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Abstract 
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by hyperglycemic conditions. A higher risk 
of developing Parkinson’s disease (PD) in patients with T2DM has become evident in recent years. However, the molecular 
mechanisms underlying the interplay between T2DM and PD pathogenesis remain unknown. Nevertheless, emerging epi-
demiological studies have demonstrated many common molecular pathways that play an essential role in regulating normal 
cellular functioning are independently implicated in the progression and etiopathogenesis of T2DM and PD. This review 
summarizes some common shared pathophysiological mechanisms, including insulin resistance, inflammation, mitochon-
drial dysfunction, endoplasmic reticulum stress (ER stress), autophagy, and the ubiquitin–proteasome system (UPS) that 
independently mediate the onset and etiopathogenesis of T2DM and PD. In this review, we summarize the studies that 
have reported the relationship between T2DM and PD. This review will provide insights into the common involvement of 
molecular pathways that may provide alternative treatment strategies for both T2DM and PD.
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Introduction

Studies have observed that individuals with diabetes mellitus 
(T2DM) are at a greater risk of developing Parkinson’s dis-
ease (PD) [1]. T2DM is a metabolic disease characterized by 
the aggregation of amylin protein in the β-cells of pancreatic 
islets, insulin resistance, and chronic hyperglycemia [2]. PD 
is a neurodegenerative disorder characterized by the loss 
of dopaminergic (DA-ergic) neurons in the basal ganglia, 
substantia nigra pars compacta (SNpc) regions of the brain 
[3]. Previous clinical studies have reported an increased 
prevalence of T2DM in patients with PD [4]. These stud-
ies reported higher insulin resistance in PD patients com-
pared to healthy individuals, suggesting a potential link may 
exist between T2DM and PD [1]. Preclinical studies have 
also demonstrated the crucial role of insulin in regulating 
brain DA-ergic activity and its dysregulation in developing 
PD-like symptoms [1]. Previous reports suggest that mito-
chondrial dysfunction, endoplasmic reticulum (ER) stress, 
dysfunction in the UPS, and alterations in autophagy may 
be common underlying mechanisms in the course of T2DM 
and PD [5]. Another commonality is the formation of amylin 
protein-mediated amyloids fiber which plays a central role 
in the pathogenesis of T2DM and PD [6]. This suggests that 
the most potent drugs for T2DM could be used as a potential 
therapeutic approach against amyloidogenic neurodegener-
ative disorders [7]. For example, exenatide, glucagon-like 
peptide–l (GLP-1) agonists, and antidiabetic agents have 
been shown to exhibit neuroprotective and neurotrophic 
effects in the treatment of PD [8]. These observations raise 
the intriguing question of how T2DM could contribute to the 
pathogenesis of PD and whether, from a therapeutic perspec-
tive, the development of strategies targeting T2DM becomes 
a valuable approach to prevent PD. In this review article, we 
have focused on the common signaling pathways between 
T2DM and PD and the molecular mechanisms. Targeting 

these common signaling pathways could provide alternative 
and efficient treatment strategies for T2DM and PD.

T2DM and PD Comorbidity

An association between T2DM and PD was reported a few 
decades ago and ever since, many epidemiological and 
molecular studies have investigated a correlation between 
T2DM and PD development, summarized in Table 1 [9]. 
Most of these epidemiological studies suggest that T2DM 
is associated with an increased risk of PD in diverse popula-
tions. Reports indicate that T2DM may predispose to PD-
like symptoms and may even exhibit a more aggressive phe-
notype when showing comorbidity with PD [10]. T2DM and 
PD share some common pathophysiological mechanisms 
mediated by similar detrimental genetic and environmen-
tal factors. Recent studies have reported that patients with 
T2DM have a 30–36% increased risk of developing PD and 
often display parkinsonian-like symptoms [11]. Reports also 
suggest that patients with idiopathic PD (IPD) have a genetic 
susceptibility that puts these individuals at risk for devel-
oping both diseases [12]. For example, a single nucleotide 
polymorphism in Akt gene, encoding Akt kinase that regu-
lates cell growth and survival, has been implicated in the 
pathogenesis of both T2DM and PD [13]. Also, decreased 
expressions of (DnaJ-1) DJ-1, encoded by the PD-related 
park7 gene, were reported in pancreatic islets of patients 
with T2DM [14]. Recent studies have also reported that 
exposure to environmental toxins like maneb, paraquat (PQ), 
and rotenone, including heavy metals like iron, magnesium, 
and copper, increases the risk of developing T2DM and PD 
onset [15]. Exposure to pesticides and heavy metals results 
in loss of β-cell function in T2DM and may put individuals 
at higher risk of developing PD onset/progression [6].

A previous meta-analysis study based on four prospec-
tive studies indicated T2DM as a potential risk factor for 
the development of PD [5]. Another comprehensive updated 
meta-analysis on 7 observational cohort studies reported that 
patients with T2DM were associated with a 38% increase 
in the risk of developing PD compared to non-diabetic 
individuals [16]. In yet another meta-analysis that involved 
case–control studies with a much larger sample size also 
reported individuals with T2DM may have an increased inci-
dence of PD compared to normal healthy individuals [16]. 
A longitudinal study reported that hypertension and T2DM 
as the most frequent comorbidities in patients with PD com-
pared to control subjects [17]. A large prospective cohort 
study in Finland found an increased risk of 80% of develop-
ing PD-like symptoms in patients with T2DM and a similar 
study in the USA found that patients with T2DM were 40% 
more likely to develop PD-like symptoms [18]. Observa-
tional studies implying different strategies also reported that 
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patients with T2DM had 32% more chances of developing 
PD in the UK and 23% in Taiwan and 36% in Denmark [4]. 
Reports also suggest that T2DM may predispose to a PD-like 
pathology and induce a more aggressive phenotype when 
coexisting with PD. For example, patients with T2DM had 
higher Unified Parkinson Disease Rating Scale (UPDRS) 
motor scores and more severe Hoehn and Yahr staging [19]. 
Other than the progression, T2DM has also been impli-
cated in posture instability, difficulty in gait strides during 
the development of PD [20]. Previous studies suggest that 
these associations between T2DM and PD progression are 
likely due to more than one mechanism involved. The pre-
cise mechanism by which T2DM is related to PD onset and 
progression is mostly unknown; however, some strikingly 
common dysregulated pathways like impaired insulin sign-
aling, inflammation, mitochondrial dysfunction, ER stress, 
autophagy, and dysfunctions in UPS are among some of the 
shared mechanisms between both chronic diseases [6].

