleus, where it acts as 
a transcription factor. It is believed that ATF6 responds to 
stress caused by lipids and proteins via separate mechanisms 
[108]. The UPR is activated in AD [102, 104].

Fig. 4   Unfolded protein response (UPR) in diseased and normal con-
ditions: Under normal conditions, BiP (chaperone) remains associ-
ated to the transmembrane proteins (PERK1, IRE1, ATF6). Under 

diseased conditions, the sensors get activated and cause transcription 
of genes that regulate transcription, translation, and chaperones. BiP 
also binds to misfolded proteins and cause refolding
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The proteins in the secretory pathway are thermody-
namically more stable due to posttranslational modifica-
tions (such as glycosylation or disulfide linkage); however, 
the proteins in the cytosol are less stable due to fewer post-
translational modifications [109]. In the cytosol, misfolded 
proteins with exposed hydrophobic amino acids are recog-
nized by molecular chaperones (HSP70, HSP90, HSP100, 
and sHSP) [20] and are subjected to three different fates as 
described below:

A	 Degradation of misfolded proteins
	   Misfolded intracellular proteins can be degraded 

by the ubiquitin_proteasome pathway (UPP), which 
involves the covalent binding of ubiquitin with the pro-
tein followed by the degradation of the protein. The 
ubiquitin molecule is released during the process and 
can be reused [20]. For example, Tau is ubiquitinated at 
the Lys254, Lys257, Lys311, Lys317, and Lys63 resi-
dues and degraded by E3 ubiquitin ligase [101, 110]. 
Misfolded proteins can also be transferred to acidic 
compartments, such as lysosomes, where the proteins 
are exposed to low pH, which ensures their unfold-
ing and cleavage by proteolytic enzymes [75]. The 
importance of lysosomal enzymes can be predicted, as 
the inhibition of lysosomal enzymes in rat brains can 
induce the formation of tangles [111]. Recently, it has 
been discovered that α-syn can be degraded via selec-
tive autophagy [112], which is termed synucleinopathy. 
According to this mechanism, α-syn in neurons activates 
microglia, which engulf proteins in autophagosomes. 
These autophagosomes are then degraded via selective 
autophagy [112]. Misfolded proteins can also undergo 
chaperone-mediated autophagy in which HSP70 recog-
nizes the proteins and then degrades them by lysosomes; 
however, this process is selective for proteins [75]. 
Notably, α-syn-mediated neurotoxicity was enhanced 
several folds when chaperone-mediated autophagy was 
suppressed in neurons [113].

B	 Refolding
	   Upon sensing the presence of misfolded proteins, the 

cell selects several molecular chaperones that cause the 
refolding of the protein. Chaperones such as BiP are 
activated as discussed above by dissociating from trans-
membrane proteins, binding to the target protein and 
promoting folding. Several other chaperones in the ER 
are activated by the UPR, which accelerates the folding 
of the proteins. Heat shock proteins (HSPs) play a major 
role under stressful conditions, as their transcription is 
upregulated which promotes protein folding [114]. In 
the cytoplasm, the unfolded proteins are recognized by 
Hsp70 and Hsp40 cochaperones. More mature folding 
intermediates are recognized by Hsp90 or TRiC/CCT 
(TCP1-ring complex or chaperonin containing TCP1). 

Protein aggregation is also reduced by sHsps. These 
chaperones aim to refold misfolded proteins. The activ-
ity of each of these molecular chaperones is discussed 
in detail in a later section. In the ER, the roles of Hsp70, 
Hsp40, and Hsp90 in damage recognition are conserved, 
and there is no TRiC/CCT homolog. The role of sHsps 
is also restricted to the ER [115].

C	 Protein sequestration
	   When the concentration of misfolded proteins rises, 

the cell employs a strategy to avoid chaperone satura-
tion. Other misfolded proteins are sequestered in quality 
control centers as part of this strategy [20, 28]. The con-
centrated proteins stored in the centers are later degraded 
or refolded depending on the cellular condition. Cyto-
solic proteins that are misfolded or cannot be refolded or 
degraded accumulate in the juxtanuclear quality control 
compartment (JUNQ). These proteins accumulate in the 
JUNQ under unfavorable conditions and can be recy-
cled to the cytoplasm when the conditions are ambient 
where they can be refolded [20]. When the cell fails to 
refold, degrade, or sequester the misfolded proteins, the 
concentration of misfolded protein increases within the 
cell. Under such conditions, the proteins are likely to 
form aggregates and cause cytotoxicity.

