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Abstract

Multiple sclerosis (MS) is a central nervous system chronic neuroinflammatory disease followed by neurodegeneration. The
diagnosis is based on clinical presentation, cerebrospinal fluid testing and magnetic resonance imagining. There is still a
lack of a diagnostic blood-based biomarker for MS. Due to the cost and difficulty of diagnosis, new and more easily acces-
sible methods are being sought. New biomarkers should also allow for early diagnosis. Additionally, the treatment of MS
should lead to the personalization of the therapy. MicroRNAs (miRNAs) and long non-coding RNAs (IncRNAs) as well as
their target genes participate in pathophysiology processes in MS. Although the detailed mechanism of action of non-coding
RNAs (ncRNAs, including miRNAs and IncRNAs) on neuroinflammation in MS has not been fully explained, several studies
were conducted aiming to analyse their impact in MS. In this article, we review up-to-date knowledge on the latest research
concerning the ncRNAs in MS and evaluate their role in neuroinflammation. We also point out the most promising ncRNAs
which may be promising in MS as diagnostic and prognostic biomarkers.
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MALATI1 Metastasis associated lung adenocarci-
noma transcript 1

MMP9 Matrix metalloproteinase 9

MOG Mpyelin oligodendrocyte glycoprotein

MRCI1 Mannose Receptor C-Type 1

MRI Magnetic resonance imaging

MS Multiple sclerosis

MSCs Mesenchymal stem cells

n Number

ncRNAs non-coding RNAs

OPN Osteopontin

PBMC Peripheral blood mononuclear cells

pi. Post-immunization

PPMS Primary progressive MS

PVG Piebald Virol Glaxo

RIS Radiologically isolated syndrome

ROS Reactive oxygen species

RRMS Relapsing-remitting MS

Smad7 Suppressor of mothers against decapenta-
plegic 7

SOCS Suppressor of cytokine signalling proteins

Th17 T helper 17

TNFa Tumour necrosis factor o

WT Wild type

Introduction

Multiple sclerosis (MS) is a neurodegeneration disease in
central nervous system (CNS) with chronic inflammatory
immune-mediated demyelination. Inflammation, lesion for-
mation, and blood brain barrier (BBB) impairment stand
as three main components in MS pathogenesis. McDonald
criteria are used for diagnosis of MS including clinical pres-
entation, magnetic resonance imagining (MRI), and cerebro-
spinal fluid (CSF) testing [1]. There is currently a demand
for and lack of a diagnostic blood-based biomarker for MS.
Furthermore, MRI, the primary imaging technique, is all-
consuming financially as well as time-dependent. Essen-
tially, non-invasive/blood-based biomarkers are essential
for a more accurate evaluation of the MS patient.

MicroRNAs (miRNAs) play a role in gene transcription
repression. Elevated or reduced miRNA expression can have
either inflammatory or protective/anti-inflammatory effects
through influence on the immune response, BBB stability,
production of cytokines, and reactive oxygen species (ROS).
Various chronic inflammatory diseases, including diabetes,
ischemic stroke, and MS, depicted the dysregulation of miR-
NAs [2-12]. However, the exact mechanism of the impact
of miRNAs on neuroinflammation in MS remains largely
unknown.

Long non-coding RNAs (IncRNAs) modulate diverse
cellular processes at epigenetic, transcriptional, and
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post-transcriptional levels and manage protein activity. As
non-coding molecules, they regulate several biological pro-
cesses, including cell proliferation, migration, and cytokine
release. Some degenerative diseases, including MS, recog-
nized their alteration in abundance [5, 9, 13, 14].

As many studies showed the importance of both miR-
NAs and IncRNAs as potential biomarkers in MS, herein,
we present up-to-date knowledge on the application of miR-
NAs and IncRNAs in the MS neuroinflammatory process
[15-18]. We also indicate the most promising non-coding
RNAs which can be clinically valuable to diagnose MS.