Insulin Resistance in T2DM and PD

Insulin regulates cell growth, gene expression, protein syn-
thesis, mitochondrial function, and autophagy [21]. Insu-
lin acts as a ligand and binds to its receptor resulting in 
enhanced tyrosine kinase activity that phosphorylates insulin 
receptor substrate (IRS)-1&-2 that binds to p85-phosphati-
dylinositol 3-phosphate kinase (PI3K) phosphorylating Akt 
and glycogen synthase kinase-3beta (GSK3-β), thereby reg-
ulating glucose metabolism [21]. Any link between T2DM 
and PD may relate to dysregulations in the common path-
ways due to chronic hyperglycemia conditions. People with 
T2DM suffer from insulin resistance which results in the 
progressive loss of insulin secretion from pancreatic β-cells, 
ultimately leading to hyperglycemic conditions in T2DM 
[22]. PI3K/Akt signaling is inactivated, which inhibits the 
transport of plasma glucose into cytoplasm resulting in dys-
regulated blood glucose homeostasis and insulin resistance 
in T2DM. Chronic hyperglycemia results in the generations 
of reactive oxygen species (ROS) that have been implicated 
in the loss of β-cell mass in T2DM [23]. Furthermore, stud-
ies have also shown that GLP-1 suppresses glucagon secre-
tion from α-cells and regulates glucose-dependent insulin 
secretion from pancreatic β-cells in T2DM [24]. This loss 
in function and mass of β-cell in T2DM may be attributed 
to the consequence of glucolipotoxicity, accumulation of 
cholesterol, and inflammation in islets [25].

Insulin also regulates the activation of neural stem cells, 
cognition, synaptic formation, and neuronal apoptosis [26]. 
Implications of neuronal insulin resistance are commonly 
seen in various neurodegenerative diseases [27, 28]. Stud-
ies have suggested the role of insulin in regulating DA-ergic 
activity and a reciprocal insulin regulation by DA-ergic Ta
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neurons. Recent evidence showed the prevalence of insulin 
resistance exhibiting impaired glucose tolerance in patients 
with PD [29]. Interestingly, some drugs used to treat PD, 
such as levodopa (L-DOPA), induce hyperglycemia condi-
tions indicating insulin resistance may increase the risk of 
developing PD [29].

Dysregulation of PI3K/Akt signaling pathway may alter 
the expression of α-synuclein, leading to DA-ergic cell death 
[30]. Studies have also highlighted the role of leucine-rich 
repeat kinase 2 (LRRK2) in insulin-dependent intracellu-
lar signaling. Reports suggest that phosphorylation of Ras-
related protein (Rab10), an endocytic sorting protein, by 
LRRK2 is crucial for glucose transporters type 4 (GLUT4) 
translocation to the neuronal plasma membrane is inhibited 
in PD patients with the LRRK2 (G2019S) mutation [31]. 
These studies show that insulin resistance can be a potential 
risk factor for T2DM and the pathologic driver of neurode-
generation in PD.

Inflammation in T2DM and PD 
Etiopathogenesis

Inflammation is a highly regulated process that protects 
against tissue damage that has been implicated in the patho-
genesis of T2DM and PD [32]. Studies have reported ele-
vated inflammatory response mediated by immune cells, 
cytokines, and chemokines in the islets of patients with 
T2DM [33]. Inflammatory response likely causes insulin 
resistance by activating cytokines which is reciprocally 
mediated by hyperglycemia conditions thereby promoting 
severity in T2DM [34]. Insulin resistance causes activa-
tion of microglia and inflammation mediated by nuclear 
factor-κB (NF-κB) and the PI3K/Akt pathway [35, 36]. 
Inflammatory cytokines like tumor necrosis factor-α (TNF-
α) induce the inactivation of insulin receptor substrate-1 
(IRS1), which inhibits activation of downstream regula-
tors promoting T2DM conditions [37]. Activated cytokines 
downregulate anabolic cascades in insulin signaling result-
ing in insulin sensitivity and dysregulations in glucose 
metabolism [38]. Several lines of evidence have suggested 
the role of pro-inflammatory cytokines in regulating insu-
lin resistance and dysregulations in glucose homeostasis in 
T2DM. Reports suggest that low-grade pancreatic tissue 
inflammation plays a critical role in the pathophysiology of 
T2DM [39]. Similarly, studies have shown that a high glu-
cose/cholesterol diet can induce activated microglia mediat-
ing pro-inflammatory cytokines—interleukin-6 (IL-6) and 
TNF-α release in an in vivo model of T2DM [40]. Reports 
also suggest increased levels of infiltrating macrophages that 
release IL-1β, which leads to loss of β-cell function and its 
progressive destruction in T2DM [41]. Studies have also 

shown that hyperglycemia activates (P2X purinoceptor 7) a 
P2X7 receptor that induces NOD-, LRR-, and pyrin domain-
containing 3 (NLRP3) inflammasome activation to increase 
IL-1β secretion resulting in pancreatic β-cell dysfunction 
and death [42]. Treating T2DM rodents with anti-inflam-
matory drugs like aspirin resulted in the decrease of pro-
inflammatory cytokines release, thereby alleviating insulin 
resistance [43]. Also, these anti-inflammatory drugs have 
been reported to result in dysregulations in IKK-β signal-
ing pathways that otherwise mediate insulin resistance and 
T2DM [44]. Similarly, exogenous administration of TNF-α 
or IL-6 results in insulin resistance and lower levels of 
cytokines were observed in TNF-α knock-out mice [38]. The 
newly discovered cytokine IL-37 binds to IL-18 receptor α/β 
(IL-18Rα) chain and shows anti-inflammatory properties by 
inhibiting IL-6, IL-18, IL-33, IL-1β, and TNF-α, suggesting 
a potential therapy for low-grade inflammation in T2DM 
[39]. Taken together, these observations suggest inflamma-
tion as a key feature in the regulation of insulin resistance 
and the development of T2DM.