Role of Molecular Chaperones in Protein 
Folding/Aggregation During NDs

Under adverse cellular conditions, cells produce proteins that 
can maintain homeostasis within the cell. Such proteins are 
termed heat shock proteins (HSPs) or molecular chaperones 
[15, 114]. They are intricately involved in the prevalence of 
protein misfolding diseases by (i) preventing aggregation of 
wrongly folded proteins, (ii) promoting the refolding of pro-
teins, and (iii) facilitating degradation of the misfolded pro-
tein [15]. Chaperones interact transiently with protein [116]. 
However, a change in the interaction between the protein and 
the chaperone modulates the activity of the chaperone and 
vice versa [68]. This has been demonstrated in a study where 
it was observed that a change in the activity of the chaperone 
modulates the interaction with protein disturbing the balance 
and leading to PD [68]. Based on the structural and func-
tional similarities of these proteins, they are categorized into 
different families. Members of these families may be consti-
tutively expressed or may be expressed only when required 
and possess the ability to recognize misfolded proteins in the 
cytoplasm and the ER [117, 118]. Table 2 gives an overview 
of molecular chaperones found within the cell. These chap-
erones are commonly found in the cytoplasm, but they move 
to other compartments under stress. It has been recently dis-
covered that HSPs can be secreted by non-neuronal cells into 
the micro-environment and can be subsequently utilized by 
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neurons. The most studied extracellular chaperone is HSP70 
which is known to confer neuroprotective role (by mask-
ing toxic extracellular proteins, driving adaptive immune 
signaling, and stalling expression of proteins playing role in 
synaptic pruning). Several studies are now being conducted 
to treat NDs by targeting the extracellular HSPs; however, 
the complete knowledge of extracellular HSPs and the role 
played by them is imperative for developing a therapy [119, 
120].

One of the largest molecular chaperone families is 
HSP70. HSP70 in eukaryotes occurs in two different forms: 
HSC70 (heat shock cognate protein 70), which is consti-
tutively expressed and HSP70 which is expressed under 
stressful conditions [128]. HSP70 is known to play a major 
role in diseases involving misfolded proteins such as Alz-
heimer’s and tauopathies wherein it is responsible for facil-
itating refolding and disaggregation [129]. HSP70 binds 
to the hydrophobic region of proteins via its C-terminus 
in an ATP-dependent manner [114, 130]. HSP70 bound 
to ATP has a low affinity for the substrate. Hydrolysis of 
ATP increases the affinity toward the substrate. Thus, ATP 
hydrolysis regulates the affinity between the chaperone and 
the target protein. This process necessarily requires the pres-
ence of HSP40, which acts as a cochaperone and aids the 
process. The importance of HSP70 in proteinopathies is 
demonstrated by the fact that its knockdown makes neu-
rons more vulnerable to cytotoxicity and neurodegeneration 
[19]. Alternatively, overexpression of HSP70 by pharmaco-
logical and genetic approaches promotes neuroprotection in 
misfolded NDs, such as PD [131, 132], AD [133], and HD 
[134]. HSP70 binds to the hydrophobic region of these pro-
teins and promotes the recovery of the native conformation, 
preventing the formation of aggregates.

