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Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disorder characterized by progressive degeneration of motor 
neurons leading to skeletal muscle denervation. Earlier studies have shown that motor neuron degeneration begins in motor 
cortex and descends to the neuromuscular junction (NMJ) in a dying forward fashion. However, accumulating evidences sup-
port that ALS is a distal axonopathy where early pathological changes occur at the NMJ, prior to onset of clinical symptoms 
and propagates towards the motor neuron cell body supporting “dying back” hypothesis. Despite several evidences, series 
of events triggering NMJ disassembly in ALS are still obscure. Neuromuscular junction is a specialized tripartite chemi-
cal synapse which involves a well-coordinated communication among the presynaptic motor neuron, postsynaptic skeletal 
muscle, and terminal Schwann cells. This review provides comprehensive insight into the role of NMJ in ALS pathogenesis. 
We have emphasized the molecular alterations in cellular components of NMJ leading to loss of effective neuromuscular 
transmission in ALS. Further, we provide a preview into research involved in exploring NMJ as potential target for design-
ing effective therapies for ALS. 
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Introduction

Amyotrophic lateral sclerosis (ALS) is a fatal progressive 
disorder with degeneration of corticospinal/corticobulbar 
(upper) motor neurons (UMN) in cerebral cortex and bulbar/
spinal (lower) motor neurons (LMN) in brain stem and spi-
nal cord. Major clinical symptoms are weakness and atrophy 
of limb muscles, difficulty in swallowing and speaking, and 
finally death due to respiratory failure. The clinical profile 
of ALS is heterogeneous with mean survival period of 3 to 

5 years, but based on age, gender, and site of onset of symp-
toms, the duration of survival is variable [1–4]. While famil-
ial ALS constitutes ~ 5 to 10% in the global context, in India, 
however, it is much less at 1 to 2% [5]. Genetic mutations 
in more than 100 genes have been reported in familial ALS. 
Among these, mutations in SOD1, C9ORF72, TDP-43, and 
FUS genes are the most frequent. Many of these genes have 
also been implicated in sporadic ALS [6].

UMN makes direct (monosynaptic) or indirect (via 
interneurons) connections with LMN which innervates 
effector muscles in the periphery and triggers their contrac-
tion (Fig. 1a). Loss of motor neurons (MN) causes rapid 
weakness of voluntary muscles due to denervation and 
corresponding changes of neuromuscular junction (NMJ) 
structure. Fatigue or easy tiredness is an important symp-
tom of ALS, and this feature was the basis for evaluation 
of neuromuscular transmission in the clinical setting. Neu-
romuscular transmission defect can be demonstrated by 
neurophysiology technique of repetitive nerve stimulation 
(RNS). After the first report by Mulder et al. [7], several 
studies observed that ALS patients with muscle fatigue 
showed a decremental response during RNS which indicates 
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instability of neuromuscular transmission [8–10]. Further, 
decrease in motor unit number estimation (MUNE) in ALS 
patients indicated progressive loss of motor axons which 
affects neuron-muscle communication [11–13].

Despite advances in the field of ALS, site of disease 
origin still remains a key unresolved question. Initiation of 
neurodegeneration in ALS can be explained by the dying 
forward and dying backward hypotheses [14]. The dying 
forward hypothesis proposes that UMN drives anterograde 
degeneration of LMN via glutamate excitotoxicity which 
eventually descends to NMJ [15–17]. This hypothesis was 
proposed by Eisen and team in 1992 [18], and they demon-
strated inverse correlation between cortical threshold and 
motor evoked potentials (MEP)/ compound muscle action 
potential (CMAP) ratio indicating cortical hyperexcitability 
[19]. Later, several studies supported early cortical dysfunc-
tion in ALS patients which probably arises due to altered 
cortical excitatory/inhibitory circuitry [15, 20–25]. Even 
transgenic ALS mice displayed increased intrinsic excit-
ability and bioenergetics defects in UMN [26, 27]. Further, 
exposure of LMN to excitotoxin in mice caused motor neu-
ron degeneration and NMJ abnormalities in an anterograde 
manner [17].