Inflammation also plays a very important role in the patho-
genesis of PD. Previous studies report that activated microglia 
and astrocytes promote neuroinflammation as key pathways of 
PD progression [45]. Activation of microglia and subsequent 
microgliosis events may be mediated by the aggregation of 
α-synuclein released by damaged and injured neurons in PD 
[46]. Aggregation of misfolded α-synuclein acts as damaged-
associated molecular patterns (DAMPs), inducing NLRP3 
inflammasome in PD, which then interacts with caspase-1 
forming activated NLRP3–caspase-1 complex followed by 
secretion of IL-1β from microglia [47]. Similarly, activation 
of reactive astrocytes results in sustained neuroinflammation 
that mediates degenerations in PD [48]. Elevated levels of 
pro-inflammatory cytokines, including IL-6, IL-1β, TNF-α, 
and IFN-γ, have been observed in a 1-methyl-4-phenyl-1, 2, 
3, 6-tetrahydrodropyridine (MPTP)–induced mouse model 
of PD [49]. Elevated concentrations of pro-inflammatory 
cytokines like IL-1β, IL-6, and TNF-α were observed in the 
brain, CSF, and blood of PD patients [50]. Reports suggest 
that activated glial cells secrete various pro-inflammatory 
cytokines resulting in neuroinflammation and neurodegen-
eration via NF-kB signaling [51]. The β2-adrenoceptor, a 
G-GPCR, is expressed in microglia, astrocyte, and postsyn-
aptic neuron surface. Treatment with its agonist clenbuterol 
and formoterol activates cAMP/PKA/CREB/IkBα pathway 
that results in inhibition of the NF-kβ inflammatory pathway 
in the intra-nigral LPS induced rat model of PD [52]. Taken 
together, these observations suggest that inflammation is a 
key feature in the regulation of insulin resistance in T2DM 
and neuronal death in PD. The role of insulin resistance and 
inflammation in promoting T2DM conditions and neurode-
generation in PD is given in Fig. 1
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Mitochondrial Dysfunctions in T2DM and PD

Mitochondria is essential for glucose-stimulated insulin secre-
tions from β-cells and its dysfunction has been implicated in 
T2DM [53]. The prevalence of mitochondrial diabetes consti-
tutes about 0.5–1% of all types of DM mediated by impaired 
insulin secretions, unlike other T2DM mediated by insulin 
resistance [54]. Depletions in mtDNA dramatically decrease 
oxygen consumption and suppress glucose-stimulated insulin 
secretion in T2DM [54]. Studies on the role of mtDNA in 
the etiopathogenesis of T2DM are scarce. Yet, a dozen loci 
in nuclear-encoded mitochondrial genes have been directly 
related to T2DM by regulating β-cell function [55]. A co-
transcription factor peroxisome proliferator-activated receptor 
gamma coactivator 1-α (PGC1-α) and a transcription factor 
B1 mitochondrial (TFB1M) are essential for the normal func-
tioning of mitochondria. During mitochondrial dysfunction, 

PGC1-α and TFB1M have been implicated in the pathogen-
esis of T2DM by decreasing oxygen consumption, ATP pro-
duction, and concomitantly insulin secretion [56]. Another 
such gene UCP2, mitochondrial C4 metabolite exchanger, 
was found to be highly expressed in islets of different animal 
and human models of T2DM. Hyperglycemia induces glucose 
oxidation by elevating NADH and pyruvate in mitochondrial 
complex I, III resulting in ROS production, thereby impairing 
β-cell function [57].

Mitochondria perform a plethora of functions by regu-
lating various cellular processes like Ca2+ homeostasis, 
stress response, and apoptotic pathways [58]. Mitochon-
drial dysfunction has been implicated in the pathogenesis 
of PD. α-synuclein aggregation in mitochondrial is char-
acterized by the generation of ROS, decrease in the activ-
ity of mitochondrial complex I enzyme, decrease in ATP 
levels, cytochrome-c release, and caspase-3 activation [59]. 
α-synuclein-mediated mitochondrial dysregulations may be 

Fig.1   Diagrammatic representation of the possible role of (A)insulin 
resistance and (B) inflammation in promoting T2DM conditions and 
neurodegeneration in PD. Abbreviations: DAMPs, damage-associated 
molecular patterns; GLP-1, glucagon-like peptide; GSK3β, glycogen 
synthase kinase 3 beta; IFN-α, interferon alfa; IL-3, interleukin-3; 
IL-6, interleukin-6; IL-18, interleukin-18; IL-33, interleukin-33; 

IL-1β, interleukin 1 beta; IRS-1, insulin receptor substrate 1; NF-kB, 
nuclear factor kappa-light-chain-enhancer of activated B cells; 
NLRP3, NLR family pyrin domain-containing 3; PD, Parkinson’s dis-
ease; PI3K, phosphoinositide 3-kinase; TNF-α, tumor necrosis factor 
alfa; T2DM, type 2 diabetes mellitus
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due to α-synuclein-induced p38 MAPK activation, which 
phosphorylates and activates Drp1 (dynamin-related pro-
tein-1), causing mitochondrial fission [60]. Neurons have 
incredibly high metabolic demands making them highly 
susceptible to mitochondrial dysfunction [61]. The very 
first report on the role of mitochondrial dysfunction in 
PD pathogenesis came from the accidental infusion of the 
MPTP, which selectively inhibited mitochondrial complex I 
of electron transport chain [58]. Later studies reported envi-
ronmental toxins MPP+, rotenone, and paraquat target the 
mitochondrial respiratory chain resulting in mitochondrial 
dysfunction in PD (57). Overexpression of mutant A53T 
or wild-type human SNCA gene in different in vitro and 
in vivo models of PD resulted in cytochrome c release, 
increased mitochondrial Ca2+ and nitric oxide (NO) levels, 
and decreased mitochondrial complex I [62]. Parkin and 
PINK1 genes together regulate mitochondrial function and 
biogenesis and their mutations have been reported to result 
in mitochondrial impairments by reducing complex I activity 
and increasing mitochondrial ROS production in the differ-
ent PD models [63]. DJ-1 protein fractionally located at the 
mitochondria acts as a neuroprotective intracellular redox 
sensor and its mutation/inactivation/knockout resulted in 
the decrease of mitochondrial complex I activity, decreased 
mtDNA levels, respiratory control ratio, and ATP levels in 
the experimental PD models [64]. Similarly, overexpres-
sions of the LRRK2 gene resulted in decreased mitochon-
drial membrane potential (MMP) and ATP levels, thereby 
impairing mitochondrial function in PD patients [65]. These 
observations indicate that mitochondrial function is para-
mount for the normal functioning of the cellular processes 
and its dysregulations are implicated in the etiopathogenesis 
of T2DM and PD.