MiRNAs as diagnostic/prognostic
biomarkers in neuroinflammation process
of MS

A key pathological feature of MS is inflammation that is
responsible for demyelination and axonal loss. The indis-
pensable elements of the underlying pathomechanism are
inflammatory Thl and Th17 cells that can easily cross the
BBB and initiate the inflammation process in CNS [19]. The
autoreactive T-cells mediate the macrophage's recruitment
leading to myelin and oligodendrocyte destruction [19, 20].
B cells as antigen-presenting cells (APC) activate CNS-
infiltrating T cells, contributing to increased production
of pro-inflammatory cytokines. Additionally, their ability
to differentiate into memory cells and produce antibodies
adds to their involvement in the pathogenesis of MS [21].
Those observations are consistent with the result of studies
indicating the effectiveness of the anti-CD20 monoclonal
antibodies therapy [22]. Neuroinflammation seems to be
responsible for neurodegeneration in all stages of MS. It
is responsible for the new lesions in the early stage of the
disease, and the process decreases at the later stages [23].
Nowadays, there are attempts to improve the MS treatment
and prognosis by introducing anti-inflammatory drugs and
inflammatory biomarkers, respectively [24].

Studies described the role of miRNAs in in vitro
and animal models of MS

In experimental autoimmune encephalomyelitis (EAE)—
animal model of MS, Ghorbani et al. [25] aimed to specify
the role of miR-181 isoforms. Transfection of primary mac-
rophages and CD4 + cells with miR-181a and miR-181b
mimics resulted in downregulation of TNF-a and IL-6,
favouring anti-inflammatory (M2) over pro-inflammatory
(M1) macrophage phenotype. Moreover, higher miR-181a
and miR-181b expressions had an inhibitory effect on T cell
differentiation toward the Th1 cell phenotype, demonstrat-
ing the anti-neuroinflammatory character of the miR-181
family. In the chronic phase, miR-181a/b directly suppressed
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the expression of the Smad7 gene and negatively correlated
with the expression of miR-181a/b in the CNS EAE. Fur-
thermore, Kleiter et al. [26] showed that Smad7 determines
polarization toward Th1 cells, and its suppression leads to
reduced inflammation, which indicates its proinflammatory
character in MS. Altogether, miR-181 isoforms showed a
crucial role in accentuating immune responses through bal-
ancing the inflammatory gene expression, showing the anti-
inflammatory properties of miR-181 in MS [25].

In vitro analysis of murine microglia after administration
of miR-223 mimics resulted in decreased TNFa secretion
and promoted M2 polarization. The miR-223 knockout (KO)
mice showed CNS remyelination dysfunction, delayed EAE
onset, impaired M2 polarization, and phagocytosis. These
data confirm that the dysregulation of miR-223 plays a pro-
tective role in neuro-inflammation, making it a potential
therapeutic target for MS [27].

The binding of SOCS3 protein to JAK kinase and the
cytokine receptor results in the repression of STAT3 acti-
vation leading to an inflammatory response. The activated
astrocytes, SOCS3, inhibit the JAK/STAT3 pathways,
which leads to downregulation of receptor signalling and
the inhibition of chemokine production, indicating its neu-
roprotective properties [28, 29]. In MS, CD4 +, CD8+, and
monocytes showed reduced expression of SOCS3, followed
by increased STAT3 phosphorylation [25]. On the other
hand, IL-17 produced by Th17 cells promotes the release
of proinflammatory cytokines in astrocytes, and serum
expression, grew along with EAE severity in mice [30]. In
an in vitro study, the primary mice astrocytes transfection
by miR-409-3p and miR-1896 imitates decreased SOCS3
and increased p-STAT3 expression. Brain tissue from EAE
mice also showed similar results. Interestingly, the overex-
pression of both miRNAs affected the SOCS3, p-STAT3
expression, and significantly increased CD4 + T cell migra-
tion. The miR-409-3p and miR-1896 inhibition eased EAE
course seen as the smaller lesions in CNS and decreased
motor skill impairment. This study demonstrated that the
co-upregulation of miR-409-3p and miR-1896 enhances neu-
roinflammation via regulation of the SOCS3/STAT3 path-
way, increased cytokines production (IL-1p, IL-6, CXCL10,
CCL2, CXCL1) and CD4 + migration. Downregulation of
miR-409-3p and miR-1896 stands as a promising future
therapeutic target [31].