These studies raised an important question, whether 
excitotoxicity mediated neurodegeneration arises due 
to intrinsic hyperexcitability of MN? Several research 
groups have reported variable excitability of LMN dur-
ing the course of ALS progression. At early stage, LMN 
from mutant SOD1 mice displayed hyperexcitability which 
arises due to increased persistent Na ( +) current in large 
LMN [28–32]. However, some studies have also observed 
unaltered or decreased excitability of LMNs [33–35]. 
At later stage, most LMN displayed normal excitability 
despite increase in input conductance. These MN were 
able to achieve homeostasis for excitability by upregu-
lating depolarizing current, whereas some MN exhibited 
hypoexcitability [36, 37]. The inability of LMN to fire 
repetitively probably arises due to homeostatic deregula-
tion of excitability [38]. Altogether, these reports indicate 
that alterations in electrical properties are not caused by 
intrinsic excitability of MN but rather involves extrinsic 
factors such as synaptic activity. Some of the crucial find-
ings supporting dying forward phenomenon have been 
outlined in Fig. 2a. For better understanding, readers can 
refer to excellent recent reviews by Brunet and Eisen [39, 
40] on early cortical dysfunction.

Fig. 1  Structural and functional organization of healthy motor neu-
rons and neuromuscular junction. a Upper motor neurons projects 
from motor cortex and descends to brainstem/spinal cord via corti-
cospinal tracts where it synapses with lower motor neurons which 
innervate skeletal muscles. b Interaction of tripartite components of 
neuromuscular junction: presynaptic motor neuron, postsynaptic skel-
etal muscle, terminal Schwann cells and capping kranocytes. Motor 
neuron and skeletal muscles are separated via synaptic cleft filled 
with basal lamina consisting of different laminins isoforms. Action 
potential arriving at nerve terminal triggers clustered voltage-gated 
 Ca2+ channels at the active zones. This leads to (i) influx of  Ca2+ 
ions, (ii) docking, (iii) fusion, and release of synaptic vesicles filled 

with neurotransmitter ACh into synaptic cleft. Binding of ACh to 
postsynaptic clustered nAChRs generates localized endplate potential 
(EPP). EPP triggers (iv) voltage-gated  Na+ channels and generates 
muscle action potential which propagates along the muscle fiber and 
activates dihydropyridine receptors (DHPR) located in T-Tubules. 
DHPR-mediated ryanodine receptor (RyR) activation causes (v) 
release of  Ca2+ from sarcoplasmic reticulum which eventually causes 
contraction of muscle fiber via the actin myosin contractile units. 
Inset 1 Organization of synaptic vesicles at active zone. Synaptotag-
min, synaptobrevin, SNAP-25, and syntaxin are crucial for docking, 
fusion, and release of ACh into the synaptic cleft. Inset 2 Organiza-
tion and signaling of postsynaptic Lrp4/MuSK/nAChRs complex
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Contrary to dying forward hypothesis, the dying back 
hypothesis propounds that MN degeneration begins distally 
at the nerve terminal/neuromuscular junction and progresses 
towards the cell body in a retrograde fashion [41, 42]. Below, 
we provide a comprehensive overview of cellular and molec-
ular perturbations at neuromuscular junction in ALS and 
thereby focusing on evidencing supporting the dying back 
hypothesis.

Neuromuscular Junction

Neuromuscular junction is a specialized chemical synapse 
where information in the form of electrical impulses is trans-
mitted from motor neurons to skeletal muscles to initiate 
muscle contraction and execute voluntary motor functions. 
The NMJ is a tripartite synapse comprising of three major 
components, viz., presynaptic motor neurons, postsynaptic 
muscles, and terminal Schwann cells (Fig. 1b). Kranocytes, 
the fibroblast-like cells identified as the fourth component 
of NMJ, are responsible for capping TSCs and entire end-
plate area [43]. Although their role in synapse formation 

and functioning is not known, they appear to affect synaptic 
regeneration [44].

The well-coordinated reciprocal interactions among these 
components are essential for regulating formation and matu-
ration of NMJ. Structural organization of pre- and postsyn-
aptic apparatus, such as active zones on nerve terminals, 
clustering of nicotinic acetylcholine receptors (nAChRs) 
on the postsynaptic membrane, is indispensable for proper 
functioning of NMJ as illustrated in Fig. 1b. Active zones 
are electron dense multiprotein complex responsible for exo-
cytosis of neurotransmitter. Active zones contain voltage-
gated calcium channels (VGCC), soluble N-ethylmaleim-
ide-sensitive factor attachment receptor (SNARE) proteins 
including syntaxin-1 and SNAP-25, and cytoskeletal matrix 
at the active zone (Fig. 1b inset 1). VGCCs are responsi-
ble for rapid influx of  Ca2+ which helps in interaction of 
SNARE proteins and leads to docking, fusion, and release 
of neurotransmitter acetylcholine (ACh) into the synaptic 
cleft (Fig. 1b).