HSP90 is another important HSP that requires ATP 
hydrolysis for activation and proper functioning [135]. 
Several cochaperones influence the ATP cycling process 
and facilitate bonding with the substrate [136]. HSP90 is a 
dimeric protein found in the cytosol and ER. It is involved 
in maintaining protein homeostasis by ensuring the proper 
folding of proteins and degrading misfolded proteins. The 
two major HSP90 isoforms HSP90β are expressed consti-
tutively, and HSP90α, whose expression is induced under 
stress, exists in the cytosol [122]. Selective Hsp90α/β inhibi-
tors have been found to promote clearance of inclusion bod-
ies formed by mutant HTT in rodents [137]. Furthermore, 
HSP90 binds to HTT via the N-terminus and recruits the 
deubiquitinating enzyme USP-19 (ubiquitin specific protease 
19) to modulate the protein and aggregate of HTT [117]. 
Hsp90 has several cochaperones that aid in the proper func-
tioning of HSP90 [123]. The most common cochaperones 
are cdc37 (cell division control protein 37), HSP82, Sti1 
(stress-inducible protein 1), and PP5 (protein phosphatase 
5) [123, 138]. P23 is another cochaperone of HSP90 that is Ta
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also a therapeutic target, as gedunin, a p23 inhibitor, pre-
vents neurotoxicity induced by 1-methyl-4-phenyl pyridine 
(MPP +) [138].

Small heat shock proteins (sHSP) are a group of pro-
teins that weigh less than 40 kDa and are upregulated dur-
ing stress [126, 139, 140]. These proteins work in an ATP-
independent manner and are expressed under unfavorable 
conditions [139]. Small HSPs play a vital role in refolding 
proteins, destabilizing, and facilitating the solubilization of 
aggregates [125, 127, 141]. These proteins carry a conserved 
sequence called the α-crystallin domain between the N and 
C terminals. HSP27, a low-molecular weight protein, is 
known to mitigate cellular damage and neuronal cell death 
during NDs [75], whereas HSPB5 reduces cellular toxic-
ity and prevents fibril formation by α-syn [127]. It acts as 
an anti-apoptotic protein and molecular chaperone when it 
exists in large oligomers [125]; however, it regulates the 
microfilament dynamics when it exists in small oligomers 
[141]. Reduction in the level of HSP27 with methylglyoxal 
results in the aggregation of α-syn, impaired clearance, and 
neurotoxicity, an effect that was reversed by overexpression 
of Hsp27 [140]. Studies have demonstrated that the terminal 
regions of Hsp are important for stable fibril binding and that 
these regions can play a cytoprotective role in vivo [126].

The Landscape of Therapeutics Targeting 
Protein Misfolding or Aggregation in NDs

Regardless of the extensive information and advancements 
in the field of NDs, no effective cure or treatments are avail-
able for preventing NDs. This is a consequence of lack of 
understanding of the tertiary structures of the misfolded 
proteins, inability of the drug to cross the BBB, recognition 
of few epitopes by the antibodies, etc. Despite facing these 
challenges, misfolded protein aggregates remain the primary 
target for effective therapeutic intervention for NDs. Of note, 
molecules/drugs are now being formulated that have the 
potential to diffuse or dilute the aggregates formed in the 
various brain regions.

Antibodies Targeting Misfolded Proteins

Recently, antibodies have been developed against misfolded 
proteins that can stimulate both humoral and cell-mediated 
immunity in the patients [142]. These antibodies are spe-
cific to the target proteins and can offer long-term clearance 
of these proteins. They can dissolve soluble and insoluble 
aggregates. Both active and passive immunizations have 
been explored and have shown remarkable potential for the 
treatment of NDs [143]. However, the major disadvantage 
of using antibodies is their ability to cross the blood–brain 

barrier and recognize only a limited number of epitopes. 
Table 3 shows a list of antibodies that have been generated 
against α-syn, Aβ, HTT, and tau. The antibodies target dif-
ferent regions of these proteins and aim to reduce oligomer-
ization and prevent cell-to-cell transfer. Several of these 
antibodies may be supplemented with other drugs to reduce 
symptoms in patients suffering from NDs.