Upregulated miR-142a-3p and miR-142a-5p were
detected in EAE lumbar spinal cords, followed by increased
CD4+T cell infiltration and reduced myelin basic protein
staining in mice [32]. Isolated splenocytes from EAE and
anti-CD3/CD28-stimulated T cell line demonstrated the
upregulation of MiR-142a-3p and miR-142a-5p, which
indicates the role of splenocytes as the source of miR-
142a. Transfection of naive CD4 + cells with miR-142a-5p
resulted in differentiation toward the Th17 phenotype and

increased IFN-y secretion. Transfection with miR-142a-3p
did not significantly affect naive cell differentiation [32].
In silico analysis showed TGFBR-1 as the target gene for
miR-142a-3p, while Luciferase assay identified TGFBR-2
and SOCS-1 genes for miR-142a-5p. EAE lumbar spinal
cords samples showed decreased expression of the protec-
tive genes: TGFBR-1, TGFBR-2, and SOCS-1 at the peak
of the disease. It concludes that isoforms of miR-142a play
a role in CD4 + differentiation and TGFBR-1 and SOCS-1
expression, thus characterizing them as a good diagnostic
tool and future therapeutic target [32].

Bergman et al. [33] experimented with establishing the
miRNA profile using next-generation sequencing (NGS)
in an animal model of MS. More specifically, myelin oli-
godendrocyte glycoprotein (MOG)-induced EAE in Dark
Agouti (DA) rats was used as a control against EAE-resistant
Piebald Virol Glaxo (PVG) rats. Draining inguinal lymph
nodes were harvested at naive state on the 3rd, 7th, and
25th post-immunization (p.i.) day. A total of 329 different
miRNAs were quantified, including 64 miRNAs expressed
differently between DA and controls based on NGS. MiR-
181a, miR-128, and miR-146a were found to be elevated at
all time-points, whereas miR-223 and miR-125b-5p were
only increased on day-7. Cell-type origin of miRNAs was
also established: T cells primarily showed miR-181a and
miR-128 expression, whereas non-lymphocyte fraction pre-
dominantly depicted the miR-199a-3p and miR-223 expres-
sion. The in silico analysis indicated miRNAs targeted gene
expression, which showed that neuroinflammatory CXCR3,
PRKCD, and STATI genes could be the direct target of miR-
181a and confirmed by in vitro experimental research. The
study demonstrated immune responses that are partially
modulated by several miRNAs. The identified miRNAs
related to MS implicate their essential role in autoimmunity
and put them as promising biomarkers [33].

A previously published in silico study showed that pre-
exposed to IFN-y dysregulated nine miRNAs in mesenchy-
mal stem cells (MSCs), miR-467f, miR-466q miR-466 m-5p,
and miR-466i-3p were upregulated in MSCs-derived extra-
cellular vesicles (EVs). The proinflammatory biomarkers
such as TNF and IL-1p expression were downregulated
once activated microglia were transfected with miR-467f
and miR-466q. Similar effects were seen in the amyo-
trophic lateral sclerosis (ALS) model [34], wherein primary
SOD1G93A microglia transfected with miR-467f the TNF
and IL-1b mRNAs expression was decreased, whereas only
TNF was decreased when transfected with miR-466q. More-
over, further analysis revealed that these miRNAs inhibit
their corresponding target genes (MAP3K8 and MK2) that
modify the p38 MAPK signalling pathway. These results
were confirmed in vivo by transfecting EAE mice with the
MSCs-derived EVs associated with decreasing neuroinflam-
mation markers in the spinal cord tissue [35].
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Another study focused on miR-106b-25 and miR-
17-92 roles in MS pathogenesis showed that the lack
of these miRNAs in CD4 + T cells might be protective
factors against EAE in mice. Furthermore, depletion of
those miRNAs in the spinal cord resulted in a significant
reduction of inflammatory cytokines (GM-CSF, IFN-y,
IL-17) and decreased Th17 cells, which are identified as

