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Abstract
Sepsis is a life-threatening organ dysfunction that is caused by a dysregulated host response to infection. Surviving patients 
have cognitive and memory damage that started during sepsis. These neurologic damages have been associated with increased 
BBB permeability and microglial activation. However, a few discrete studies have seen over the years pointing to the 
potential role of astrocytes in the pathophysiology of neurological damage after sepsis. The purpose of this article is to 
review information on the potential role of astrocytes during sepsis, as well as to provoke further studies in this area. These 
published articles show astrocytic activation after sepsis; they also evidence the release of inflammatory mediators by these 
cells. In this sense, the role of astrocytes should be better elucidated during sepsis progression.
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Introduction

Sepsis is a life-threatening organ dysfunction caused by a 
dysregulated host response to infection [1]. This syndrome 
frequently affects individuals in intensive care units around 
the world and presents high rates of mortality and morbidity, 
with a prevalence of up to 60% in hospitalized patients [2]. In 
sepsis, the inflammatory response is amplified in such a way 
that it produces damage to organs other than those affected 

by the initial infection, and the brain is among those affected, 
which generates acute and long-term neurological changes 
[3]. For years, studies have associated the neurological 
damage in sepsis with an increased permeability of 
brain barriers caused by the exacerbated release of pro-
inflammatory cytokines and peripheral oxidative stress [4], 
and this would activate immune cells in the brain, such as 
microglia [5].

Brain signaling can occur both as a response to invasion by 
microorganisms and in the absence of an infectious agent, as 
observed in sepsis [6]. Pro-inflammatory cytokines, reactive 
oxygen/nitrogen species, and patterns associated to tissue 
damage are among the molecules capable of upregulating 
brain cells by migrating from periphery through the 
meninges and brain barriers that protect the CNS; thus, the 
inflamed brain barriers lose their function of high selectivity, 
facilitating the influx of toxic molecules into the brain [3]. 
When passing through brain barriers, such molecules face 
the brain defense lines, which deposit in the microglia, an 
inflammatory and precursor cell of macrophages, a “saving” 
function for neurons. Consequently, microglia are activated 
and secrete inflammatory mediators, such as cytokines and 
reactive oxygen species, within the brain parenchyma to 
combat pathogens and restore homeostasis [7].

However, the mediators released by microglia may play 
a harmful role, especially in diseases where peripheral 
inflammation is chronic, sustained, or exacerbated [8]. In 
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this sense, microglia-induced inflammation will activate the 
cells that compose the brain barriers, thus maintaining their 
high permeability to peripheral blood and restarting a cell 
activation cycle [3].

Nevertheless, this cycle does not only involve microglial 
cells [9]. Possibly, and especially during sepsis, astrocytes 
are being neglected in terms of their role in protecting from 
or enhancing neuroinflammation. In a simplistic form, 
microglia and astrocytes should restore homeostasis; how-
ever, here, they lose their role as good guys and become vil-
lains. However, these are only cells that are hyper stimulated 
by the flood of inflammatory mediators from the inflamed 
peripheral tissues and in situ production by themselves. In 
this review, we intend to create a new perspective regarding 
the role of astrocytes during sepsis, encouraging research 
on this topic.

Astrocytes in the Healthy CNS

Astrocytes represent the most abundant glial cells in the 
human brain (Verkhratsky & Parpura, 2015). Astrocytes 
were believed to be a homogeneous population; however, 
this hypothesis is increasingly being refuted [10]. Like 
microglia, astrocytes can exhibit different morphologies 
[11], and based on their morphology and spatial organiza-
tion, astrocytes are classified into two basic subtypes: proto-
plasmic and fibrous astrocytes [12]. Protoplasmic astrocytes 
are found throughout gray matter and show several highly 
branched and bushy processes, which extend their end-feet 
to blood vessels and enwrap them to form the glial limiting 
membrane, which is the outermost wall of the BBB. Fibrous 
astrocytes, on the other hand, are mainly located within the 
white matter and have a stellate shape with smooth and long 
processes [13]. This type of astrocyte expresses high levels 
of glial fibrillary acidic protein (GFAP) as compared with 
protoplasmic astrocytes [14].