There is a strong correlation between neuroinflammation 
and mitochondrial dysfunction in the pathogenesis of T2DM 
and PD. In the MPTP-induced PD mice model, neuroinflam-
mation involving microglia activation has been reported in 
the brain’s striatum and substantia nigra regions. Activated 
microglia release IL-1β and IL-6 and induce activation of 
iNOS and NADPH-oxidase [66]. Activated microglia also 
release excitotoxins like quinolinic acid and glutamate that 
overstimulate glutamate receptors expressed in neurons, 
thereby increasing membrane lipid peroxidation, reactive 
nitrogen species, and mitochondrial damage [67].

In T2DM, inflammation and mitochondrial dysfunction are 
correlated with each other. Systemic inflammation is also one 
of the factors responsible for insulin resistance and pathogen-
esis of T2DM. Damaged mitochondria releases mitochondrial 
DAMP molecules, such as cytochrome C, mt.DNA, and ATP. 
When released in circulation, the mitochondrial DAMPs acti-
vate systemic inflammatory responses. It has been reported 
that there is an elevation in circulating cell-free mt.DNA in the 
plasma of T2DM patients. The circulating cell-free mt.DNA 

induces AIM2 inflammasome-dependent activation of cas-
pase-I and secretion of IL-18 and IL-1β from macrophages. 
It concludes in chronic inflammation in T2DM patients [68].

Excessive microglial activation causes loss of mitochon-
drial membrane potential along with ROS production lead-
ing to neurodegeneration [69]. Increased oxidative stress 
oxidizes lysine, threonine, proline, and arginine residue of 
mitochondrial proteins, mitochondrial ETC components, and 
mt.DNA, resulting in mitochondrial dysfunction [70]. It has 
been reported that the presence of glia increased neurode-
generation in neuron/glia culture from rat mesencephalon in 
rotenone-induced toxicity associated with O2

.− release from 
microglia. Intranigral LPS-injected rats showed increased 
microglia activation; increased release of pro-inflammatory 
cytokines and iNOS, COX-2, and SN DA-ergic neurode-
generation; and reduced striatal DA level. LPS also induced 
significant nigral and striatal mitochondrial complex I and II 
in LPS-injected rats. Thus, inflammation causes loss of mito-
chondrial function, ultimately leading to DA-ergic neurode-
generation [71]. When injected into the rat brain ventricles, 
DA inhibits mitochondrial complex I, leading to increased 
cellular ROS and α-synuclein aggregation. Metabolism of 
DA also generates ROS (H2O2, DA-quinone, and semiqui-
none) as a by-product. This oxidative stress contributes to 
inflammatory response, as seen in PD patients [72].

Endoplasmic Reticulum Stress 
in the Pathogenesis of T2DM and PD

ER plays a crucial role in correct folding and post-transla-
tional modification of cell surface receptors, secretory pro-
teins, and integral membrane proteins [8]. Aggregation of 
unfolded or misfolded proteins in ER lumen induces ER dys-
function resulting in ER stress [73]. There is an initiation of a 
complex signaling pathway called unfolded protein response 
(UPR) during the ER stress conditions. There are three spe-
cific sensor proteins of ER stress named as follows: Activating 
transcription factor 6 (ATF6), inositol requiring enzyme 1 α 
(IRE1α), and eukaryotic pancreatic ER kinase (PKR)–like ER 
kinase (PERK) [74]. Various studies have proposed ER stress 
as an underlying mechanism in the pathogenesis of T2DM 
and PD [75]. Reports suggest that ER stress–mediated β-cell 
loss in T2DM is regulated by the key transcription factors and 
gene networks [76]. ER stress mediates islet amyloid polypep-
tide (IAPP), inducing pancreatic β-cell apoptosis in T2DM. 
When ER homeostasis is destroyed, then PERK gets activated, 
and it subsequently triggers phosphorylation of eIF2α, ulti-
mately leading to ATF4 upregulation. However, when UPR 
stress cannot restore the ER homeostasis, PERK activates 
downstream effectors and mediators of apoptosis, including 
caspase-12, CHOP, and Bcl family genes. Activation of the 
PERK-CHOP pathway also induces activation of NF-κB, 
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resulting in inflammation and aggravating β-cell apopto-
sis in T2DM [77]. Under normal conditions, ATF6 causes 
upregulation of Grp78 protein. But diabetes-induced ATF6 is 
associated with dilation of ER cisterns and an increase in ER 
volume, reflecting ER’s increased functional capacity [78]. 
Another study has reported that ER stress induces phospho-
rylation of IRE1α that further activates its downstream effec-
tor XBP-1 and concludes in a series of events leading to UPR 
response in T2DM [74]. Mutation in EIF2AK3, encoding 
human eIF2α-kinase, which regulates transitional control in 
response to ER stress, has been reported in T2DM, suggesting 
its role in normal β-cell functioning and survival [79]. Similar 
studies also demonstrated aberrant expression of ER stress 
biomarkers including p-PERK, p-eIF2α, p-IRE1α, CHOP, 
BiP, cleaved caspase-3, and caspase-8 in the individuals 
with T2DM [73]. More evidence for the role of ER stress in 
T2DM etiology comes from a study where ER stress–medi-
ated overexpressions of BiP, CHOP, and p58 were observed in 
β-cells of patients with T2DM compared to the healthy non-
diabetic patients [80]. A similar study found a fold increase 
in ER stress in β-cells of T2DM patients compared to the 
normal, non-diabetic individuals [81]. Studies have shown 
that prolonged ER stress induces apoptosis by activating the 
caspase-3 pathway in rats with T2DM. The caspase-mediated 
apoptotic pathway involves activating caspase-8 that activates 
caspase3/caspase6/7/PARP (poly ADP-ribose polymerase) 
signaling resulting in apoptosis in pancreatic β-cell during 
T2DM [2]. Studies have also shown that genetic variations in 
Wolfram syndrome gene 1 (WFS1), encoding ER Ca2+ chan-
nel, result in selective loss of β-cell in young-onset diabetes 
and T2DM. This reduction in ER stress–mediated β-cell mass 
may be due to chronic exposure to gluco- and lipotoxicity 
[79]. It is very unlikely that loss of β-cell entirely accounts for 
reduced insulin secretions in T2DM and more detailed stud-
ies are required to determine the role of ER stress–mediated 
reduction in β-cell mass.