neuroinflammatory. The further pathological evaluation
also revealed inflammatory cell infiltrates, demyelination,
and axonal loss. The protective effects were seen when
only miR-17-92 but not miR-106b-25 were attenuated.
Thus, miR-17-92 may be an essential factor in modifying
neuroinflammatory processes. However, the direct targets
were not found [36] (Fig. 1).
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Fig.1 The mechanism of ncRNAs contributed to neuroinflamma-
tion process in MS. Abbreviations: ANXA-2, Annexin A2; CCL2,
C-C Motif Chemokine Ligand 2; CCL7, C-C Motif Chemokine
Ligand 7; CD4+, T-helper cells; CLDN-1, Claudin 1; DOCKI,
Dedicator Of Cytokinesis 1; GM-CSF, Granulocyte Macrophage Col-
ony-Stimulating Factor; IL, interleukin; hMEC, Human Mammary
Epithelial Cells; Interleukin; IFN, interferon; IRAKI, Interleukin-1
receptor-associated kinase 1; LincRNA, Long intergenic non-coding
RNA; LncRNA, Long non-coding RNA; MALAT1, metastasis asso-
ciated lung adenocarcinoma transcript 1; Map3k8, Mitogen-Activated
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Protein Kinase 8; miR, microRNA; M2, M2 type macrophage; Mk2,
Mitogen-activated protein kinase miR-microRNA; MRcl, Mannose
Receptor C-Type 1; MQ, macrophage; NF-xB, nuclear factor kappa-
light-chain-enhancer of activated B cells; RhoA, Ras homolog fam-
ily member A; SDCBP, Syndecan Binding Protein; SELE, Selectin E;
SMAD2, SMAD Family Member 2; SOCS3, Suppressor of cytokine
signalling 3; STAT3, Signal transducer and activator of transcription
3; Thl, T-helper cell 1; TNFa, tumour necrosis factor a; TRAF6,
tumour necrosis factor receptor associated factor 6; VCAMI, vascular
cell adhesion molecule 1
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Studies described the role of miRNAs in patients
with MS

MRI is the gold-standard imaging technique used in MS
diagnosis and consequently prognosis [1]. The most con-
siderable pitfalls of this imaging technique are low avail-
ability and the need for high financial expenditure. These
limitations would be alleviated with diagnostic serum and
blood biomarkers that would be both accessible and simpler
in medical evaluation of the MS course. MiRNAs stand as
promising biomarkers in this group of patients and meet the
criteria mentioned above.

CSF samples were obtained from relapsing remit-
ting MS (RRMS) and clinically isolated syndrome (CIS)
patients. The immunology analysis, including CSF cell
count, IgG index, CXCL13, MMP9, osteopontin (OPN)
levels and the miRNAs expression were studied. The
miRNA profiling in cell-free CSF showed substantial
upregulation of two miRNAs: miR-145 and miR-150
between MS (CIS, n=15; RRMS, n=15) and noninflam-
matory neurologic disease controls (n=13). Neverthe-
less, in a more extensive validation cohort (n=420), only
miR-150 remained statistically relevant. Further, miR-150
expression correlated with immunologic CSF parameters,
which indicates its involvement in MS neuroinflammation.
After a 52-month follow-up, CIS patients with increased
miR-150 expression in CSF were more frequently con-
verted to MS. Notably, miR-150 expression was signifi-
cantly associated with clinical parameters like IgG index,
CSF cells, CXCL13, MMP-9, OPN. Ultimately, miR-150
stands as a candidate biomarker for MS diagnostics and
prognostic predictions [18].

Asymptomatic patients with white matter lesions
characteristic for MS are diagnosed as the radiologically
isolated syndrome (RIS) [37]. There is a need for new
available predictive parameters to identify patients at
risk of conversion into clinically definite MS (CDMS).
In CSF, miR-144-3p, miR-448, and miR-653-3p were
upregulated, and miR-483-3p in the plasma of the RIS-
conversion group. Additionally, miR-448 in CSF and
miR-483-3p in plasma were positively correlated with
T2 lesions number. On the contrary, the miR-142-3p,
miR-338-3p, miR-363-3p, miR-374-5b, and miR-424-5p
were downregulated in plasma in this group of patients
(RIS-conversion patients), and miR-363-3p had a negative
correlation with T2 lesions. Bioinformatics enrichment
analysis predicted cytokine-mediated signalling, adher-
ence junction organization, and cell migration are the
most significant gene ontology processes in neuroinflam-
mation accompanying RIS to CDMS conversion. In sum,

mentioned miRNAs stand as promising prognostic risk
biomarkers of converting from RIS to MS. On the other
hand, the study included a minimal sample size (n=15),
and further analyses with larger populations are required
to verify those results [38].