Astrocytic cells, together with neurons, microglia, peri-
cytes, endothelial cells and the basement membrane, form 
the neurovascular unit, a structure that involves multicellular 
relationships to establish a functional coupling between the 
brain and blood vessels [15]. Astrocytes exhibit different 
activities to maintain the normal functioning of the CNS, for 
example, provide almost complete coverage of the cerebral 
vasculature [16]. Also, with the release of prostaglandins 
(PGE), nitric oxide (NO), and arachidonic acid (AA), they 
can control the local blood flow of the CNS [17]. Its role in 
the metabolism is related to its ability to respond to neuronal 
activity, being able to increase the rate of glucose uptake, 
glycolysis, and lactate release in the extracellular space, con-
tributing to neuronal function [18].

Despite the high metabolic activity, astrocytes use at most 
15% of the total brain energy in the form of glucose. In fact, 

the rates of glucose uptake and glycolysis are high; however, 
as the oxidative phosphorylation rates are low compared to 
the astrocytic rates, astrocytes serve as a source of lactate 
production. The lactate is the main substrate for neuronal 
functioning during cerebral activation, and through the 
astrocyte-neuron lactate shuttle [19, 20].

In addition to lactate release, astrocytes are part of the 
tripartite synapses, which are synapses composed of two 
neurons and one astrocyte. These cells act synergistically 
with a functional unit for the functioning of plasticity and 
adequate for the release of neurotransmitters [12, 21].

Astrocytes in Pre‑clinical Models of Sepsis

One of the most used animal models of human disease for 
the study of sepsis is the cecal ligation and perforation model 
(CLP) [22]. Briefly, a 3-cm midline laparotomy was per-
formed to expose the cecum and adjoining intestine. The 
cecum was tightly ligated with a 3–0 silk suture in the mid-
dle of its length (below the ileocecal valve), perforated once 
with a 14-gauge needle, squeezed gently to extrude a small 
amount of feces through the perforation site, and returned 
to the peritoneal cavity, and the laparotomy was closed with 
4–0 silk sutures [23]. This model is well accepted in the 
international literature for reproducing polymicrobial sepsis 
and allowing the induction of different degrees of severity, 
similarly to what is found in humans. Also, this model is 
effective to study neurological dysfunction during and after 
sepsis [24].

Astrocytes from CLP animals display an increased gene 
expression of pro-inflammatory cytokines, such as tumor 
necrosis factor- α (TNF-α), interleukin (IL)-1β, IL-6, IL-18, 
monocyte chemoattractant protein-1 (MCP-1), and cycloox-
ygenase-2 (COX-2), with a reduction in IL-10, accompanied 
by augmented levels of Toll-like receptor (TLR)-2 mRNA 
expression but no changes either in TLR4 or in vascular 
endothelial growth factor (VEGF) gene expression [25]. 
These results are like those found in rat brain tissue homoge-
nate after CLP [26]. This cytokine profile has been closely 
related to the action of microglial cells [27], but interest-
ingly, a study provided evidence that mediators released 
by peripheral blood mononuclear cells (PBMC) directly 
promote astrocyte reactivity during sepsis, independently 
of microglia [28], corroborating our previous finding that 
sepsis causes astrocytic activation [26].

The Table 1 summarizes the main findings concern-
ing CLP-induced sepsis effects on astrocytes. The studies 
point the occurrence of astrocytic activation as early as 4 h 
after polymicrobial sepsis [29], which may persist for up to 
15 days after sepsis [30]. The hippocampus was the most 
prevalent brain structure evaluated in the studies.
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The animal model of sepsis by CLP generates endotoxemia 
in animals, especially due to the presence of gram-negative 
bacteria. Therefore, the administration of lipopolysaccharide 
(LPS) alone can mimic the inflammatory response that occurs 

in sepsis in animal models of human diseases. The effects 
of LPS on astrocytic activation in animal models are shown 
in Table 2. The systemic effects of LPS induce important 
changes in the brain of animals submitted to sepsis, and these 

Table 1   The effects of polymicrobial sepsis induced by CLP on astrocytic activation in animal models

