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Abstract
Prenatal exposure to dexamethasone (DEX) results in long-lasting effects on cognitive functions such as learning and memory 
impairment. However, the mechanisms underlying these DEX-induced deleterious effects are not well known. Here, we 
assessed whether cyclooxygenase-2 (COX-2) is involved in the impact of prenatal exposure to DEX on learning and memory 
during adulthood. Pregnant Sprague–Dawley rats received daily injections of either DEX (0.2 mg/kg; i.p.) or saline from 
gestation day (GD) 14 until GD21. Gene and protein expression of COX-2, as well as presynaptic (synaptophysin) and post-
synaptic (postsynaptic density protein-95) proteins, were monitored in the dorsal and ventral hippocampi of adult male and 
female offspring. A different cohort of adult male and female rat offspring was given daily injections of either vehicle or a 
specific COX-2 inhibitor (celecoxib 10 mg/kg, i.p.) for 5 consecutive days and was subsequently subjected to Morris water 
maze memory test. Prenatal DEX enhanced the expression of COX-2 protein and cox-2 mRNA in the dorsal hippocampus 
of adult female but not male rats. This enhanced COX-2 expression was associated with reduced expression in pre- and 
postsynaptic proteins and altered memory acquisition and retention. Administration of COX-2-specific inhibitor alleviated 
prenatal DEX-induced memory impairment in adult female rats. This study suggests that prenatal activation of glucocorticoid 
receptors stimulates COX-2 gene and protein expression and impairs hippocampal-dependent spatial memory in female but 
not male rat offspring. Furthermore, COX-2 selective inhibitors can be used to alleviate the long-lasting deleterious effects 
of corticosteroid medication during pregnancy.
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Introduction

Synthetic glucocorticoids such as dexamethasone (DEX) are 
prescribed to pregnant women at risk of preterm labor to 
induce lung maturation [1, 2] and to women bearing fetuses 
at risk of developing congenital adrenal hyperplasia to pre-
vent virilization of female external genitalia [3]. However, 
exposure to DEX during critical developmental periods can 
lead to lifelong effects on offspring brain’s plasticity and 
function [4]. Indeed, prenatal DEX induces learning and 
memory deficits during adulthood likely by altering the 
developmental trajectory of the hippocampus [5–7]. The 

mechanism underlying the long-lasting deleterious effect of 
DEX on cognitive functions is still not clear.

Cyclooxygenases (COXs) are the rate-limiting enzymes 
in the production of prostaglandins and thromboxane. COXs 
convert arachidonic acid into an unstable prostaglandin 
called  PGH2.  PGH2 is further metabolized into prostaglan-
dins of the  E2,  I2,  D2,  F2 series, and thromboxane (TXA2) by 
specific enzymes [8]. There are two cyclogenases: COX-1 
and COX-2. COX-1 is constitutively expressed under basal 
condition, while COX-2 is generally induced under patho-
logical conditions such as inflammation and cancer [9, 10].

In addition to its induction by inflammatory insults, 
COX-2 is also expressed in several brain areas under basal 
conditions. For example, COX-2 is constitutively expressed 
in the CA3 region, the dentate gyrus, and to a lesser degree 
in the CA1 region of mouse and rat hippocampi [11, 12]. 
This constitutively expressed COX-2 is involved in learn-
ing and memory [13]. Indeed, specific inhibition of COX-2 
alters learning and memory likely through alteration of 
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synaptic transmission and long-term potentiation (LTP) [14, 
15]. However, transgenic overexpression of COX-2 in corti-
cal areas including hippocampal neurons results in spatial 
memory deficit [16]. We and others have shown that early-
life adverse events such as immune or psychological stresses 
lead to a sustained increase in COX-2 protein expression in 
several adult brain areas including the hypothalamus [17], 
the spinal cord [18], and the prefrontal cortex [19]. The 
physiological significance of this enhanced expression of 
COX-2 is not known.