Perdaens et al. [39] examined miRNA expression pro-
filing in RRMS patients' serum, peripheral blood mono-
nuclear cells (PBMCs), and CSF and compared it with
disease prognosis. They confirmed the association of
miR-146a-5p, miR-150-5p, miR-155-5p with MS and
brought light upon seven new miRNAs that were pre-
viously uncharacterized in MS research (miR-15a-3p,
miR-124-5p, miR-149-3p, miR-29¢c-3p, miR-33a-3p,
miR-34c-5p, miR-297). In silico analysis predicted the
signalling pathway in remitting MS to be more similar to
controls than to relapsing MS. Multicompartment screen-
ing showed miR-34c-5p and miR-184 dysregulation in
PBMCs while miR-181c-5p and miR-210-3p in CSF
and PBMCs simultaneously. While three miRNAs were
downregulated (miR-20a-5p, miR-33a-3, miR-214-3p),
one was upregulated (miR-149-3p) in CSF of remitting
MS subjects in comparison with relapsing ones. Relapsing
and remitting MS showed downregulation of miR-15a-3p,
miR-24-3p, miR-126-3p, miR-146a-5p, and miR-181c-5p
in serum compared to healthy controls. Additionally,
miR-214-3p expression was decreased in the relapsing
MS group. Specific miRNAs for MS in comparison with
symptomatic controls were identified by in silico analy-
sis. In CSF of MS patients, the expression of miR-24-3p,
miR-27a-3p, and miR-145-5p was significantly increased,
which allows discrimination between MS and other neuro-
logical patients. Overall, this study reveals the use of men-
tioned miRNAs as possible future MS biomarkers [39].

The specific role of monocytes in the pathogenesis of
MS is still poorly understood. Macrophages differentiate
from monocytes and play a key role in neuroinflamma-
tion and MS disease progression [40]. Amoruso et al. [41]
studied the miRNAs expression in monocytes in the MS
group. The miR-146a, miR-223, miR-125a, miR-30c, and
miR-23a were significantly upregulated in RRMS and
PPMS groups. Additionally, the miR-181a was increased
in RRMS. The expression level of miR-155 was down-
regulated in both groups; however, miR-124 was decreased
only in PPMS patients. The phenotypic markers of mono-
cyte polarization were assessed. The pro-regenerative
cytokine-IL-10 was reduced, and CHI3L1 was elevated
in PPMS monocytes. The miR-146a, miR-223, miR-
125a, miR-181a, miR-124 have shown anti-inflammatory
action in previous studies and miR-155 and miR-23a pro-
inflammatory [25, 42-46]. Those deregulations indicate
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that monocytes take part in alleviating neuroinflamma-
tion. Furthermore, mentioned miRNAs stand as potential
predictors for monocyte polarization in MS.

Influence of miRNAs on blood-brain barrier
function in MS

In preserving CNS homeostasis, the blood—brain barrier
(BBB) plays a vital role by regulating the transport of
molecules and cells across the extracellular CSF and
the circulating blood. The BBB disruption is associated
with MS, and it is thought to be the result and the cause
of neuroinflammation in MS [47, 48]. The dysregula-
tion of miRNAs followed by disturbed BBB integrity
indicates miRNAs role in maintaining BBB function,
e.g., by modulation of inflammatory cell adhesion [49,
50]. Collectively, discovering the association between
miRNAs, BBB and neuroinflammation will allow a
solid understanding of pathophysiology and show the
emergence of novel biomarkers and potential therapeu-
tic targets in MS (Fig. 2).

An extensive study aimed to evaluate the impact of pro-
inflammatory miRNA-miR-155 on BBB integrity and neu-
roinflammation in MS by using in vitro and animal mod-
els. The study included mice with EAE and MS patients'
brain samples and control subjects without neurological

diseases. Analysis showed that miR-155 was significantly
increased at the neurovascular unit in active MS lesions
in the isolated microvessels. In mice, EAE and acute sys-
temic inflammation model reduced CNS extravasation of
systemic tracers with the loss of miR-155 expression. BBB
permeability was assessed, and the miR-155 knockdown
mice were found to possess a 50% less permeable mem-
brane than negative counterparts and control. Moreover,
in vitro analysis showed that administration of miR-155
mimics increased BBB permeability via inhibiting DOCK-
1, ANXA-2, CLDN-1and SDCBP gene expression. To sum
up, the study suggested that in MS, the miR-155 acts as a
unique inverse regulator of BBB function during neuro-
inflammation by modulation of brain endothelial cells
[51].