Monoclonal antibodies are considered a therapeutic strat-
egy for AD. One such monoclonal antibody is bapineuzumab 
which is currently discontinued due to its lack of efficacy 
[168]. Crenezumab is another monoclonal IgG4 antibody 
that binds to monomeric and aggregates of Aβ. It is known 
to block the aggregation of monomers and has the potential 
to induce disaggregation. Crenezumab lowers the Aβ con-
centration in the cerebrospinal fluid in AD patients [161]. 
Amyloid-beta fibril formation is also inhibited by chronic 
intranasal treatment of single-chain fragments derived from 
IgG that can inhibit neurotoxicity and neutralize neurotoxic-
ity related to Aβ in transgenic mice [184]. Another antibody 
studied is aducanumab which when administered to patients 
intravenously suffering from AD for a year, caused regres-
sion of Aβ plaques in a dose-dependent manner. However, 
intravenous infusion of the monoclonal antibody has sev-
eral side effects on patients, including upper respiratory tract 
infection, urinary tract infection, and headache [162]. Due to 
a high number of side effects observed, aducanumab is now 
discontinued. Bosch (2014) showed that immunized dogs 
show smaller amyloid plaques than nonimmunized dogs 
[21]. Purified anti-Aβ 40 IgGs were given to dogs, and these 
exhibited stronger immunoreactivities to disperse plaques. A 
parallel study carried out with commercial anti-Aβ 40 IgGs 
demonstrated an increase in the immunoreactivity toward 
neuritic plaques [21]. Xing et al. (2017) developed a mono-
clonal antibody (3F5) against 11 amino acid residues of the 
N-terminal region of Aβ. Treatment with 3F5 has certain 
disadvantages, as it may result in microhemorrhage lesions 
and cerebrovascular edema; however, 3F5 also decreased 
the death rate of neuronal cells in mice and the amount of 
Aβ deposits [22]. Several other antibodies, such as sola-
neuzumab, gantenerumab, and ponezumab, offer passive 
immunity, while AN-1792, ACI-24, CAD-106, ACC-001, 
and ABvac40 offer active immunity and target Aβ and its 
aggregates [27, 158, 164, 166, 167, 169, 170, 172].

Several antibodies show the potential to target α-syn pro-
tein and cause the reduction of extracellular protein. BIIB054 
and prasinezumab are the most advanced projects to date. 
Administration of BIIB054 has been seen to have several 
mild side effects, such as headaches. However, no symptoms 
of cardiovascular disease or stroke were visualized [149]. 
MEDI1341 is an antibody that targets the C-terminal of 
α-syn and attenuates cell-to-cell transmission of preformed 
fibrils in mammalian models such as mice [153]. Admin-
istration of α-syn oligomer selective antibodies (mAb47, 
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Table 3   Antibodies targeting misfolded proteins in NDs

S. No Antibody Target Type of immunization Trial Comments Ref

1 mAb47 Protofibril structure of 
α-Syn

Passive immunization Preclinical • Reduce oligomeriza-
tion

• Reduce protofibrils

[144, 145]

2 Naturally occurring 
autoantibody

NAb-Syn

α-Syn oligomer Passive immunization Preclinical • Reduction of soluble 
form, phosphoryl-
ated and oligomers of 
α-Syn

[146]

3 Prasenizumab 
(PRX002)

α-Syn aggregates Passive immunization Clinical (phase II) • Reduce free α-Syn in 
serum but not in CSF

[23, 147]

4 BIIB054 N-terminal of α-Syn Passive immunization Clinical • Antibody forms 
complex with α-Syn 
of the serum

[148, 149]

5 Recombinant α-Syn C-terminus of α-Syn Active immunization Preclinical • Reduced accumula-
tion

[150]

6 AFFITOPE α-Syn aggregates Active immunization Clinical (phase I) • Generates anti-α-Syn 
antibodies

• Reduce neuronal loss

[151, 152]

7 MEDI1341 C-terminal of α-Syn Passive immunization Preclinical • Attenuates cell to cell 
of fibril

[153]

8 Anti-Aβ 31–35 Aβ42 Passive immunization Preclinical • Prevent apoptosis
• Restore synaptic 

plasticity

[154]

9 Bapineuzumab N -terminal of Aβ and 
Aβ plaques

Passive immunization Clinical (discontinued) • Several adverse 
effects noticed

[155, 156]

10 Solaneuzumab Mid domain of Aβ Passive immunization Clinical (phase III) 
(discontinued)

• Could not improve 
cognitive decline

[27, 157]

11 Gantenerumab Aβ aggregates and 
N-terminal of Aβ

Passive immunization Clinical (phase III) • Dose-dependent 
reduction of plaques

• Reduce cognitive 
decline

[158, 159]