COX-2 is expressed in neuronal cells as early as GD15 
in rats [20] and can be directly affected by DEX since this 
drug can cross the placental barrier and reach fetal brain 
because it is not metabolized by the placental enzyme 
11β-hydroxysteroid dehydrogenase type 2 [21, 22]. Thus, 
it is plausible that the long-lasting impact of prenatal DEX 
operates through a COX-2-dependent mechanism. There-
fore, in the present study, we assessed whether prenatal 
exposure to DEX alters adult learning and memory through 
COX-2. We provide experimental evidence to show that 
prenatal exposure to DEX enhanced the expression levels 
of COX-2 protein and cox-2 mRNA in the dorsal hippocam-
pus of female, but not male, adult offspring. This enhanced 
COX-2 expression was associated with memory deficit in 
female offspring. More importantly specific inhibition of 
COX-2 alleviated this memory deficit.

Materials and Methods

Animals

All experiments were performed in accordance with the 
guidelines of the humane handling of experimental ani-
mals as established by the Kuwait University Health Sci-
ences Center, Animal Research Ethics Committee. Male 
and female Sprague–Dawley (SD) rats were housed in the 
Animal Resources Center of Kuwait University. Animals 
were maintained on 12-h light/dark cycle (7:00 AM–7:00 
PM) at a controlled temperature 22 °C. They were provided 
with chow food ad libitum and had free access to water. 
Adult female rats were mated with proven breeder male 
rats. Daily vaginal smears were taken to monitor the pres-
ence of sperms. The day of detection of vaginal sperm was 
considered as gestation day (GD) 0 of pregnancy. Preg-
nant dams received daily intraperitoneal (i.p.) injections of 
either dexamethasone phosphate (DEX: 0.2 mg/kg, Sigma-
Aldrich) dissolved in pyrogen-free saline or an equivolume 
of pyrogen-free saline (control) from GD 14 to GD 21. This 
dose/regimen resulted in minimal side effects on dam-pups 
interaction such as neglect and reduced suckling. After birth, 
pups were kept with their dams until weaning on postnatal 
day 21. Offspring rats were then housed 4 per cage until 

they reached the age of 2 months, after which they were 
housed 2 per cage. Male and female rat offspring were ran-
domly selected for memory testing, western blot, and real-
time rtPCR. Each rat group consists of randomly selected 
rats born to different dams to minimize the litter bias. Pre-
natal DEX injection did not affect the litter size (data not 
shown) as previously shown [23]. Adult male and female 
offspring (PND70) born to dams given either DEX (Male-
DEX and Female-DEX) or saline (Male-Saline and Female-
Saline) were subjected to Morris water maze memory test 
as previously described [24]. Dorsal and ventral hippocampi 
were collected, snap frozen in liquid nitrogen, and stored at 
– 80 °C until use in either western blot or real-time rtPCR as 
detailed below. Dorsal and ventral hippocampi were studied 
separately because they are preferentially involved in spatial 
memory and emotionally associated functions, respectively 
[25].

Real‑Time PCR

Total RNA isolation, DNase treatment, and reverse tran-
scription were performed as previously described [23, 26]. 
Forward and reverse primers (0.5 µM each) were added to a 
PCR buffer (in mM: 20 Tris, 50 KCl, 3  MgCl2, 0.5 dNTPs) 
containing template (1 µl) and recombinant Taq DNA poly-
merase (1.25 U) in a final volume of 25 µl. The RT-PCR was 
carried out in a programmable thermal cycler (PerkinElmer 
model 9700). The thermal cycles were as follows: 50 °C 
for 2 min, followed by 95 °C for 10 min (one cycle) and 
95 °C for 15 s and 72 °C for 1 min for the required number 
of cycles. TaqMan rtPCR method was used to study cox-2 
and gapdh (cox-2 assay: Rn RN01483828_m1 and gapdh 
assay: Rn01775763_g1). All data were normalized against 
the mRNA levels of gapdh, expressed relative to their saline-
treated male controls using the “delta–delta threshold cycle” 
method [27] and analyzed as previously described [23].

Western Blot

Proteins were extracted from dorsal and ventral hippocampi 
of adult male and female offspring and separated using elec-
trophoresis as previously described [28]. Briefly, proteins 
were transferred to a nitrocellulose membrane and incubated 
with a series of primary antibodies (see Table 1) followed by 
appropriate horse radish peroxidase-tagged secondary anti-
bodies. Nitrocellulose membranes were stripped of antibod-
ies and re-exposed to a polyclonal anti-β-actin to detect the 
house keeping protein. Immunoreactive bands were revealed 
using an enhanced chemiluminescent assay (Clarity West-
ern ECL Substrate, BioRad, USA) followed by an exposure 
to an X-ray film (Kodak, USA). The area under the inten-
sity profile curve of each immunoreactive band was evalu-
ated using ImageJ software [29] and the ratios of protein of 
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interest/β-actin are presented as a semi-quantitative meas-
urement of protein levels as previously described [28].