The deep cervical lymph nodes (dCLNs) collect excess
fluid, immune cells, and small molecules from the CNS
via meningeal lymphatic vessels. Louveau et al. [52] stud-
ied the meningeal lymphatic flow in neuroinflammation in
EAE mice. After ablation or disruption of the dCLNs lym-
phatic drainage, the EAE development was delayed. The
lack of lymphatic drainage resulted in reduced communi-
cation within T cells and antigen-presenting cells (APC).
It also suggests that dCLNs participate in the T cell
pathway of neuroinflammation. A comprehensive under-
standing of how T cell encephalitogenicity is affected by
CNS lymphatic drainage RNA-sequencing approach was
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conducted on dCLN-isolated antigen-specific T cells.
Bioinformatic analysis revealed that previously down-
regulated genes were categorized to increase EAE devel-
opment (CCR141), differentiation, and activation of T
cells (TRADDA42) and linked to migration and vascular
transmigration (NOD243). Additionally, this study showed
upregulation of miRNAs- Let-7 family, miR-142-5p, miR-
182, miR-17-5 levels, and are thought to take part in T
cell activation differentiation and migration neuroinflam-
mation [52].

The migration of monocytes and T-cells across brain
endothelial cells (BEC) stands as one of the pathophysi-
ological mechanisms in MS. Cerruti et al. [50] analysed
the role of miR-126-3p and miR-126-5p in the regulation
of cell adhesion to BBB using a human BEC in vitro
model. Administration of pro-inflammatory cytokines
such as TNFa and IFNy led to downregulation of miR-
126 and enhanced monocytes and T-cells adhesion to
BEC, whereas increased miR-126 expression in BEC
significantly reduced PBMC adhesion. In silico anal-
ysis was confirmed in vivo analysis, which showed
that miR-126 could target and inhibit genes (VCAMI,
CCL2, SELE, and CCL?7) related to leukocyte traffick-
ing. Therefore, leading to increased inflammation. Thus,
the study suggested that miR-126 can act as a protective
factor and future biomarker for BBB permeability in MS
[50].

Wu et al. [42] found upregulated miR-146a microves-
sels of MS-active lesions from human brain tissues and
mice spinal cord with EAE. Inhibition of miR-146a caused
increased cytokine-stimulated T cells adhesions, whereas
transfection with miR-146a mimics resulted in decreased
leukocyte adhesion. The NF-xB (p50/p65) activation and
nuclear translocation depend on the binding of proinflam-
matory cytokines such as TNFa and IFNYy to their distinct
receptors located on endothelial cells of the brain that
eventually stimulate IRAK1 and TRAF6, the receptor-
associated molecules [42]. Therefore, the study showed a
novel mechanism of decreased neuroinflammation in MS
using miR-146a mimic, which blocked NF-xB by sup-
pressing IRAK1, TRAF6, NFATS5, and RhoA signalling.
Inhibiting these genes led to downregulation of CCL2 and
VCAMLI, resulting in reduced leukocyte adhesion to brain
endothelium [42].

Hoye et al. [53] detected upregulated miR-31 expres-
sion in dendritic cells (DCs) in CNS of EAE mice. The
study performed by using microarray and bioinformatic
analysis showed targets of miR-31: HIATI, SRP54B,
TSPAN31, and their role was not described in MS neu-
roinflammation, which makes them candidates for future

studies. Taken all together, this data suggest the participa-
tion of miR-31 in inflammatory cells migration to BBB,
specifically BMDCs. Potentially therapeutic inhibition of
miR-31 would result in restraining DCs expression and
migration to CNS along with decreased neuroinflamma-
tory response in MS patients [53].