Correspondingly in PD, studies have shown that ER stress 
induces the aggregation of α-synuclein into LB that promotes 
neurodegeneration [82]. Studies have shown that IRE1α gets 
activated and induces activation of the caspase-12 mediated 
apoptotic pathway in the MPP + treated PC12 cells, caus-
ing DA-ergic neuronal death. Isorhynchophylline (IRN) 
treatment inhibits IRE1α-mediated ER stress resulting in 
the protection of PC-12 cells from caspase-9-dependent 
apoptosis [83]. Activation of PERK in ER stress conditions 
phosphorylates eIF2α, activating ATF4. An increased level 
of ATF4 further elevates transcription of CHOP that down-
regulates Bcl-2. Studies have shown that β-asarone, a com-
ponent of Acorus tatarinowii Schott volatile oil, regulates the 
ER stress–autophagy by inhibiting the PERK/CHOP/Bcl-2/
Beclin-1 pathway resulting in neuroprotection in 6-OHDA-
induced parkinsonian rats [84]. Activation of the ATF6 
pathway in the ER stress causes trafficking and proteolytic 

processing of ATF6. Activated ATF6 regulates the expression 
of XBP1 and ER chaperone. A study has shown that aggrega-
tion of α-synuclein induces ER stress response that causes 
activation of PERK and ATF6 pathway in an α-syn-induced 
rat model of PD. In the absence of re-establishment of ER 
homeostasis, ATF6 activates proapoptotic CHOP protein in 
SNpc DA-ergic neurons. However, Grp78 over-expression 
downregulates ER stress mediators and proapoptotic media-
tors resulting in DA-ergic neuroprotection [85].

It has also been demonstrated that both HMG–CoA reductase 
degradation protein-1 (Hrd1) and Parkin-associated endothelin 
receptor-like receptor (Pael-R) are aberrantly expressed in DA-
ergic neurons [75]. Hrd1 is a key enzyme for ER-associated 
degradation of unfolded or misfolded proteins and Pael-R is 
a substrate for Parkin, an E3 ubiquitin ligase [86]. Therefore, 
ER stress caused by the accumulation of Pael-R is relevant to 
the pathological mechanisms that underlie autosomal recessive 
PD. However, recent studies have also investigated that Pael-R 
is ubiquitinated by Hrd1 thereby preventing ER stress–induced 
neuronal apoptosis in PD [75]. Besides that, an in vivo study 
has demonstrated that the inhibition of X-box-binding protein 1 
(XBP1), a key regulator of the unfolded protein response (UPR), 
induces chronic ER stress and specific DA-ergic neurodegen-
eration [87]. Restoring XBP1 levels by gene therapy decreased 
striatal denervation and neuronal death in the 6-OHDA-induced 
mice model of PD [88]. In another similar study, activation of 
XBP1 provided neuroprotection against MPTP-induced DA-
ergic loss in in vitro and in vivo models of PD, indicating the 
crucial role of UPR in the survival of DA-ergic neurons [89]. 
MPTP-induced ER stress causes dysregulations in ER Ca2+ 
homeostasis by inhibiting store-operated calcium entry (SOCE) 
and transient receptor potential channel 1 (TRPC1), resulting in 
DA-ergic neuronal loss [90]. Recent studies have reported that 
ER stress–mediated apoptosis was implicated in the PD by acti-
vating the apoptotic pathways [91]. These observations suggest 
that ER stress may be a common pathological pathway and its 
inhibition can be a common therapeutic target in the treatment 
strategies against T2DM and PD. Figure 2 depicts the role of 
mitochondrial dysfunction and endoplasmic reticulum stress in 
the pathogenesis of T2DM and PD.

Impairment of Autophagy in T2DM and PD

Autophagy is a catabolic process that maintains cellular 
hemostasis by enabling cells to stride past unfavorable 
stress conditions by regulating the intracellular conditions 
through cytoplasmic turnover of proteins and organelles 
[92]. Autophagy, if altered, may be associated with a dis-
tinct form of cell death resulting inT2DM and PD onset/
progression. Loss of autophagic function by cells results in 
amyloid aggregation, i.e., amylin protein and α-synuclein in 
T2DM and PD, respectively [93]. Upregulation of common 
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autophagic markers like LC3-II, p62, beclin-1, p-mTOR, 
and p-AMPK has been reported in T2DM and PD [94]. 
Recent investigations have found the role of autophagy in 
controlling insulin signaling and lipid metabolism. Under 
normal conditions, autophagy is essential for the survival 
and maintenance of β-cell function, but during stressful con-
ditions, it prevents β-cell dysfunctions by serving as an adap-
tive mechanism [95]. Studies have shown the accumulation 
of autophagosomes and undigested autophagic vacuoles in 
the pancreatic β-cells in T2DM [96]. Impaired autophagy 
resulted in dysregulated vascular function and its stimulation 
by upregulating autophagy markers LC3-II, Beclin-1, and 
p62 improved vascular function in the mesenteric arteries of 
T2DM mice [97]. Atg7 and Atg12-Atg5 play central roles in 
the biogenesis of autophagosomes and their dysregulations 
increase sensitivity towards insulin and have been therefore 
implicated in T2DM pathogenesis [98]. Recent work dem-
onstrated upregulating autophagy genes reduced insulin 

secretion and the incidence of diabetes in STZ-treated β-cells 
[99]. In another experiment, metformin, a T2DM drug, was 
shown to decrease the formation of autophagic vacuoles in 
T2DM by enhancing AMP kinase activity that inhibits the 
mTOR pathway resulting in the removal of autophagic vacu-
oles [96]. Exendin-4, an agonist of the glucagon-like pep-
tide GLP-1 receptor (GLP-1R), promotes insulin secretion 
and regulates autophagic markers, such as mTOR, LC3-II, 
LAMP1, parkin, Atg7, and p62, further validating the fact 
that autophagy plays crucial role in regulating T2DM [92].