12 Crenezumab Mid-domain of Aβ Passive immunization Clinical (phase III) 
(discontinued)

• Reduce aggregation
• IgG4 antibody
• Reduced inflamma-

tory
• Low efficacy

[160, 161]

13 Aducanumab N-terminal of Aβ (solu-
ble and insoluble)

Passive immunization Clinical (phase III) 
(discontinued)

• Reduce plaques 
formation

[162, 163]

14 Ponezumab C-terminal of Aβ Passive immunization Clinical (discontinued) • Reduce Aβ in CNS 
and blood

• No effect on cogni-
tive decline

[164, 165]

15 AN-1792 Aβ Active immunization Clinical (discontinued) • Cleared Aβ40, Aβ42, 
and Aβ43 plaques

• Severe side effects

[166]

16 ACI-24 Aβ aggregates Active immunization Clinical (phase II) • Trigger immune 
response in patients

[167]

17 CAD-106 Aβ Active immunization Clinical (phase II) • No severe effects
• Increased anti-Aβ 

antibodies

[168, 169]

18 ACC-001 N-terminal of Aβ Active immunization Clinical (phase II) • No severe side effects
• Increased anti-Aβ 

antibodies

[170, 171]

19 ABvac40 C-terminal of Aβ Active immunization Clinical (phase II) • Increased anti-Aβ 
antibodies

[172]
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mAb49G, mAb38E2) can increase the clearance of α-syn 
added exogenously. Administration of the antibody rescued 
the astrocyte from mitochondrial damage and decreased the 
aggregates. Of all the antibodies, mAb47 showed the most 
promising effect [144]. In addition, AFFITOPE generates 
anti-α-syn antibodies and reduces neuronal loss. This drug 
is currently under phase I clinical trial.

Administration of antibodies targeting tau protein has also 
been shown to reduce the polymerization of tau. Administra-
tion of the C10.2 antibody targets tau aggregates and reduces 
tau seeding [180]. Administration of a single chain variable 
fragment of MC1 reduced tau pathology in rodents. The 
delivery of the antibody was achieved by adeno-associated 
virus (AAV). Administration of the antibody decreased the 
insoluble and soluble tau forms in the cortex and hippocam-
pus [185]. BIIB092 is a monoclonal antibody that recognizes 
full-length tau and N-terminal tau fragments. The N-termi-
nal tau fragments are found extracellularly in the cerebro-
spinal fluid (CSF). Administration of this monoclonal anti-
body reduced the induction of tau aggregation. Antibodies 

targeting HTT have also been discovered; however, few anti-
bodies targeting HTT are known. A monoclonal antibody 
(C6-17) is known to target the exposed region of HTT and 
inhibit cellular uptake of the protein in vitro [185]. Other 
antibodies include INT41, sc-Fv-MW1, sc-Fv-MW2, and 
sc-Fv-C4 target mutant forms of HTT and aggregates [182, 
183, 186]. These antibodies reduced the aggregates of the 
protein and increased cell survival.

Targeting Chaperones

A promising treatment for NDs is the development of 
neuroprotective therapies that target protein misfolding 
and aggregation. Chaperones are critical targets in pro-
tein folding and degradation. Chaperones are divided into 
three types: molecular chaperones, chemical chaperones, 
and pharmacological chaperones. Within the cell, there are 
molecular chaperones [129]. Targeting the expression of 
these molecules appears to protect the cell from toxicity 

Table 3   (continued)

S. No Antibody Target Type of immunization Trial Comments Ref

20 Tau379-408 Tau Active immunization Preclinical • Triggered anti-tau 
antibody

• Reduce aggregates
• Clearance of tau 

species

[173]

21 AADvac1 Tau oligomer Active immunization Clinical (phase II) • Reduction in cogni-
tive decline

[174]

22 ACI-35 Active immunization Clinical (phase II) • Reduce aggregation [175]
23 CBTAU-22.1 Tau Passive immunization Preclinical • Reduce aggregation, 

seeding, and spread
• Reduce tau helical 

filaments

[176]

24 43D, 77E9 N-terminal of tau Passive immunization Preclinical • Reduced total and 
phosphorylated tau