Morris Water Maze (MWM)

Spatial memory was tested in adult (PND70) male and 
female offspring born to dams given either saline or DEX 
using Morris water maze as previously described [24]. 
Briefly, the maze consists of a water tank with a 2-m diam-
eter, which is divided into 4 virtual quadrants. One quadrant 
(target quadrant) contains a circular platform submerged 
underwater. The rats were trained in the water maze on five 
consecutive days with a total of nine sessions: one session on 
the first day and two sessions each day on the following days. 
Each session consisted of three trials. Each trial was of 120-s 
in duration. The time taken to reach the hidden platform 
(escape latency) was measured and analyzed. Twenty-four 
hours after the last learning session, the rats were subjected 
to a memory retention test. During the memory retention 
test, the platform was removed from the target quadrant. 
Rats were placed in the water maze for 30 s, and the time 
spent in the target platform quadrant and latency to enter the 
target quadrant were monitored using the EzVideoTM 5.70 
Digital Video Tracking system (Accuscan Instruments, Inc., 
Columbus, OH, USA). In a different cohort of rats, adult 
male and female offspring (PND65) born to dams given 
either DEX or saline received daily intraperitoneal injec-
tions of a specific COX-2 inhibitor celecoxib (Cbx) (10 mg/
kg, Pfizer Germany) for 5 consecutive days and subjected to 
Morris water maze test on the 6th day as described above. 
This dose of celecoxib was previously shown to exert a neu-
roprotective effect [30].

Statistical Analysis

Developmental change in offspring’s body weight and Mor-
ris water maze data were compared using repeated meas-
ure ANOVA followed by a Student–Newman–Keuls post 
hoc test. All remaining data were compared using two-way 
ANOVA followed by a Student–Newman–Keuls post hoc 
test. Statistical significance is declared when the p value was 
less than 0.05. Power analyses were performed on statistical 
tests performed on each experiment’s data using G-Power 

software. The power analyses showed that all studies had a 
power of more than 80%.

Results

Impact of Prenatal DEX on Male and Female 
Offspring Body and Brain Weights

Repeated measure analysis of variance showed that there 
was a statistically significant effect of prenatal administra-
tion of DEX on body weight (F = 3.94, p < 0.05). Post hoc 
analysis showed the prenatal DEX significantly decreased 
male (Fig. 1a, Male-Saline vs. Male-DEX, p < 0.001) and 
female (Female-Saline vs. Female-DEX, p < 0.001) rat 
offspring body weight on PND5. DEX-induced reduction 
of body weight was short-lived as it was not apparent on 
either PND15, PND35, or PND70 (p > 0.05). Exposure to 
DEX during fetal period led to a significant reduction in 
brain weight at PND5 (F = 10.43, p < 0.001). Post hoc analy-
sis showed that DEX reduced brain weights in both male 
(p < 0.001) and female (p < 0.001) rat offspring at PND5 
(Fig. 1b). However, the brain/body ratio was rather enhanced 
by prenatal exposure to DEX (F = 11.56, p < 0.001). Post 
hoc analysis showed that the increase in brain/body ratio 
occurred in both male (p < 0.001) and female rat offspring 
(p < 0.01) indicating a brain-sparing effect of DEX treatment 
(Fig. 1c).

Impact of Prenatal DEX on cox‑2 (pstgs2) Gene 
Expression in the Hippocampus During Adulthood

Dorsal hippocampus is largely involved in spatial memory 
while the ventral hippocampus, along with its connection 
with the amygdala, is mainly involved in anxiety-related 
functions [25]. For this reason, we monitored cox-2 gene 
expression in dorsal and ventral hippocampi separately. We 
observed that maternal administration of DEX did not sig-
nificantly affect cox-2 mRNA levels in either dorsal (Fig. 2a; 
p > 0.05) or ventral hippocampi (Fig. 2b; p > 0.05) of adult 
male offspring. Similar effect was seen in the ventral hip-
pocampus of adult female offspring (Fig. 2b; p > 0.05). 
Interestingly, prenatal exposure to DEX led to a significant 
increase in the expression levels of cox-2 mRNA in the 