The only human study evaluating the importance of miR-
NAs in BBB permeability was done by Hemond et al. [54].
They aimed to establish key differences in miRNA expres-
sion among variable MS clinical phenotype groups by test-
ing serum miRNA expressions in MS patients. Sixteen miR-
NAs showed statistical significance with three demonstrating
differences between MRI phenotypes. The miR-22-3p and
miR-345-5p were induced in high lesion burden phenotypes,
which suggests inflammatory character of foregoing miR-
NAs. The miR-361-5p expression level was increased in
patients with mild atrophy and low lesion volume, indicating
a protective association against brain volume loss and neuro-
inflammation. Additionally, in silico analysis suggested the
role of miR-22-3p and miR-361-5p in lymphocytes adhe-
sion, extracellular matrix (ECM) integrity, and sealing BBB.
Therefore, miR-22-3p, miR-345-5p, and miR-361-5p stand
as potential prognostic MS biomarkers in differentiating MS
phenotypes [54].

LncRNAs and long intergenic non-coding
RNAs as diagnostic/prognostic biomarkers
in neuroinflammation process of MS

Metastasis-associated lung adenocarcinoma transcript 1
(MALAT1) is a IncRNA and plays a crucial role in MS
[55]. The samples collected from MS patients and EAE
mice lumbar spine showed MALATI1 downregulation in
CNS amid autoimmune neuroinflammation. Activated
splenocytes and macrophages (M1) showed significantly
decreased MALAT1 expression. Analysis of anti-CD3
and anti-CD28 antibodies of activated T cells showed
two-fold increase in MALAT expression following one-
hour stimulation of splenocytes, followed by substan-
tially reduced expression at 12, 24, and 48 h, suggest-
ing that during acute phase MALATI1 expression was
diminished in EAE mice models. In the MO macrophages
phenotype, MALAT1 downregulation showed upregula-
tion of /IL-6 gene than cells transfected with scrambled
sequences. Depressed MALATI1 gene expression in the
M1 phenotype led to significant upregulation in IL-1b
and IL-6 levels with a concomitant decrease in MRC1
expression. MALATI1 downregulation in the M2 pheno-
type appeared to significantly increase proinflammatory
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iNos gene expression. Downregulation of MALATI
was associated with an increase in shift towards Thl
and Th17 and enhanced T cell proliferation. Taken all
together, MALAT1 could act as a potential anti-inflam-
matory effector in the context of autoimmune neuroin-
flammation, having gene modulating activity as well as
implications for regulation of immune cells responsible
for the chronic inflammation and stands as a potential
MS biomarker [55].

Interleukin 9 (IL-9) is a key regulator of reactive
astrocytes, inflammatory cytokines and autoimmune
responses in MS and EAE. Liu et al. analysed the impact
of IncRNA Gm13568 both in vitro and in vivo. The study
involved animal model of EAE mice and IL-9 treated
mouse primary astrocytes. It was found that the increased
production of IL-9 in EAE mice led to Notch1/STAT3
signalling pathway activation and thus promoted the
production of pro-inflammatory cytokines in astrocytes.
Moreover, it was shown that the process is mediated by
IncRNA Gm13568, which interacted with CBP/P300 to
regulate the Notchl gene transcription. Further analysis
showed that the inhibition of IncRNA Gm13568 resulted
in decreased activation of the Notchl signalling path-
way and thus reduced production of pro-inflammatory
cytokines in astrocytes. Hence, the data indicated that
IncRNA Gm13568 affects the pathogenesis of EAE
through the Notch1 signalling pathway and enhances the
EAE process in the mice model. Consequently, the study
suggested that IncRNA Gm13568 may be a promising
target in MS treatment [56].

Th17 cells contribute to neuroinflammation in MS via
cytokine production and recruiting proinflammatory lym-
phocytes. DDIT4/mTOR pathway stands as the regulator
of Th17 cell differentiation. Zhang et al. investigated the
role of the Inc DDIT4 in MS patients. They showed that the
IncRNA DDIT4 was overexpressed in the PBMCs and naive
CD4 +cells obtained from MS patients. Additionally, the
overexpression of IncRNA DDIT4 supressed Th17 cell dif-
ferentiation through inhibition of the DDIT4/mTOR axis. As
expected, silencing IncRNA DDIT4 resulted in the opposite
outcome. The results of this study indicated that IncRNA
DDIT4 regulates Th17 cell differentiation and alleviates
neuroinflammation in MS [57].