Similarly, autophagy has been implicated in the eti-
opathogenesis of PD. Many genes and protein products of 
PD-related genes, either causative or risk factors for PD, 
appear to have an essential role in regulating autophagy 
pathways. α-synuclein, an insoluble aggregated protein 
implicated in PD, is usually degraded by chaperone-medi-
ated autophagy (CMA) binding to its pentapeptide sequence 
motif [100]. α-synuclein enters into lysosome by binding to 

Fig.2   Schematic illustration of the role of (A) mitochondrial dys-
function and (B) endoplasmic reticulum stress in the pathogenesis of 
T2DM and PD. Abbreviations: ATF4, activating transcription factor 
4; ATP, adenosine triphosphate; CHOP, C/EBP homologous protein; 
Bcl, B-cell lymphoma; DA-ergic, dopaminergic; eIF2, eukaryotic 
initiation factor 2; IRE1α, inositol requiring enzyme-1 alpha; Parkin-

son’s disease; PERK, protein kinase R-like endoplasmic reticulum 
kinase; PGC-1α, peroxisome proliferator-activated receptor gamma 
coactivator 1-alpha; MAPK, mitogen-activated protein kinase; PD, 
Parkinson disease; ROS, reactive oxygen species; T2DM, type 2 dia-
betes mellitus; TFB1M, transcription factor B1 mitochondrial
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lysosomal-associated membrane protein type 2A (LAMP-
2A), where it is degraded by proteases [101]. However, dur-
ing dysregulated autophagy in PD, LAMP-2A does not take 
up mutant α-synuclein due to its very high binding affinity, 
which does not allow proper translocation of α-synuclein into 
the lysosome and its subsequent degradation [102]. Muta-
tions in LRRK2, one of the major causes of PD, disrupt 
aggresomal formation and autophagic clearance of accumu-
lated protein aggregates [103]. PINK1 regulates parkin trans-
location to impaired mitochondria driving their elimination 
via autophagy. In normal conditions, LRRK2 gets degraded 
by CMA; however, very high concentrations of LRRK2 dur-
ing PD can block CMA by inhibiting translocation complex 
at lysosomal membrane, thereby resulting in dysregulations 
in autophagy function [104]. The autophagic adapter protein 
p62, a component of the PINK1-parkin pathway, is involved 
in the proteasomal degradation of misfolded or unfolded pro-
teins. It interacts with the mitochondrial outer membrane pro-
teins like mitochondrial mitofusin (MFN), VDAC, Fis1, and 
TOM20 that facilitate its recruitment to LC3, which promotes 
their incorporation into phagophores [104]. Defective p62 
function and mutation in PINK1 lead to the accumulation 
of ubiquitinated protein aggregates resulting in persistently 
damaged mitochondria and cell death promoting PD pathol-
ogy [105]. These observations imply that autophagy plays 
a crucial role in the pathogenesis of PD and T2DM or even 
the convergence point for the symptoms of T2DM and PD.

Dysregulated Ubiquitin Proteasomal System 
in T2DM and PD

Accumulation of damaged protein is harmful to normal cel-
lular functioning; therefore, its degradation is essential [106]. 
UPS is one of the major pathways that degrade various pro-
teins following polyubiquitination [107]. Studies have shown 
that UPS plays a significant role in insulin secretion by regu-
lating various key proteins in the β-cell secretory cascade 
[108]. It also regulates various crucial proteins like IRS-2, 
MafA, or CREB essential for the β-cell survival [109]. Inhi-
bition in UPS function may cause a decline in the level of 
insulin secretion in the pancreatic β-cell [110]. Recent stud-
ies suggest that the formation of toxic human islet amyloid 
polypeptide aggregates (h-IAPP) results in the loss of β-cell 
function leading to T2DM progression [111]. The increased 
expression of h-IAPP in T2DM downregulates ubiquitin 
carboxy-terminal hydrolase L1 (UCH-L1), causing altera-
tion in UPS causing deleterious consequences on β-cell func-
tion and survival [112]. Studies have also shown that toxic 
human amylin (hA) protein interacts with 20S core and 19S 
lid subunit of the β-cell proteasomal complex resulting in 
decreased proteolytic activity in T2DM [113]. Dysregula-
tions in UPS have been reported to decrease insulin signaling 

by downregulating insulin receptor and insulin substrate 
(IRS) proteins in T2DM [114]. The downregulation in IRS 
proteins is mediated by dysregulations in the suppressor of 
cytokine signaling 1 (SOCS1) and SOCS3, substrate-recog-
nition modules in elongin BC ubiquitin-ligase complex [115]. 
Additionally, IRS stability is regulated by a negative feedback 
mechanism in which insulin-dependent activation of mTOR 
phosphorylates IRS proteins and their subsequent ubiquitina-
tion and degradation of ubiquitin ligase subunit Fbw8 [116].

Similarly, dysregulations in UPS have been implicated in 
the pathogenesis of PD, leading to aggregation of α-synuclein 
[117]. It has been observed that alterations and dysfunction 
in UPS due to over-expression of α-synuclein may lead to 
DA-ergic neurodegeneration in PD. UPS components with 
PD-related protein parkin and UCH-L1 are implicated in 
the degradation of the misfolded α-synuclein protein [118]. 
Aggregates of α-synuclein may, in turn, selectively bind to 6S 
subunit of 26S proteasome inhibiting UPS function to induce 
further neuronal toxicity [119]. Therefore, proteasome and 
α-synuclein aggregation may reciprocally regulate a feed-
forward mechanism and exacerbate the onset and progression 
of PD. Mutations in the catalytic and autoinhibitory domain 
Ub ligase Parkin (Park2) and phosphatase and tensin homolog 
(PTEN) PTEN-induced putative phosphatase 1 (PINK1) inter-
rupt proteasome activity and lead to α-synuclein aggregation 
[120]. Mutation in DJ-1, a substrate for ubiquitin-like modi-
fier-1 (SUMO-1) conjugation, has been implicated in the onset 
of PD [121]. Moreover, studies have also shown that deficiency 
of DA activates PKA (protein kinase A) and α-synuclein 
aggregate activates MAPK and mitogen and stress-activated 
kinase-1 (MSK1). The resultant activation of these enzymes 
causes phosphorylation of tyrosine hydroxylase enzyme that 
gets degraded by UPS, resulting in degradation and loss of DA-
ergic neurons [122]. Protein degradation by UPS in T2DM and 
PD is crucial in cellular functioning, and evidence suggests its 
disruption as an important risk factor for T2DM and PD patho-
genesis. Illustrative representation of the role of dysregulated 
autophagy and ubiquitin proteasomal system in promoting 
T2DM conditions and PD is given in Fig. 3.