Table 1  List of primary and secondary antibodies

Primary antibody Dilution Company 2nd antibody Dilution Company

Anti-COX-2 (mouse) 1:1000 Cayman Chemical HRP-conjugated anti-rabbit 1:2000 Santa Cruz Biotechnology
Anti-synaptophysin 1:1000 Cell Signaling Technology HRP-conjugated anti-mouse 1:2000 Santa Cruz Biotechnology
Anti-PSD95 1:1000 Cell Signaling Technology HRP-conjugated anti-rabbit 1:2000 Santa Cruz Biotechnology
Anti-β-actin 1:5000 Cell Signaling Technology HRP-conjugated anti-rabbit 1:2000 Santa Cruz Biotechnology
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dorsal hippocampus of adult female rats (Fig. 2a; F = 5.49, 
p < 0.01).

Impact of Prenatal DEX on the Expression of COX‑2 
and Synaptic Proteins in the Hippocampus During 
Adulthood

We then explored whether prenatal exposure to DEX exerts 
a long-lasting impact on COX-2 protein expression in dorsal 
and ventral hippocampi. Similar to what have been seen at 
the gene expression level, prenatal exposure to DEX resulted 
in increased expression of COX-2 protein in the dorsal hip-
pocampus of adult female but not male rats (Fig. 3a, top 
graph bar on the right; F = 6.47, p < 0.05). The impact of pre-
natal DEX on COX-2 expression in the ventral hippocampus 

Fig. 1  Impact of maternal exposure to dexamethasone on offspring 
brain and body weights. Pregnant rats were given daily intraperito-
neal injections of either saline or dexamethasone (DEX). a Body 
weights of male and female rat offspring were monitored from post-
natal day 5 until postnatal day 70. Maternal exposure to DEX sig-
nificantly reduced body weights in both male (Saline (n = 6) vs. 
DEX (n = 6); p < 0.001) and female offspring (Saline (n = 6) vs. 
DEX (n = 6); p < 0.001) at PND5. This effect was absent at PND15 
and older. b Maternal exposure to DEX induced a reduction in brain 
weights of both male (Saline (n = 6) vs. DEX (n = 6); p < 0.001) and 
female offspring (Saline (n = 6) vs. DEX (n = 6); p < 0.001) at PND5. 
c Ratio of brain/body weights shows that DEX induced a brain-spar-
ing effect. **p < 0.01, ***, ###p < 0.001