Reference Time (hours) after 
sepsis

Brain region

Rotaru-Zavaleanu et al., 2021 
[29]

4, 8, 48 Elevation of the number of astrocytes in the hippocampus at 4 h after CLP, lasting up 
to 48 h after CLP, with no change in the cortex. Elevation in the corpus callosum at 
4 and 8 h after CLP

Moraes et al., 2015 [31] 24 Astrocytic activation after 24 h in the hippocampus and cortex
Danielski et al., 2020 [26] 24 GFAP elevation after CLP independently of NLRP3 activation
Catalão et al., 2017 [32] 48 Astrocytic activation after 48 h prefrontal cortex, dentate gyrus and hippocampal CA1
Huang et al., 2020 [33] 120 GFAP elevation after CLP in whole brain
Xiong et al., 2019 [34] 168 Astrocytic activation after 7 days in the hippocampus
Catalão et al., 2020 [35] 240 Elevation of GFAP after CLP in prefrontal, dentate gyrus and CA1 region
Tian et al., 2020 [30] 360 GFAP elevation after CLP in hippocampal CA3

Table 2   The effects of LPS injection on astrocytic activation in animal models

Reference LPS dosage Time (hours) Effect on astrocytes

Montoya et al., 2019 
[36]

5 mg/kg i.p 3 Dopamine receptor D3 was expressed in astrocytes

Alexander et al., 2008 
[37]

0.15 mg/kg i.p 8 Elevation of TNF-α receptor in astrocytes

Beck-Schimmer et al., 
2017 [38]

1 mg/kg i.v 12 LPS induced prominent astrogliosis

Semmler et al., 2005 
[39]

10 mg/kg i.p 24 Activation of astrocytes cortex, striatum, hippocampus

Hasegawa-Ishii et al., 
2016  [40]

3 mg/kg i.p 24 CCL11, CXCL10 and G-CSF expressed by astrocytes

Lu et al., 2020 [41] 5 mg/kg i.p 24 IFN-y deficiency restores microglia-induced A1 astrocytes
Fu et al., 2014 [42] 2 mg/kg i.p 24, 72, 168, 720 Astrocytic activation and TNF-α release in the dentate gyrus

Release of IL-1β by astrocytes
Activation of NF-kB

Table 3   The effects of LPS on astrocyte cell culture

Reference Treatment Time (hours) Effect on astrocytes

Chen et al., 2018 [46] LPS 150 ng/mL IFN-γ 200 U/mL, IL-6: 10 ng/
mL

- IL-6 enhances mitochondrial biogenesis in 
astrocytes

Hua X et al. [47], LPS 50, 100 or 200 ng/mL + IFN-γ 20 ng/mL - Cell viability decreased at all doses of LPS
Wang et al., [48] LPS 50 ng/ml + IFN-γ 200 U/ml 6 Mitochondrial biogenesis of astrocytes increased
Fernandes A et al.,[49] LPS 1000 ng/mL 4, 6, 24 LDH elevation
Rama Rao KV et al.,[50] IFN-y 10 ng/ml 6, 12, 24 Elevation of cell volume
Korcok J et al.,[51] LPS 25 ng/mL + IFN-y 100 U/mL 12, 24 Elevated expression and activity of iNOS
Bellaver B et al., [52] Astrocyte culture after CLP 24 Astrocytic activation with elevation of mRNA for 

TNF-α, IL-1β and COX-2 and levels of TNF-α, 
IL-1β, IL-6, IL-18, MCP-1

Peng W et al., [53] 150 ng/ml LPS + 200U/ml de IFN-y 24 Increases UCP2 expression
Sun et al., 2019 [54] LPS 100 ng/ml 24 Increase content of NLRP3, ASC, Casp-1 and 

gasdermin
Falcão AS et al., [55] LPS 1 ng/mL 120, 240, 480 Normal LDH levels
Bian Y et al., [56] LPS 5 or 10 mg/kg 168, 720 Astrocytic activation
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studies demonstrate a more mechanistic evaluation involving 
the astrocytes, although they also show astrocytic activation 
and release of pro-inflammatory cytokines provoked by LPS 
injection.

