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Abstract
MicroRNAs (miRs) are regulatory RNAs with 18–25 nucleotides lengths involved in various biological processes. Some 
miRs, including miR-22, play an essential role in regulating neurological disorders. MiR-22 is a brain-enriched regulatory 
element involved in angiogenesis, energy supply, adjustment of ionic channels, and suppression of malignant cell prolifera-
tion, migration, and invasion. This article discusses the protective and therapeutic effects of miR-22 on neurological diseases 
and injuries, including cerebral ischemia, neurodegenerative diseases, epilepsy, and brain malignancies. We also correlated 
miR-22 with amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), panic disorders, schizophrenia, neural tube defect 
(anencephaly), and traumatic brain injury. This work provides a therapeutic perspective for miR-22 as a new approach in 
treating neurological disorders.
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Introduction

MiRs are expressed in all body organs, including the nervous 
system [1]. MiRs are believed to regulate approximately 60% 
of human genes, and 70% of known miRs are expressed in 
the brain [2]. Since a single miR can target and change the 
expression of many genes or many other miRs, they have 
fundamental roles in normal physiological processes and 
pathological conditions [3]. MiRs have been shown to play 
fundamental roles in several cellular and molecular mecha-
nisms, including neurodevelopment, brain plasticity, cell 
maturation, differentiation, and survival [4]. They also play 
a crucial role in axons and dendrites’ outgrowth and mor-
phology [5].

Unlike most other miRs, which belong to miR families 
with multiple members, miR-22 belongs to a single mem-
ber miR family [6]. This miR is an evolutionally conserved 
miRNA, which its seed sequence is identified from the 
fruit fly to humans and in the mammalian genome, it is 
encoded by an exon of the miR-22 host gene (miR-22HG) 
[6] and located in chromosome 17p13 [7]. MiR-22 is widely 
expressed in various body tissues, including the brain [8–10] 
and its expression in both neurons and glia has been reported 
[11]. MiR-22 acts as a potent antioxidant and anti-inflam-
matory and exerts many protective effects through various 
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mechanisms [12, 13]. Overexpression of miR‐22 increased 
tissue antioxidant capacity by increasing superoxide dis-
mutase (SOD) level. It also can decrease the reactive oxy-
gen species (ROS) and malondialdehyde (MDA) levels [13], 
which play a crucial role in neuronal damages. Moreover, 
miR‐22 has exerted anti-apoptotic effects by inhibiting 
the increase of the Bax/Bcl‐2, Cl‐Casp‐3/Casp‐3, and Cl‐
Casp‐9/Casp‐9 ratios [13]. Therefore, miR-22 can protect 
cells from diseases and injuries through anti-oxidative, anti-
inflammatory, and anti-apoptotic effects.

Therapeutic Potential of miR‑22

MiR‑22 in Alzheimer’s Disease

Alzheimer’s disease (AD) is the most common neurodegen-
erative disease clinically characterized by cognitive impair-
ment [14]. AD is the most common cause of dementia and it 
is estimated to be responsible for approximately 60–70% of 
memory disorders [15, 16]. The main pathological change 
in this disease is the formation of extracellular plaques after 
oligomerization of amyloid β (Aβ) monomer and intracel-
lular neurofibrillary tangles made of tau protein in the dif-
ferent parts of the brain, including the hippocampus, and 
the pathogenesis of AD is mainly caused by the imbalance 
between production and elimination of the Aβ [17].

MiR-22 regulates the expression of effector genes related 
to AD (Fig. 1A) [18]. The expression of miR‐22 is lower in 
peripheral blood and the brain of AD individuals in associa-
tion with the onset and development of AD [15]. In contrast, 
inflammatory factors, including IL‐1β, IL‐18, and TNF‐α, 
and NLRP3 inflammasome, have been found at higher lev-
els in these patients. Recently, Han et al. [15] found that 
the expression of inflammatory factors in AD brain is nega-
tively associated with miR‐22 and overexpression of this 
miR reduces the expression level of inflammatory factors 
in the hippocampus [15]. Hippocampus is closely involved 
in cognition [19, 20] and is affected severely in AD. Also, 
miR‐22 has been found to bind and interact with Gasdermin 
D (GSDMD), the protein of pyroptosis. MiR‐22 can inhibit 
pyroptosis by suppressing the expression of GSDMD, which 
leads to improvement of memory ability [15]. Pyroptosis is a 
novel inflammatory death pattern and mainly depends on the 
caspase family, especially caspase‐1, which can mediate the 
cleavage of GSDMD and pro‐IL‐1β [21]. These oligomers 
anchor on the cell membrane and result in cell membrane 
pore formation and increasing cellular osmotic pressure, 
which lead to membrane rupture and release of inflamma-
tory factors [15].