Memory Impairment in T2DM and PD

The hippocampus region of the brain is susceptible to hyper-
glycemia associated with diabetes. It also plays a very crucial 
role in learning and memory. Diabetic animal models have 
shown that neuronal apoptosis in the hippocampus leads to 
spatial memory and cognition impairment [123]. Studies 
have shown that caffeine consumption abrogates memory 
deficits associated with downregulation of A1 receptors and 
upregulation of A2A receptors in the hippocampus in the 
mice model of T2DM [124]. It has been also shown that a 
high-fat diet (HFD) induces memory loss through microglia 
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activation. Activated microglia increased pro-inflammatory 
markers like TNF-α, and Iba-1 in the hypothalamus and 
hippocampus region of the brain, causing inflammation. 
Treatment with abscisic acid (ABA) rescued all these HFD-
induced changes in rats and improved cognitive function 
[125]. Central neuroinflammation and bleeding can interfere 
with normal blood–brain barrier (BBB) function and lead to 
memory and learning disabilities. Studies have shown that 
long-term use of Mangifera Indica Lin extract decreased 
microglia-mediated inflammation, limited hippocampal and 
cortical atrophy, and lowered tau phosphorylation, result-
ing in improved memory and learning disabilities [126]. 
It is reported that purinergic receptors play a crucial role 
in memory impairment in T2DM. DNA damage mediates 
downregulation of P2X purinoceptor 4 (P2X4R), resulting in 
increased levels of activated microglia in the hippocampus. 
These studies show that memory impairment is implicated 
in the pathogenesis of T2DM [127].

PD patients have comorbidities like-cognitive dysfunc-
tion, depression, and anxiety that significantly burden their 
quality of life [128]. Several studies have shown that PD is 
associated with impairment in memory [128–130]. Deltame-
thrin is most commonly used in controlling pests, and its 
administration causes hyperactivity and impairment in cog-
nition and DA-ergic degeneration [130]. IPD patients have 
shown memory impairment, but it has been observed in the 
recall stage with relatively spare recognition. Aarsland et al. 
conducted a study with 1346 IPD patients without dementia 
and found that memory deterioration is the most common 
cognitive dysfunction in these patients, with the prevalence 
of mild cognitive impairment in 25.8% of patients [131]. 
The features associated with cognitive dysfunction in PD 
are impairment in visuo-perceptual processing and work-
ing memory. Kawashima et al. have reported that there is 
reduced activation of middle frontal gyrus (MFG) and infe-
rior parietal lobule (IPL) regions of the brain in PD patients 
with cognitive impairment, suggesting that these regions 

Fig.3   Illustrative representation of the role of dysregulated (A) 
autophagy and (B) ubiquitin proteasomal system in promoting T2DM 
conditions and PD. Abbreviations: AMP, adenosine monophosphate; 
CREB, cAMP response element-binding protein; DA-ergic, dopamin-
ergic; h-IAPP, human islet amyloid polypeptide; IRS-2, insulin recep-

tor substrate 2; MafA, MAF BZIP transcription factor A; MAPK1, 
mitogen-activated protein kinase 1; MSK1, mitogen- and stress-
activated kinase 1; PD, Parkinson’s disease; Park2, Parkin RBR E3 
ubiquitin-protein ligase 2; T2DM, type 2 diabetes mellitus; UCH-L1, 
ubiquitin C-terminal hydrolase L1
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may be associated with the pathophysiology of impairment 
in working memory in PD patients that involves fronto-
striatal network dysfunction [129]. PD-induced cognitive 
dysfunction is associated with alternation in the DA-ergic 
vs. cholinergic neurotransmission [128].

DA signaling is crucial for normal memory function. 
In the cortex and medial temporal lobe, mesocorticolim-
bic DA modulates memory consolidation and retrieval, 
whereas striatal DA facilitates learning [132]. Studies 
have shown that etazolate, a pyrazolo pyridine compound, 
prevents long- and short-term memory deficits in the 
6-OHDA-induced rat model of PD by increasing BDNF 
and antioxidant levels in the hippocampus [128]. The 
parahippocampal gyrus and salience network are consist-
ently involved during memory retrieval. Other studies have 
shown that DA-ergic dysfunction in salience network and 
median temporal lobe leads to memory impairment in PD. 
It has been reported that rotenone exposure causes neu-
rodegeneration in the cortex and hippocampus, resulting 
in cognitive dysfunction in the mice model [133]. Stud-
ies have shown that microglia-mediated neuroinflamma-
tion concluding in neuronal apoptosis is a pathological 
characteristic in memory impairment associated with PD 
[133, 134]. It has been reported that microglia-mediated 
disruption of the blood–brain barrier leads to neurodegen-
eration, resulting in impairment in memory and learning 
in rotenone induced mice model of PD [133]. Depletion 
of norepinephrine (NE) and damage to locus coeruleus 
(LC) noradrenergic neurons are early events in PD. It 
exacerbates the DA-ergic neurotoxicity and motor deficits. 
The studies have shown that damage to LC/NE increased 
α-synuclein expression, Ser129-phosphorylation, and syn-
aptic loss, causing hippocampal neurodegeneration through 
microglia-mediated neuroinflammation and ferroptosis, as 
a result of which learning and memory get impaired in PQ 
and a maneb-induced mice model of PD [134].

Common Therapeutic Targets Against T2DM 
and PD

T2DM and PD have shared pathogenesis that leads to the 
onset and establishment of either disease. It suggests that 
targeting a common molecular pathway may provide a 
novel therapeutic target against both diseases. Aggregation 
of amylin peptide, mitochondrial dysfunction, oxidative 
stress, inflammation, autophagic dysfunction, and loss of 
UPS function are some of the etiological factors that play a 
crucial role in the onset and development of PD. There is a 
co-existence of insulin receptors and DA-ergic neurons in 
SNpc in both diseases. Another thing is that reduction in 
insulin signaling in basal ganglia is associated with deple-
tion of DA in the striatum [135].