• Reduced memory 
impairment

[177]

25 TOMA Tau oligomer Passive immunization Preclinical • Reduce oligomers
• Reduced memory 

loss

[178]

26 C2N, 8E12, gos-
anemab, zagoten-
emab, semorinemab

Tau Passive immunization Clinical (phase II) • Reduce aggregates [179]

27 C10.2 Tau Passive immunization Preclinical • Reduced tau seeding [180]
28 ABBV-8E12 Tau Passive immunization Clinical (phase II) • Stop or slow the 

progression of tau 
pathology

[181]

29 INT41 Htt Passive immunization Preclinical • Reduced nuclear 
translocation

• Reductions in aggre-
gates

[182]

30 sc-Fv-C4 Htt Passive immunization Preclinical • Increases solubility
• Inhibits aggregation

[183]
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caused by protein misfolding. Several natural molecules 
influence molecular chaperone activity [187]. They may 
increase or decrease the expression of chaperones that 
protect the cell from proteinopathies. Furthermore, sev-
eral synthetic drugs that target molecular chaperones or act 
as chaperones themselves are being developed to improve 
the stability of folded proteins [188]. Table 4 gives an 
overview of several natural and synthetic molecules that 

cause protein folding, protein degradation, activation of 
chaperones, and inhibition of chaperones that are respon-
sible for protecting the cell from a toxic gain of function 
of misfolded proteins.

Geldanamycin and radicicol act as HSP90 inhibitors 
and impair the interaction of HSP90 and the protein. The 
interaction between HSP90 and protein was lost after 
24 h of treatment with the drug. It was also observed that 

Table 4   Chaperones as a therapeutic target
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inhibition of HSP90β leads to the relocalization of α-syn 
to the mitochondria [68]. Wang et al. (2017) proved that 
the use of an HSP90 inhibitor (OS47720) can reach the 
brain and elicit a heat shock-like response by activating 

heat shock factor (HSF1), which can translocate to 
the nucleus and activate numerous genes [226]. The 
HSP90 inhibitor was found to be nontoxic and capable 
of increasing Synapsin I, which can protect the synapse 

Table 4   (continued)
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from damage caused by Aβ. It also improved several cog-
nitive functions of the brain.

It has also been observed that chaperones can indi-
rectly affect the aggregation of misfolded proteins. Silveira 

et al. (2019) found that a chaperone of glucocerebrosidase 
(Ambroxol) can raise the level of glucocerebrosidase and 
increase the clearance rate of aggregate α-syn [24]. Thus, it 
can be said that Ambroxol acts as a potential treatment for PD.

Table 4   (continued)
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Antisense Therapy Targets the Expression 
of Proteins

Recently, the use of antisense oligonucleotide (ASO) has been 
increased and has shown promising effects to treat NDs [5, 151, 
227–229]. The ASO is a single-stranded nucleotide that can bind 
to the target protein and alter its expression. The mechanisms 
by which oligonucleotides alter the expression of the target pro-
tein include (i) mRNA degradation by RNase H recruitment, 
(ii) inclusion or exclusion of exons by alternate splicing, and 
(iii) inhibition of the binding of miRNA to the target protein 
[5]. ASO is resistant to exonuclease and therefore is not tar-
geted by endogenous enzymes that promote the long-lasting 
effects of ASO. Direct delivery of leucine-rich repeat kinase 
2 (LRRK2) ASO prevents α-syn pathology by suppressing of 
LRRK2 protein expression [229]. Likewise, delivery of amido-
bridged nucleic acid ASO (AmNA-ASO) enhanced the targeting 
potency and decreased the mRNA of α-syn in vivo and in vitro 
[228]. AmNA-ASO was also reported to decrease motor defects 
in a mouse model. An advantage of using AmNA-ASO is that 
no off-target effects were seen in the mouse model. ASO is also 
a potential target for HTT in HD patients. A study showed that 

targeting HTT by the ASO technique resulted in the suppression 
of the protein in the CNS [227]. DeVos et al. (2017) designed an 
ASO that is specific for tau and inhibited neuronal loss. It also 
reduced the expression of tau mRNA and protein expression, 
therefore reversing tau spreading and accumulating activity in 
a mouse model [5].