Intraventricular injection of miR-22 showed neuroprotec-
tive effects against AD. A study by Wang et al. revealed that 
intraventricular injection of miR-22 rescues disruption of 

the synaptic structures in the hippocampus of AD animals 
[22]. The work demonstrated that after miR-22 injection, 
the number of glial cells in the hippocampus of AD ani-
mals was reduced, whereas the number of Nissl bodies and 
the expression level of brain-derived neurotrophic factor 
(BDNF) in the hippocampal neurons were increased [22]. 
The overall result of the miR-22 injection was a reduction in 
the number of hippocampal apoptotic neurons by lowering 
the Bax/Bcl2 ratio in AD rats, which had led to learning and 
memory improvement [22]. Further research on the regula-
tory mechanisms of miR-22 on BDNF gene expression and 
optimizing the clinical administration locus/approach seem 
to be essential steps for future developments.

MiR‑22 in Ischemic Injuries

Stroke is one of the most common neurological disorders 
with a high mortality and disability rate. Inflammation 
amplifies neural damages in ischemia associated with miR-
22 downregulation (Fig. 1B). Downregulation of miR-22 
after ischemic stroke lets inflammatory factors upregulate, 
including interleukin 1β (IL-1β), IL-6, IL-18 and tumor 
necrosis factor-α (TNF-α) [12]. It also induces the expres-
sion of cyclooxygenase-2 (COX-2), inducible NO synthase 
(iNOS), prostaglandin E2 (PGE2), and macrophage inflam-
matory protein (MIP-2). Downregulation of miR-22 has also 
been shown to induce the expression of phosphorylated-p38 
(p-p38), mitogen-activated protein kinase (MAPK), and 
nuclear factor kappa B (NF-κB) [12]. Following a stroke, 
inflammatory cells, including microglial cells, astrocytes, 
neutrophils, and lymphocytes, are activated and induce the 
release of inflammatory chemokines and cytokines [12, 23]. 
As inflammation plays a crucial role in the pathogenesis of 
ischemic brain injuries, modulation via miR-22 can allevi-
ate stroke injuries and potent protective factors. A previous 
study found that miRNA-22 reduces IL-1β, IL-6, IL-18, and 
TNF-α expression and inhibits PGE2 and MIP-2 expression 
in the ischemic stroke model [12].

Cao et al. [8] found that miR-22 downregulation after 
ischemia is associated with cZNF292 (a circular RNA). They 
reported that cZNF292 is upregulated in ischemia conditions 
and results in the downregulation of miR-22. In other words, 
miR-22 expression negatively is regulated by cZNF292 [8]. 
With miR-22 downregulation after ischemia, Bax, cleaved-
poly ADP-ribose polymerase (PARP) and cleaved-caspase-3 
expression and frequency of apoptotic cells increases in neu-
ral stem cells (NSCs) [8]. Also, downregulation of miR-
22 results in Wnt3a and β-catenin reduction. Since Wnt3a 
and β-catenin are involved in growth-associated processes, 
their reduction causes neuronal damage. cZNF292 silenc-
ing activates Wnt/β-catenin and PKC/ERK pathways and 
upregulates miR-22 expression [8]. Therefore, cells can be 
protected from ischemic damages by silencing cZNF292.
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The protective effects of miR-22 against cerebral 
ischemia are not limited to its anti-inflammatory and anti-
apoptotic properties. A recent study found a relationship 
between miR-22 and angiogenesis in the brain following 
ischemia. Wang et al. [10] observed a significant increase 
in the  CD34+ cells and vascular endothelial growth  factor+ 
 (VEGF+) microvessels in the cortex and serum Ang-1 
and VEGF levels in ischemic rats [10]. They also found 
that the angiogenic function of miR-22 is associated with 
PI3K/Akt signaling pathway.

MiR‑22 in Parkinson’s Disease

Parkinson’s disease (PD) is the second most prevalent neuro-
degenerative disorder characterized by a progressive loss of 
dopaminergic neurons in the substantia nigra pars compacta 
[24–26]. Symptoms of PD include not only movement dis-
abilities but also behavioral and memory disorders [24, 25], 
and therefore patients’ lives are severely affected.