Fig. 2  Maternal DEX enhances cox-2 mRNA in dorsal hippocam-
pus of female rat offspring. a Maternal exposure to DEX led to an 
enhanced expression of cox-2 mRNA in the dorsal hippocampus 
(D-HPC) of adult female rat offspring (Saline (n = 6) vs. DEX (n = 5); 
p < 0.01). This effect was not seen in adult male rat offspring (Saline 
(n = 6) vs. DEX (n = 6); p > 0.05). b Maternal exposure to DEX 
did not affect cox-2 mRNA expression in the ventral hippocampus 
(V-HPC) of either male (Saline (n = 5) vs. DEX (n = 5); p > 0.05) 
or female rat offspring (Saline (n = 5) vs. DEX (n = 5); p > 0.05). 
**p < 0.01
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Fig. 3  Long-lasting impact 
of prenatal exposure to DEX 
on hippocampal expression of 
COX-2 and synaptic proteins. 
Micrographs on the left panel 
show representative immuno-
blots showing protein expres-
sion of COX-2, postsynaptic 
density protein 95 (PSD95), 
synaptophysin (SynP), and 
β-actin in the dorsal hippocam-
pus (a, D-HPC) and the ventral 
hippocampus (b, V-HPC) of 
adult male (top micrograph) 
or female (bottom micro-
graph) rats born to dams given 
either saline or DEX during 
pregnancy. Semi-quantitative 
protein analyses are shown 
in the graph bars on the right 
panel. a Prenatal DEX led to a 
significant increase in COX-2 
protein expression in D-HPC 
of adult female (Saline (n = 4) 
vs. DEX (n = 4); p < 0.05) but 
not male rats (Saline (n = 4) vs. 
DEX (n = 4); p > 0.05). Prenatal 
DEX resulted in decreased 
protein expression of PSD95 
and SynP in the D-HPC of adult 
female (PSD95: Saline (n = 4) 
vs. DEX (n = 4); p < 0.01 and 
SynP: Saline (n = 4) vs. DEX 
(n = 4); p < 0.05) but not male 
rats (PSD95: Saline (n = 4) vs. 
DEX (n = 4); p > 0.05 and SynP: 
Saline (n = 4) vs. DEX (n = 4); 
p > 0.05). b Prenatal DEX led to 
a significant decrease in COX-2 
protein expression in V-HPC of 
adult female (Saline (n = 4) vs. 
DEX (n = 4); p < 0.01). Prenatal 
DEX did not significantly 
affect the expression levels of 
either PSD95 (Saline (n = 4) vs. 
DEX (n = 4); p > 0.05) or SynP 
(Saline (n = 4) vs. DEX (n = 4); 
p > 0.05) in the V-HPC of adult 
female rats. Prenatal DEX led 
to an increased expression of 
COX-2 protein in the V-HPC of 
adult male rats (Saline (n = 4) 
vs. DEX (n = 4); p < 0.05). Pre-
natal DEX did not significantly 
affect the expression levels of 
either PSD95 (Saline (n = 4) vs. 
DEX (n = 4); p > 0.05) or SynP 
(Saline (n = 4) vs. DEX (n = 4); 
p > 0.05) in the V-HPC of adult 
male rats. *p < 0.05, **p < 0.01, 
***p < 0.001
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showed a peculiar pattern. Indeed, ANOVA analysis showed 
that prenatal exposure to DEX affected COX-2 expression 
during adulthood (F = 19.72, p < 0.0001). Post hoc analysis 
showed that prenatal DEX led to enhanced expression of 
COX-2 in ventral hippocampus of adult male rats (p < 0.05), 
while it decreased its expression levels in adult female rats 
(Fig. 3b, top graph bar on the right; p < 0.01). We have also 
noticed that basal expression of COX-2 in the ventral hip-
pocampus was significantly higher in female rats when com-
pared to that seen in male rats (p < 0.001).

Previous studies have shown that early-life experiences 
lead to persistent increase in the postsynaptic density pro-
tein-95 (PSD-95) and the presynaptic marker, synaptophy-
sin (SynP) [31]. Therefore, we assessed whether maternal 
exposure to DEX affects the expression of these synaptic 
proteins in the hippocampi of male and female offspring. 
Maternal exposure to DEX did not have a significant effect 
on the expression levels of either SynP or PSD-95 in both 
dorsal and ventral hippocampi of adult male offspring (upper 
micrographs and graph bars on the right panels in Fig. 3a, b, 
p > 0.05). However, prenatal DEX led to a decreased expres-
sion of PSD-95 (F = 6.97, p < 0.01) and SynP (F = 5.02, 
p < 0.05) in the dorsal hippocampus of adult female rats 
(lower micrograph and graph bars on the right panel in 
Fig. 3a). This effect was not seen in the ventral hippocampus 
of adult female rat offspring (lower micrograph and graph 
bars on the right panel in Fig. 3b, p > 0.05).

Long‑Lasting Impact of Prenatal DEX on Spatial 
Learning and Memory in Adult Offspring

The long-lasting impact of prenatal exposure on learning 
and memory was explored in adult male and female off-
spring. Adult rats were given daily intraperitoneal injections 
of either COX-2 inhibitor (Fig. 4b) or its vehicle (Fig. 4a) 
for a period of 5 days (from PND65 until PND69). Spatial 
memory testing started on PND70. The working memory 
data is presented in either the absence (Fig. 4a) or the pres-
ence of COX-2 inhibitor celecoxib (Fig. 4b) to allow for 
better visualization of DEX effect on memory acquisition 
and retention. In the absence of COX-2 inhibitor, female 
rats appear to have a slight but a significant delay in mem-
ory acquisition during training sessions (Fig. 4a, left line 
graph), when compared to their saline female counterpart. 
Repeated measure ANOVA had showed a significant effect 
of time (F = 52.23, p < 0.0001) and treatment (DEX vs. 
Saline/F = 5.99, p < 0.001). Post hoc analysis showed that 
prenatal exposure to DEX reduced memory acquisition at 
session days 6 and 8 of adult females when compared to 
their female counterparts (Female-DEX vs. Female-Saline; 
p < 0.05) or to their DEX-male counterparts (Female-DEX 
vs. Male-DEX; p < 0.05). Analysis of variance of memory 
retention showed that prenatal DEX significantly affected 