Several studies have shown that antidiabetic agents play 
a neuroprotective role in PD. Metformin has been the most 
common drug for years for the treatment of T2DM. Stud-
ies have shown that metformin has a neuroprotective effect 
against PD. Alteration in mitochondrial respiration is asso-
ciated with PD [136]. Metformin can act as an inhibitor 
of complex I of mitochondria, thereby reducing elevated 
mitochondrial respiration and maintaining mitochondrial 
homeostasis [137]. Other studies have shown that it activates 
AMPK/BDNF and effectively improves motor deficits, and 
suppresses aging-induced gene activation, reactive astro-
cytes in a 6-OHDA-induced mice model of PD [138]. It has 
also been reported that metformin has a role in autophagy. 
Metformin treatment enhances neuronal autophagy through 
AMPK activation, increasing expression of LC3-II and 
decreasing expression of p62 resulting in DA-ergic neuro-
protection [139]. It suggests that metformin is an emerging 
therapeutic drug targeting the shared pathogenesis of both 
T2DM and PD.

Another emerging therapy is the incretin hormone. It 
affects insulinotropic secretion and improves insulin resist-
ance. Incretin hormone includes glucose-dependent insuli-
notropic polypeptide (GIP) and GLP-1. GLP-1R is expressed 
in different organs like islets, heart, immune cells, kidneys, 
and intestine. GLP-1 binds to its receptor GLP-1R of islet 
cells and evokes an antihyperglycemic effect and robust 
insulin release. It also inhibits apoptosis of β-cell and pro-
motes β-cell proliferation [140]. The synthetic version of 
GLP1 agonist, exendin-4, is exenatide, which was approved 
in 2005 for use against T2DM.

Clinical studies have shown that treatment with exenatide 
improves motor deficits and cognitive dysfunction in PD 
patients [141]. GLP-1R is also expressed in different regions 
of the CNS, including the cortex, hypothalamus, striatum, 
SNpc, hippocampus, brain stem, and in the subventricular 
zone. The studies have shown that exendin-4 improves motor 
deficits and protects DA-ergic neurons in the MPTP-induced 
mice model of PD. Another study involving the LPS and 
6-OHDA-induced PD model in SNpc has reported that after 
7 days of treatment with exendin-4, amphetamine-induced 
circling behavior reduced, and DA production increased 
in basal ganglia [142]. Another GLP-1 analogue, liraglu-
tide, binds to and stimulates GLP-1R, causing an increase 
in the cAMP. It leads to a cascade of intracellular events 
mediated by PKB/Akt and MAPK/ERK pathways, such as 
inhibition of neuronal apoptosis, neuronal cell survival, cell 
growth, repair, regeneration, and activation of Ca2+ chan-
nels. Finally, it concludes with neuroprotection, neuronal 
development, and memory formation [140, 142].

Insulin signaling is also one of the common molecular 
targets that gets disrupted in both T2DM and PD. Studies 
have shown that there is decreased level of insulin signaling 
markers and increased level of its negative regulator PTEN 
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in the SNpc regions of PD brain compared to control. It 
suggests that restoring insulin pathway or inhibiting nuclear 
aggregation of PTEN could be possible therapeutic target 
against both T2DM and PD [143].

Since there are many shared pathways between T2DM 
and PD, so, use of anti-parkinsonian therapy for T2DM and 
antidiabetic therapy for PD or vice versa in which research 
is going on. For example, DA agonist is most commonly 
used for the treatment of motor symptoms associated with 

PD. L-DOPA is the most commonly used DA agonist. Stud-
ies have shown that treatment of PD patients with L-DOPA 
decreased insulin secretion. Bromocriptine is another DA 
agonist used commonly for treatment of PD. It was the first 
DA-ergic drug approved for the treatment of T2DM. Studies 
have shown that its treatment improved glucose tolerance by 
suppressing growth hormone release from pituitary adeno-
mas in obese T2DM patients as well as in non-diabetic obese 

Fig.4   Illustrative representation of therapeutic action of antidiabetic 
agents against PD pathogenesis. Abbreviations: AMPK, adenosine 
monophosphate-activated protein kinase; BDNF, brain-derived neu-
rotrophic factor; cAMP, adenosine 3′,5′-cyclic monophosphate; GLP-

1, glucagon-like peptide 1; IR, insulin receptor; LC3-II, light chain 
3-II; MAPK1, mitogen-activated protein kinase; PKB, protein kinase 
B; NF-kB, nuclear factor kappa-light-chain-enhancer of activated B 
cells; PPARs, peroxisome proliferator-activated receptors
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human and animals. It resulted in decreasing growth hor-
mone–mediated antagonism action of insulin [144]. Thus, 
use of DA agonist is also a possible therapeutic strategy 
against both T2DM and PD.

Pioglitazone, a peroxisome proliferator-activated 
receptor (PPARs) agonist that improves hyperglycemia 
and ameliorates insulin resistance, may also be a poten-
tial therapeutic agent for PD. It has been reported that a 
PPAR pathway has a crucial role in the pathogenesis of 
PD. Studies have shown that pioglitazone rescued DA-
ergic neurons through microglia inhibition in a PD model 
[145, 146]. Other studies have suggested that combinations 
of pioglitazone and statin modulate several inflammatory 
pathways (e.g., iNOS expression, cyclooxygenase-2 (COX-
2) activity, and inhibition of NF-kB) and offer anti-inflam-
matory-mediated neuroprotection [146]. Studies have also 
shown that a combination of pioglitazone and statin lowers 
the incidence of PD in T2DM patients [145]. This sug-
gests the PPAR pathway as a possible molecular target 
for therapeutics against both T2DM and PD. Illustrative 
representation of therapeutic action of antidiabetic agents 
against PD pathogenesis is given in Fig. 4.

Conclusions

In conclusion, implications in insulin signaling dysregu-
late blood glucose homeostasis and insulin resistance in 
T2DM and cause DA-ergic cell death in PD. ER stress 
results in dysregulations in the β-cell functioning and sur-
vival in T2DM and impaired Ca2+ hemostasis resulting in 
DA-ergic neuronal loss in PD. Mitochondrial dysfunction 
decreases oxygen consumption and suppresses glucose-
stimulated insulin secretion in T2DM and decreases mito-
chondrial complex I activity, MPP, and ATP levels in PD. 
Dysregulated autophagy results in amyloid aggregation, 
i.e., amylin protein and α-synuclein in T2DM and PD, 
respectively. And dysfunctional UPS may decrease insulin 
secretion in the pancreatic β-cell and neurotoxicity in PD. 
Thus, T2DM and PD share some common but independent 
molecular pathways that play a crucial role in their pro-
gression and etiopathogenesis and can therefore provide 
common and alternate therapeutic approaches for treating 
T2DM and PD.
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