Another way of altering the expression of the gene is by syn-
thesizing splice-switching antisense oligonucleotides (SSOs) 
which are short single-stranded ASOs that can bind to a spe-
cific RNA target. The binding of SSO to the target RNA results 
in the skipping of an exon (alternate splicing), regulating the 
expression of the protein. The mature RNA formed as a result 
of alternate splicing lacks the targeted exon. Chang et al. (2018) 
synthesized an SSO that induced the skipping of exon 17 in 
APP. The produced mRNA lacked exon 17, which is known to 
code for γ-secretase. As a result, APP could not produce Aβ, 
thereby decreasing the concentration of Aβ42. The SSO they 
synthesized contained a 2-methoxyethyl-ribose and phosphoro-
thioate modified backbone that was resistant to the action of the 
exonuclease [230]. The effect of SSO was also visualized in a 
mouse model that had similar results. This proves that SSO can 
be used to target the expression of the protein in NDs.

Table 4   (continued)
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Proteolysis‑Targeting Chimaera (PROTAC) 
Targets the Degradation of Undruggable 
Proteins

An emerging strategy to regulate protein concentration 
is PROTAC. PROTAC are small molecules that target 
“undruggable” proteins. These molecules bind to the target 
protein and E3 ubiquitin ligase and enhance the degradation 
of the protein (Fig. 5). PROTACs have been shown to have a 
more promising effect than other therapeutic strategies. Lu 
et al. (2018) have developed a peptide that can colocalize 
with Keap1 (substrate for ubiquitin E3 ligase) and down-
regulate intracellular tau dependent on the concentration 
[231]. Administration of the proteasome inhibitor MG132 
proved that the developed peptide can cause proteasome-
dependent degradation of Tau. Similar results were obtained 
when Chu et al. (2016) synthesized TH006, which has tau 
and E3 ubiquitin ligase binding moieties [232]. TH006 has 
the potential to interact with Tau and cause its degradation 
by ubiquitination. QC-01–175 is a heterobifunctional mol-
ecule that can bind to Tau and carbon, which forms a part of 
the E3 ubiquitin ligase and triggers proteasomal degradation 
of Tau [233]. The direct introduction of a PROTAC targeting 
α-syn into the cell lines demonstrates its ability to regulate 
the expression of the protein. The designed peptide-induced 
degradation of α-syn in a proteasome-dependent pathway 
attenuates neurotoxicity [25].

Other Therapies

Neuronal survival can also be achieved by brain-derived neu-
rotrophic factor (BDNF), which is present naturally through-
out the CNS. Increased or decreased production of BDNF 
plays a vital role in the pathogenesis of NDs [58]. Overexpres-
sion of BDNF results in cognitive decline, while underex-
pression is linked to the progression of AD. Arancibia (2008) 
demonstrated its protective function against the amyloid-beta 
protein in rodents suffering from Alzheimer’s disease [234]. 
Rats given BDNF therapy were shown to have improved 
learning skills and reversed loss caused by APP mutation [58, 
235]. BDNF can also act on tau protein and interfere with 
its toxicity. Scientists have also been working on antibodies 
that can pass through the barrier, bind to misfolded proteins, 
and enhance their clearance; however, none of the antibodies 
produced to date is highly efficient in the process. Inhibitors of 
the enzyme acetylcholinesterase have been shown to improve 
performance in PDD (Parkinson’s disease dementia) patients 
[236]. CRISPR/Cas9-mediated inactivation of the target pro-
tein is also a therapeutic strategy to treat NDs. CRISPR/Cas9-
mediated strategy results in the elimination of the pathogenic 
protein and is highly selective toward the target protein. Using 
this strategy, HTT aggregates have been attenuated in a mouse 
model of HD [237]. This technique has also been studied in 
AD [238]. However, this technique also results in off-target 
effects that make this strategy difficult to adopt.