Changes in miR-22 expression are closely associ-
ated with PD and it has been shown that its expression is 

Fig. 1  Overview of miR-22 corresponding paths in nervous system 
disorders. The upregulated (green) or dysregulated miR-22 (red) 
might be involved in a broad spectrum of neurological conditions, 
including Alzheimer’s disease (A), ischemic injuries (B), Parkin-
son’s disease (C), Huntington’s disease (D), epilepsy (E), and brain 
malignancy (F). Potential interactions with signaling pathways are 
depicted and create conditions in which the up-regulation of miR-22 
may prevent neuronal and microglia damage, abnormal angiogenesis 
and neurogenesis, inflammation, oxidative stress, and uncontrolled 
cancer promotion. In this scheme, miR-22 would describe the ration-
ale of combinatorial therapies in nervous system disorders. BDNF: 
brain-derived neurotrophic factor; GSDMD: gasdermin D; IL: inter-

leukin; TNF-α: Tumour Necrosis Factor Alpha; Rcor1: REST core-
pressor 1; HDAC4: histone deacetylase 4; RGS2: G-protein signal-
ing 2; Htt: huntingtin; MAPK14: Mitogen-Activated Protein Kinase 
14; TP53inp1: tumor protein p53-inducible nuclear protein 1; PGE2: 
prostaglandin E2; MIP-2: macrophage inflammatory protein; COX-2: 
cyclooxygenase-2; Ang-1: Angiopoietin-1; VEGF: Vascular endothe-
lial growth factor; PKC: Protein kinase C; ERK: extracellular sig-
nal-related kinase; TRPM7: Transient receptor potential melastatin 
7; PAPST1: 3ʹ- Phosphoadenosine 5ʹ-Phosphosulfate Transporter; 
SIRT1: sirtuin 1; MMP9: Matrix metallopeptidase 9; EGFR: Epider-
mal growth factor receptor
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downregulated in 6-hydroxy dopamine (6-OHDA)-treated 
cells (Fig.  1C). MiR-22 downregulation has also been 
observed in the cerebrospinal fluid (CSF) of PD patients 
[27]. Augments in ROS and oxidative stress play a crucial 
role in dopaminergic neuron death, leading to PD onset and 
progression [25, 26]. On the other hand, as the preclinical 
studies show, miR-22 overexpression can decrease ROS pro-
duction, oxidative stress, and caspase-3 activity in 6-OHDA-
treated cells [27]. MiR-22 plays its protective effect against 
PD via transient receptor potential melastatin 7 (TRPM7) 
[27]. TRPM7 is a direct target of miR-22 and is downregu-
lated by miR-22 overexpression [27]. TRPM7 is activated 
by ROS and plays an important role in neuronal death by 
inducing toxic  Ca2 influx into neurons [27, 28]. Therefore, 
miR-22 promotes cell survival and proliferation in 6-OHDA-
induced PD by targeting TRPM7.

MiR‑22 in Huntington’s Disease

Huntington’s disease (HD) is a lethal neurodegenerative dis-
ease caused by a mutation in exon 1 of the Huntingtin (Htt) 
gene [29] and clinically manifests with abnormal involuntary 
choreiform movements and mood and personality changes 
[30]. The protective effect of miR-22 (Fig. 1D) against HD 
was revealed by Jovicic et al. [29]. They induced HD on the 
cortical and striatal cultured neurons by exposing them to a 
mutated human huntingtin fragment (Htt171-82Q) and eval-
uated the protective effects of miR-22. The results revealed 
that overexpression of the miR-22 could decrease neuronal 
degeneration and, conversely, elevate neuronal viability 
through various mechanisms, including reduction of caspase 
activation and downregulation of MAPK14/p38 and tumor 
protein p53-inducible nuclear protein 1 (Tp53inp1) [29]. 
MiR-22 protects neurons against HD by suppressing apop-
totic pathways and affecting specific HD-related markers, 
including Rcor1, HDAC4, Rgs2, and Htt [29]. Therefore, the 
protective role of miR-22 in slowing down HD progression 
is worthy of (pre)clinical trials.

MiR‑22 and Epilepsy

Epilepsy is a brain disease with neurobiological, psycho-
logical, cognitive, and social consequences that affects 
more than 70 million people worldwide [31, 32]. Finding 
the appropriate treatment for it is a medical priority.