An influential study conducted by Gupta et al. on
RNA-sequencing and bioinformatic analysis identi-
fied four long intergenic non-coding RNAs (lincR-
NAs) (ENSG00000260302, ENSG00000272512,
ENSG00000223387, ENSG00000270972) as possible bio-
markers for analysing phenotypic severity of the disease in
MS patients in comparison of mild and severe phenotypes.

@ Springer

Further, they validated their results by using digital droplet
PCR in a confirmation cohort. In this study, these lincRNAs
were significantly higher in the severe phenotype, demon-
strating their prognostic value in MS [58].

Zhang et al. investigated the role of lincRNA MAF-4
in Thl and Th2 differentiation in MS. The expression of
lincRNA MAF-4 was significantly higher in mononuclear
cells from peripheral blood from MS patients in comparison
with healthy controls and correlated with the annual relapse
rate in the MS patients group. To understand the molecular
mechanisms in vitro analysis was performed. The transfec-
tion of CD4 +T cells with lincRNA MAF-4 favoured Thl
cell differentiation over Th2 by directly inhibiting the Th2
cell transcription factor—MAF, which increased the neuro-
inflammation. This study points the lincRNA MAF-4 as a
key factor in regulating T-cell activity involved in demyeli-
nation in MS [59].

Current perspectives and limitations

To summarize and present the published data of miRNAs
and IncRNAs involved in MS pathophysiology, we have
generated a network graph showing ncRNAs and their
targeted genes (Fig. 3), affecting neuroinflammation. Lit-
erature data (Table 1 and supplementary table 1) were
transformed into a tabular network file and aggregated
in R. Visualization of the network was performed using
Cytoscape v3.9.0 [60]. Additional information regarding
model organisms and ncRNAs and their inflammatory or
anti-inflammatory effect shown in the studies was used
for visual mapping of the nodes. The genes from analysed
manuscripts were additionally evaluated using the Dis-
GeNet v7.0 database for their association with MS [61].
According to this network (Fig. 3), we can conclude that
miR-155 and miR-181a appeared in the highest number of
studies as regulators in MS, since those miRNAs can target
the greatest number of different genes (confirmed in the
literature by experimental analysis). Furthermore, IncRNA
MALATI1 was found to be associated with anti-inflam-
matory processes in MS. Importantly, as it is presented
in Fig. 3, MALAT1 was studied not only in the in vivo
analysis, but was also demonstrated in human studies.

In our analysis, the strongest association with neuro-
inflammation in MS showed genes: TRAF6, IRAKI and
SOCS-1. TRAF6 encodes proteins involved in proinflam-
matory signal mediation from members of the TNF recep-
tor superfamily and the Toll/IL-1 family. JRAK] intermedi-
ates IL-1-induced upregulation of the transcription factor
NF-xB. The expression of IRAK1 is induced by various
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cytokines, including IL-6, IL-10, and IFN-y. It regulates
innate and adaptive immune responses and decreases pro-
inflammatory state in MS. Using the DisGeNet database,
we confirmed that those genes strongly relate to develop-
ment of MS.

Measuring expression of ncRNAs in blood components
and CSF may improve the prediction of clinical outcome.
However, the use of IncRNAs and miRNAs as biomarkers
in clinical practice still faces many limitations: (i) a small
number of human studies describing the role of ncRNAs
in the processes of neuroinflammation in MS; (ii) many of
the studies described in this review require further valida-
tion and assessment of their results reproducibility; (iii) a
number of studies that analysed the importance of ncRNAs
in MS used EAE animal model, without confirmation in
human studies; (iv) individual molecules examined in MS
such as miR-155 and MALAT1 are not specific to MS only.

Conclusion

Several studies highlighted the promising role of miRNA
and IncRNA as potential diagnostic and prognostic bio-
markers in MS patients. Additionally, they may serve as
potential therapeutic targets through inhibition or res-
toration of loss of function using mimic molecules that
are similar to endogenous ones. Yet, the detailed mecha-
nism of action of the described miRNAs and IncRNAs
on neuroinflammation has not been fully explained and
more studies need to be conducted. Importantly, a sin-
gle miRNA or IncRNA may target multiple genes; thus,
understanding the miRNA—-IncRNA interaction network
and functions and creating an effective and inexpensive
way of making diagnosis and prognosis are prerequisites
to apply ncRNAs in the future clinical practice regarding
MS patients.
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