the time spent in target quadrant (F = 7.33, p < 0.001) and 
the entry latency (F = 13.45, p < 0.0001), 24 h after the last 
training session. Post hoc analysis showed male rat offspring 
was not significantly affected by prenatal exposure to DEX 
(Fig. 4a, right graph bars, p > 0.05). However, female rats 
born to DEX-dams spent significantly lesser time in target 
quadrant when compared to females born to saline-dams 
(Fig. 4a, right-top graph bars; p < 0.05). Furthermore, prena-
tal DEX led to increased entry latency to the target quadrant 
by female rats when compared to prenatal saline female rats 
(p < 0.001). These data indicate that maternal exposure to 
DEX affected spatial memory in female, but not in male 
adult offspring.

In the presence of a specific COX-2 inhibitor (celecoxib), 
we noticed that memory acquisition in adult Female-DEX 
rats was not significantly different from that of adult Female-
Saline rats (Fig. 4b, line graph on the left). Indeed, female 
rat offspring spent similar time in target quadrant and has 
similar entry latency to target quadrant regardless of prenatal 
treatment (Fig. 4b, bar graphs on the right; p > 0.05), indicat-
ing that specific inhibition of COX-2 during adulthood alle-
viated DEX-induced learning and memory deficits in female 
rat offspring. In contrast, adult male rats born to DEX-dams 
and given COX-2 inhibitor during adulthood showed a sig-
nificant increase in the entry latency to target quadrant when 
compared to those born to saline-dams and given COX-2 
inhibitor during adulthood (p < 0.05). These data indicate 
that DEX-induced learning deficit in male offspring was 
apparent only when COX-2 was inhibited during adulthood.

Discussion

Prenatal activation of glucocorticoid receptors in key areas 
of the developing brain has long-lasting negative effects 
on cognitive functions such as learning and memory. Here 
we provide experimental evidence to show that administra-
tion of DEX during pregnancy induces impaired learning 
and memory in female, but not male, adult offspring. This 
altered cognitive function is likely due, at least in part, to an 
enhanced expression and activity of COX-2 in the hippocam-
pus. This conclusion is supported by the following experi-
mental evidences: (1) administration of DEX to pregnant 
rats led to enhanced expression levels of COX-2 gene and 
protein in the dorsal hippocampus of female, but not male, 
adult offspring; (2) this enhanced expression of COX-2 was 
associated with deficits in learning and retention of memory 
in female rat offspring; (3) administration of COX-2-specific 
inhibitor alleviated the memory impairment induced by pre-
natal DEX in female rat offspring. This sex-dependent effect 
of maternal DEX was also manifested by reduced expres-
sion of key pre- and postsynaptic proteins [31] in the dorsal 
hippocampus of female but not male adult offspring. To the 
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Fig. 4  Role of DEX-induced COX-2 in memory acquisition and 
retention. Line graphs in a and b show the mean distance trav-
elled by adult male and female rats in 9 training sessions in Mor-
ris water maze in the absence (a) or the presence (b) of a selective 
COX-2 inhibitor (celecoxib: Cbx). a In the absence of COX-2 selec-
tive inhibitor, prenatal DEX resulted in relatively increased distance 
travelled by adult female offspring at sessions 6 and 8 (Saline (n = 9) 
vs. DEX (n = 9); #p < 0.05). Prenatal DEX led to a slight but signifi-
cant increase in the distance travelled by male offspring at session 5 
(Saline (n = 9) vs. DEX (n = 9); *p < 0.05). There was a significant 
difference between Male-DEX and Female-DEX at sessions 6 and 
8 ($p < 0.05); Male-Saline and Male-DEX at session 5 ((n = 9) vs. 
DEX (n = 9); &p < 0.05); and Male-Saline and Female-Saline at ses-
sion 9 (@p < 0.05). Bar graphs in the right panel illustrate the memory 
retention 1 day after the training session 9. The entry latency (Saline 
(n = 9) vs. DEX (n = 9); p > 0.05) and the time spent in target quadrant 