MiR-22 has recently been proven to have protective 
effects (Fig. 1E) against the development of epileptogenic 
networks by suppressing neuroinflammatory signaling [33]. 
In knockdown miR-22 animals, accelerated and exacerbated 
epilepsy has been reported. MiR-22 deficiency results in 
sooner, more prolonged, and more frequent spontaneous 
seizures in epileptic conditions [33]. MiR-22 is also an 
important regulator of newly formed neuron morphogenesis 

in adults and plays an essential role in suppressing aberrant 
neurogenesis associated with epilepsy [34]. Following status 
epilepticus, adult hippocampal neurogenesis increases and 
remains high for up to 6 weeks [35]. Aberrant hippocampal 
neurogenesis involves the dysregulation of cell division, 
maturation, morphology, and migration of newly formed 
neurons and their electrophysiological properties and func-
tional integration into existing neuronal circuits [34, 36, 
37]. MiR-22 is demonstrated to regulate epilepticus-induced 
aberrant hippocampal neurogenesis, dendritic arboriza-
tion, and migration of newly formed neurons [34]. Taken 
together, miR-22 seems to be a valuable therapeutic marker 
to reduce the symptoms and injuries in temporal lobe epi-
lepsy, as the most common form of drug-refractory acquired 
epilepsy. Further investigations are required to drive a clear 
conclusion.

MiR‑22 Against Brain Malignancy

MiR-22 downregulation in glioblastoma [38] can encour-
age researchers to investigate the protective effects of miR-
22 overexpression on this aggressive malignancy (Fig. 1F). 
Glioblastoma is the most malignant and common brain 
tumor that affects both the elderly and the young [39, 40]. 
According to recent reports, this tumor has a high mortality 
rate and survival of fewer than two years [41]. Therefore, 
identifying therapy is an emergency.

Studies revealed that miR-22 mimics downregulating the 
sirtuin 1 (SIRT1) expression and inhibits the expression of 
matrix metallopeptidase 9 (MMP9) and epidermal growth 
factor receptor (EGFR), which leads to a decrease in prolif-
eration, migration, and invasion of tumoral cells [38].

Recently, Zhang et al. [42] reported that miR-22 overex-
pression increases apoptosis in glioma cells and, conversely, 
reduces cell proliferation by arresting cells at G2/M of the 
cell cycle [42]. It is demonstrated that induction of cell cycle 
arrest by overexpression of miR-22 is associated with deple-
tion of cyclin B1 expression. Another critical point is that 
miR-22 overexpression can sharply elevate the sensitivity of 
glioma cells to cisplatin [42], which can increase the chance 
of cure. It has been revealed by TargetScan analysis that 
SNAIL-1 is a target of miR-22 and some essential protec-
tive effects of miR-22 are exerted through SNAIL-1 [42]. 
SNAIL-1 is increased in glioma cells and is associated with 
cell proliferation and survival. MiR-22 overexpression sup-
presses SNAIL-1 and results in the reduction of cell viability 
[42].

Also, miR-22 is protective against medulloblastoma, 
the most frequent malignant central nervous system (CNS) 
tumor in children. Its overexpression induces apoptosis and 
reduces cell proliferation in medulloblastoma via miR-22 
target, PAPST1 [43].
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The clinical value of miR-22 against malignancy is appar-
ent in cases with complicated surgery and/or progressive 
malignancy and is worthy of investigation.

MiR Delivery to CNS

The specificity and a large number of targets give priority to 
miRs for translation to the clinics. Recent experiences sug-
gest a high safety level for RNA therapeutics [44, 45]. How-
ever, safe delivery of the miR of interest to the target tissue 
is a matter of current development. This is more visible for 
miR-22 with functions in different tissues. The blood–brain 
barrier (BBB) and the unique functions of RNAs in CNS can 
be considered challenges towards (pre)clinical development 
of miR-22. Therefore, delivery of a functional miR into the 
specific CNS cells is critical. To date, several methods have 
been developed for microRNA delivery to CNS.