However, most information about the role of astrocytes 
comes from studies in cell culture. However, in sepsis, 
these profiles are still little explored; Table 3 presents the 
studies carried out with astrocyte culture stimulated essen-
tially with LPS. In addition to the astrocytic activation 
being evident, there is evidence of alteration in inflam-
matory mediators, which supports the hypothesis of a 

greater influence of these cells on the pathophysiology of 
sepsis. Recent, study has shown that neuroinflammation 
or ischemia induced two different types of reactive astro-
cytes, referred to as “A1” and “A2” [43]. It was shown that 
the A1 phenotype positively regulates different classical 
complement cascade genes and complement 3 (C3), which 
is harmful to neurons and oligodendrocytes. On the other 
hand, the A2 phenotype induced by ischemia positively 
regulates many neurotrophic factors that promote the sur-
vival and growth of neurons [44]. In fact, melatonin was 
able to reduce the number of A1 astrocytes and increase 

Fig. 1   Role of astrocytes in sepsis development. During sepsis, 
pathogens, inflammatory and oxidative mediators are released in the 
blood. These mediators interact with the cells of blood brain barrier, 
increasing your selective permeability (1). Lipopolysaccharide (LPS) 
and other molecules entry in the brain parenchyma (2), lead to activa-
tion of glial cells, such as astrocytes and microglia. Activated astro-
cytes can activate microglia cells (3), besides release reactive oxygen 

species (4) and cytokines (5). These events culminate in neuronal 
damage (6). On the other hand, stressed neurons can also activate 
microglia (7) and increase de neuroinflammatory response in septic 
brain. There is also evidence of astrogliosis during sepsis (8). Thus, 
astrocytes may play a much more important role in sepsis than has 
been attributed to them
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the number of A2 astrocytes in the periventricular white 
matter of neonatal septic rats [45].

Although there is a lot of evidence about the activation of 
astrocytic cells after sepsis or LPS stimulus, however, there 
is no direct evidence of the interaction between these cells’ 
with the BBB. The role of BBB dysfunction after sepsis has 
been extensively studied, and its impairment is known to play 
an important role in acute neuroinflammation and long-term 
damage after sepsis [3]. However, in some other publications, 
the authors strongly suggest that astrocytes release several 
substances that regulate the function of the BBB since it 
is formed [56, 57]. In this sense, probably, the changes in 
astrocytic profiles could influence mostly the BBB function 
after sepsis, leading to increase the neuroinflammation and the 
neuronal damage e after this the cognitive decline.

Astrocytes in the Human Septic Brain

Data about the astrocytes activation in humans are scarce; 
however, evidence suggests that, as occurs with microglia, 
astrocytes also change from a resting to an activated state 
when stimulated [58]. Human brain astrocytes are more 
diverse, more complex, and in greater numbers when com-
pared to the rodent brain [59, 60].

In the post-mortem analysis of tissue from the right frontal 
lobe of 3 sepsis cases, an elevation of the GFAP marker was 
identified, thus indicating high astrocytic activity in the region 
when compared to controls [61]. Other studies with pediatric, 
adult, and elderly septic patients show in common an eleva-
tion of the s-100β marker at the expense not only of microglial 
activation, but also of astrocytic activation. This activation 
was associated with longer delirium duration, higher delirium 
severity, and in-hospital mortality [12, 62, 63].

Conclusion

In summary, there is robust preclinical evidence of astrocytic 
activation after sepsis and few clinical studies. The inflammatory 
stimulus generated by polymicrobial sepsis (CLP model) 
or by the LPS stimulus can generate systemic responses that 
influence the functioning of astrocytes in the brain (Fig. 1). 
However, little is known about the effects of this activation on 
the pathophysiology of sepsis. In view of the data presented 
here, the emerging need to establish the role of astrocytes in 
the pathophysiology of neurological dysfunction during sepsis 
becomes evident. Some questions still need scientific evidence, 
for example, how homeostatic functions of astrocytes are 
affected in sepsis, how occurs the astrocyte activation after BBB 
activation, and how astrocytes interact with the BBB after this. 
These and other questions may explain how astroglial activation 
can contribute to the long-term consequences of sepsis.
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