(Saline (n = 9) vs. DEX (n = 9); p > 0.05) were not affected by prena-
tal DEX in adult male offspring. However, prenatal DEX led to a sig-
nificant reduction in the time spent in target quadrant (Saline (n = 9) 
vs. DEX (n = 9); p < 0.05) and increased latency to enter the target 
quadrant (Saline (n = 9) vs. DEX (n = 9); p < 0.001) in adult female 
rats. b In the presence of selective COX-2 inhibitor, prenatal DEX did 
not affect the distance travelled by either adult male or female rat off-
spring during the 9 training sessions. Neither the time spent in target 
quadrant nor the latency to enter target quadrant (Saline (n = 10) vs. 
DEX (n = 9); p > 0.05) were affected by prenatal DEX in adult female 
rats. Prenatal DEX increased the entry latency of adult male rats to 
target quadrant (Saline (n = 9) vs. DEX (n = 9); p < 0.05), but it did 
not significantly affect the time they spent in target quadrant (Saline 
(n = 9) vs. DEX (n = 9); p > 0.05). *p < 0.05, ***p < 0.001. @Male-
Saline vs. Female-Saline; #Female-Saline vs. Female-DEX; &Male-
Saline vs. Male-DEX; $Male-DEX vs. Female-DEX
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best of our knowledge, this is the first report to document the 
importance of COX-2 in the long-lasting impact of prenatal 
exposure to DEX on learning and memory.

Maternal exposure to DEX led to reduced body and brain 
weights of both male and female offspring at PND5. How-
ever, maternal DEX led to enhanced brain/body ratios sug-
gesting a brain-sparing effect of DEX. These data are in line 
with the intrauterine growth restriction effect of maternal 
DEX seen in this and other laboratories [23, 32–34]. DEX-
induced body weight reduction was short lived as the DEX-
induced reduction in body weights were not seen during 
either juvenile period or adulthood. Similar transient effect 
of DEX on body weights was also seen in rats [34], mice 
[5], and humans [35].

In the present paper, we have shown that prenatal activa-
tion of glucocorticoid receptors led to an enhanced expres-
sion of COX-2 in the dorsal but not the ventral hippocam-
pus of adult female rats. Because dorsal hippocampus is 
preferentially involved in spatial memory while the ventral 
hippocampus contributes to anxiety-like behavior [25], it 
appears that DEX-induced COX-2 expression plays a role in 
spatial memory but not in anxiety-like behavior.

We show that the level of this basally expressed hip-
pocampal COX-2 is enhanced by prenatal exposure to 
DEX, namely in female rat offspring. If COX-2 expression 
is involved in learning and memory, one would expect an 
enhanced memory acquisition and retention in female rats 
born to DEX-exposed dams. This was not the case. In fact, 
female-DEX rats performed worse than their male (Male-
DEX) and female (Female-Saline) counterparts in learning 
and memory retention. This deleterious effect of prenatal 
exposure to DEX was halted when female rat offspring 
received COX-2 inhibitor. To the best of our knowledge, this 
is the first report to document the potential role of prenatal 
DEX-induced COX-2 in memory deficit in females.

These data are in apparent discrepancy with previous 
observation where systemic administration of selective 
COX-2 inhibitor disrupted spatial memory retention in 
female mice [36] or intrahippocampal injection of celecoxib 
rats [37]. It is noteworthy that these experiments were per-
formed in “naive” animals while in our study, we used rats 
prenatally exposed to DEX. This prenatal DEX might have 
changed the developmental trajectory of the hippocampus 
including an induction of a sustained increase in COX-2 
expression. Furthermore, transgenic mice with sustained 
overexpression of COX-2 also showed spatial memory 
deficit [16]. Similarly, lentivirus-induced overexpression of 
COX-2 worsens rats’ learning performance which was alle-
viated by specific inhibition of COX-2 [38].