Intranasal Administration

This type of administration is a common approach and non-
invasive pathway for miR-based drugs delivery to bypass the 
BBB and allow access to the brain [44–46]. In addition to 
being non-invasive, another advantage of intranasal deliv-
ery is that the drug does not undergo changes in circulation 
and directly enters the brain. MiRs can be loaded on the 
nanoparticles and administered intranasally [47]. Although 
no intranasal administration of miR-22 has been reported 
to treat neurological diseases, several studies have reported 
the therapeutic effects of intranasal administration of other 
microRNAs [44, 45, 47, 48]. Therefore, this method can be 
an appropriate approach for delivering miR-based drugs to 
CNS.

Intracerebroventricular Injection

Intracerebroventricular (ICV) injection is another way to 
bypass the BBB and deliver miR-based drugs to the brain. 
Unlike intranasal administration, this method is invasive 
and usually is used in experimental animal models [11, 22, 
33]. Also, miRs can be genetically deleted or overexpressed 
by this method [33]. As experimental studies show, ICV 
injection of miRs can be a potent therapeutic approach. For 
example, during the first few days after status epilepticus, 
ICV injection of miR-22 in mice reduces spontaneous sei-
zures [11]. Also, ICV injection of miR-22 in AD rats has 
increased BDNF expression, inhibited neuronal apoptosis, 
and improved cognition performance [22]. This approach 
can give the locus specificity for the delivery of miRs, which 
can be considered in the case of malignancy.

Intrathecal Injection

Due to the extensive contact between CSF and CNS, 
intrathecal injection is an attractive method to deliver 
drugs and cells to CNS, especially the spinal cord, in 
extensive diseases such as ALS and ischemia [49–52]. 
This method is an appropriate and safe route for drug 
delivery and is easily performable by lumbar puncture 
[49].

Exosome‑Mediated Delivery

Exosome-mediated delivery is a novel method, which 
made it possible to cross the BBB and transmit miRs to 
the brain by even intravenous injection [53]. Exosomes are 
30 to 100 nm cell-secreted vesicles in diameter that can 
cross the BBB and carry miRs to the brain [54]. Several 
studies have been reported therapeutic effects of exosomal 
miRs against neurological diseases [53, 55, 56]. Neverthe-
less, limiting the exosomes to be brain-specific is rarely 
possible, and for miRs like miR-22 can be challenging.

Viral and Nonviral Vectors

Vectors could efficiently transfer miRs into target tissues 
and cells and are classified into two main categories: viral 
and nonviral [57]. Viral vectors are formed from retro-
viruses, lentiviruses, and adenoviruses and provide high 
transfection efficiency. Although nonviral vectors provide 
lower transfection efficiency, they are much less toxic and 
immunogenic [57].

Studies have shown that miRs can be transferred into 
the CNS by vectors to alleviate the symptoms in neurologi-
cal diseases, including AD [58], PD [59], HD [60], and 
ALS [61]. However, the long-term clinical perspective of 
this approach is controversial.

Conclusions and Future Perspectives

MiR-22 is a potent protective agent against many neuro-
logical disorders, including AD, PD, HD, epilepsy, cer-
ebral ischemia, and brain malignancies, including glio-
blastoma, glioma, and medulloblastoma (Fig. 1). This 
miR exerts its protectivity through various mechanisms, 
including suppressing the overproduction of ROS and 
inflammatory factors, inhibiting normal cell apoptosis, 
and some other molecular mechanisms. It also exerts its 
effects via some known targets such as TRPM7, SNAIL-
1, and PAPST1. Future studies should search and find the 
other possible targets.
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Furthermore, we have found a possible correla-
tion between miR-22 and other neurological disorders 
(Table 1). However, further investigation is needed to 
conclude.

MiR-22, with the mentioned acts and potential, can 
be an ideal therapeutic target/agent for neurological dis-
orders. The interplay of miR-22 with environmentally 
originated stimuli [62] should be clarified. The regulatory 
mechanisms effective on miR-22, in a pathological con-
text, need further investigation. A better understanding of 
the signaling pathways/feedback loops that can modulate 
the expression and action of miR-22 can help further thera-
peutic development. Regarding the therapeutic potential 
of miR-22, we suggest the design of (pre)clinical trials 
to use this RNA as a biological therapeutic agent in brain 
disorders and possibly other organs. Either delivery of the 
synthetic miR-22 to the CNS or blocking its inhibitors 
via small molecules can exhibit neuroprotective effects in 
different neuropathological conditions. The roles of miR-
22 in axon regeneration and suppressing malignancy are 
particularly interesting to explore. Using smart nanoparti-
cles can guide us to a superior therapeutic capability with 
lesser off-targets.
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