Fig. 5   Mechanism of PROTAC: 
Proteolysis-targeting chimae-
ras (PROTAC) have protein 
binding and E3 ubiquitin ligase 
binding domain. On binding of 
the target protein and E3 ligase, 
E2 bound ubiquitin is recruited 
that adds ubiquitin to the target 
protein. Thus, the protein is 
directed toward the proteasome 
where it is degraded
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Conclusion

Proteins are the structural unit of a cell. The secretory proteins 
are translated into the cytoplasm and then modified in the endo-
plasmic reticulum and Golgi body. These modifications fold the 
primary structure of proteins into tertiary or quaternary struc-
tures by the formation of chemical bonds. Proteins translated 
in the cytoplasm are modified and folded in the cytosol itself 
and can be folded into their native states with the help of chap-
erones in the cytosol. In a normal healthy cell, if the protein 
formed is not modified properly, the cell is likely to degrade the 
protein or activate proteins that in turn can remodify the protein 
[28, 75, 100]. In NDs, these proteins are not destroyed and thus 
form aggregates. A lack of understanding of the tertiary struc-
ture of these proteins is a major disadvantage. Under abnormal 
conditions, proteins can occur in multiple conformations; thus, 
targeting them is a challenge. The transcription of molecular 
chaperones under stress conditions is therefore increased in an 
attempt to restore the cellular condition [138, 140, 239]. Sev-
eral different proteins form aggregates, such as Aβ, tau, α-Syn, 
SOD, and prion-like proteins [10, 15, 31, 40, 80]. It is believed 
that the polymerization of HTT is responsible for the aggregates 
formed in Huntington patients. These misfolded proteins are 
known to cause misfolding of other proteins, which results in 
a neuronal cell that contains a very high number of misfolded 
proteins. These proteins form aggregates that can be transported 
from one neuron to another via synaptic junctions and nano-
tube formation. Several drugs have been synthesized that target 
chaperones, the degradation of proteins, and the extracellular 
clearance of aggregates. However, these drugs lack efficacy, and 
none of them can remove or clear all the aggregates formed. 
Efforts are being made to produce a compound that has high 
penetration through the BBB and that can specifically bind to 
the target protein and dissolve the neuronal aggregates formed.

Future Perspective

With an advanced understanding of the underlying mecha-
nisms of NDs, targeting these diseases is now possible. 
Since the salient feature of these diseases is the aggregation 
of misfolded proteins, scientists are synthesizing drugs that 
can target these proteins and cause their clearance. However, 
the dynamic nature of these misfolded proteins poses a chal-
lenge. These proteins occupy multiple conformations, making 
the understanding of the tertiary structure of these proteins 
difficult [28]. Several molecular chaperones are known to 
cause refolding, thus preventing aggregation. HSP70 is the 
most effective chaperone, which can start its process within 
2 h following the minutest assault via the environment, as 
shown by our previous work [200, 240, 241]. Thus, target-
ing the genes of chaperones, causing their overexpression or 

supplying inhibitors of chaperones that promote cytotoxicity, 
such as HSP90, can be used as a therapy. Treatment by target-
ing chaperones, however, lacks effectiveness. Thus, focusing 
on developing a chaperone-targeted drug may be achieved 
by the application of the mathematical model. Additionally, 
working on increasing the short life of these drugs might be 
effective [226]. Another major challenge in the treatment 
of NDs is delivering the molecules across the BBB. Many 
of the antibodies that are under trial have low penetrability. 
However, intranasal delivery of drugs offers the shortest path 
to reaching the CNS and is considered safe. Thus, targeted 
delivery to the brain via the nasal pathway should be studied 
more [184]. Additionally, these proteins can be delivered in 
liposomes. Since liposomes are hydrophobic, they can cross 
the BBB and can carry such proteins inside them. Targeting 
the brain through liposomes has shown successful transfers 
in various experimental procedures, and thus, the aggregates 
present in the body can be cleared, deformed, or refolded 
into proper conformations. The use of ASO therapy has also 
shown promising effects and can be used to modulate the 
expression of misfolded proteins [230]. Thus, more research 
should be conducted targeting the expression of misfolded 
proteins. Furthermore, treating patients with a combination of 
multiple therapeutic strategies might prove to be an effective 
plan of action since use of single strategy fails to cure NDs.
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