Prenatal exposure to DEX did not affect the expression 
of COX-2 in male dorsal hippocampus, nor did it result in 
spatial memory deficit in male rats as has been seen by oth-
ers [39]. However, we observed a slight but a significant 

reduction in entry latency to target quadrant in DEX pre-
natally exposed males which were given COX-2 inhibi-
tor during adulthood. This observation suggests that the 
long-lasting impact of DEX on memory retention in males 
requires the contribution of COX-2. The mechanism under-
lying this sex-dependent effect of prenatal exposure to DEX 
is not clear yet. It is plausible that fetal and neonatal increase 
in estradiol levels in male brains dampened DEX-induced 
programming effects on COX-2 through estradiol-induced 
methylation of cox-2 gene [40]. Alternatively, male andro-
gens may negatively affect the transcriptional effects of glu-
cocorticoid receptors [41].

There was a discrepancy between the expression levels of 
COX-2 protein and cox-2 mRNA. There are several mecha-
nisms that could underlie the mismatch between protein and 
mRNA expressions, chiefly among which is the difference 
in regulatory processes that govern mRNA transcription 
and degradation and protein degradation and accumulation 
[42, 43]. It is noteworthy that 3′-untranslated region of cox-
2 mRNA promotes mRNA instability and degradation [44, 
45]. Such cox-2 mRNA instability and degradation might 
contribute to differential expression of cox-2 mRNA and 
COX-2 protein.

Prenatal DEX did not only enhance COX-2 expression, 
but it also reduced the expression of key synaptic proteins 
in the dorsal hippocampus in female rats during adulthood. 
This effect was not seen in adult male rats. Owing to the 
role of synaptic proteins in memory formation and retention 
[46], it is possible that altered expression of synaptic pro-
teins contributes to the memory deficit seen in female rats. 
It is striking that the lack of DEX effect in male offspring 
was associated with unaltered expression of either COX-2 or 
synaptic proteins. This observation strengthens the conclu-
sion that the enhanced expression of COX-2 and reduced 
expression of synaptic proteins contribute, at least in part, 
to the memory deficit in female offspring.

The sex-specific and hippocampal area-specific effects of 
prenatal DEX have not been extensively explored. Recent 
studies have shown that dorsal and ventral areas of the hip-
pocampus differ in their transcriptional properties [47–49]. 
Furthermore, experimental evidence showed that the expres-
sion levels of glucocorticoid receptors (GRs) are much 
higher in the dorsal hippocampus of non-stressed female 
than that of male rodents [50, 51]. It is plausible that the 
selective programming effects of DEX on female dorsal hip-
pocampus are facilitated by the differential expression levels 
of GRs.

Owing to its anti-inf lammatory properties, DEX 
effect on COX-2 expression was largely explored under 
inflammatory condition. Indeed, DEX blunts inflamma-
tion-induced COX-2 expression by either suppressing 
the function of transcription factors such as nuclear fac-
tor (NF)-IL-6, nuclear factor kappa B (NF-κB), cAMP 
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response element, the activating protein-1 (AP1) [52, 
53], or by destabilizing cox-2 mRNA through an inhibi-
tion of the mitogen-activated protein kinase p38 [54]. In 
the present study, DEX was administered in the absence 
of inflammation during prenatal period. The mechanism 
underlying the long-lasting impact of DEX on basal 
COX-2 expression is not well-understood. It might involve 
epigenetic alteration of cox-2 gene [55] in a sex- and brain 
area-dependent manner. It is noteworthy that similar 
enhanced basal COX-2 expression was observed in sev-
eral brain areas of adult rats subjected to early-life adverse 
events that activate glucocorticoid receptors [17–19]. 
Further studies are required to delineate the underlying 
mechanism of this consistently observed alteration in basal 
COX-2 expression in response to early-life challenges.

Conclusion

Prenatal exposure to DEX has been associated with a myr-
iad of cognitive and behavioral alterations. The mecha-
nism underlying these long-lasting effects has not been 
extensively explored. Maternal exposure to DEX induces 
a lasting enhanced expression of COX-2 gene and pro-
tein in the dorsal hippocampus of female but not male rat 
offspring. This altered COX-2 expression was associated 
with spatial memory deficit. Selective inhibition of COX-2 
reverted DEX-induced memory deficit in female offspring. 
These data pave the way for investigating the therapeutic 
use of COX-2 selective inhibitor to alleviate the deleteri-
ous effects of corticosteroid medication during pregnancy 
on offspring’s cognitive functions.
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