Postsynaptic muscle membrane contains densely clus-
tered nAChR that directly oppose presynaptic active 
zones. During NMJ development, agrin released by 

Fig. 2  Timeline of major findings supporting a dying forward and b dying backward hypothesis in ALS. UMN, upper motor neuron; LMN, 
lower motor neuron; VEGF, vascular endothelial growth factor; GDNF, glial cell line-derived neurotrophic factor; TSC, terminal Schwann cells
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motor nerve terminal binds to postsynaptic lipoprotein 
receptor-related protein 4 (Lrp4) which activates mus-
cle-specific receptor tyrosine kinase (MuSK) domain 
and leading to its self-phosphorylation [45]. Activated 
MuSK phosphorylates Dok-7, a muscle cytoplasmic adap-
tor protein, which in turn phosphorylates and further 
activates MuSK. Dok-7 interacts with MuSK through its 
phosphotyrosine-binding domain and controls its activ-
ity and responsiveness to agrin [46]. MuSK acts as a 
master regulator of synaptic differentiation by activat-
ing a series of downstream molecules which eventually 
induces dense clustering of nAChR at the postsynaptic 
membrane. MuSK activates ETS-related molecule (ERM) 
which regulates expression of various postsynaptic genes 
including nAChR subunits genes [47]. MuSK recruits rap-
syn, an intracellular scaffolding protein which strongly 
interacts with nAChRs, leading to recruitment and clus-
tering of nAChRs at the NMJ (Fig. 1b inset 2) [48]. Clus-
tered nAChRs are anchored into the cell membrane by 
actin cytoskeleton and dystrophin-glycoprotein complex. 
Detailed cellular pathway involved in NMJ formation is 
reviewed in Li et al. [49].

The space between the presynaptic nerve terminal and 
postsynaptic muscle membrane is called synaptic cleft. 
Synaptic cleft spanning ~ 50 nm contains basal lamina, 
made up of extracellular matrix (ECM), which surrounds 
the muscle fibers [50]. Basal lamina contains various 
ECM proteins such as laminins, collagens, perlecan, and 
fibronectins which play a pivotal role in NMJ assembly 
and functioning [50, 51]. Laminins play a pivotal role 
in organizing pre- and postsynaptic components and 
thereby maintain structural integrity of NMJ. Laminin 
β2, secreted by muscles, interacts with presynaptic VGCC 
which leads to clustering of VGCC and recruitment of 
other presynaptic components at the active zones [52]. 
Laminin β2-deficient mice displayed decreased calcium 
sensitivity and co-localization of active zone proteins and 
led to alteration in motor endplate maturation and thereby 
suggested its role in synapse stabilization [53]. Laminin 
α4 and α5 interaction with dystroglycan helps in matura-
tion of nAChR clusters which promotes postsynaptic dif-
ferentiation [54]. Loss of laminin α4 disrupted alignment 
and stabilization of pre- and postsynaptic components at 
the NMJ and resulted in altered neuromuscular transmis-
sion [55].

This spatiotemporal organization of NMJ components 
is cardinal for efficient neuromuscular transmission 
which involves a series of highly complex and dynamic 
processes. Any alterations in organization and/or signal 
transmission can impair NMJ functionality leading to 
denervation, muscle weakness, or paralysis.

Evidences of Neuromuscular Junction 
Disruption as Primary Event in ALS

Most of the initial research encompassing ALS majorly 
revolved around MN degeneration as it was believed that 
ALS primarily affects MN and alterations in skeletal mus-
cle arise as a consequence of loss of neurons. The hypothe-
sis of distal involvement stemmed from early observations 
that LMN loss was much more evident than UMN [56] and 
further loss of axonal integrity led to dysfunctional NMJ 
[57]. Importantly, preserving MN by deletion of Bax, a 
key regulator of apoptosis, in  SOD1G93A ALS mice suc-
cessfully rescued MN from mutant SOD1-mediated toxic-
ity but failed to prevent NMJ denervation [58]. Similarly, 
inhibition of p38 MAPK, a stress activated protein kinase 
involved in initiating cell death, exerted positive effects on 
MN survival but failed to rescue NMJ denervation in ALS 
mice [59]. These reports have highlighted crucial role of 
NMJ disruption in disease mechanism.

To understand the mechanism underlying NMJ dysfunc-
tion in ALS, various cellular models based on mutations 
in SOD1, FUS, TARDBP, and C9ORF72 genes have been 
exploited. Studies have reported that transgenic SOD1 
ALS mice showed significant NMJ denervation followed 
by degeneration of ventral root axons and eventually loss 
of MN cell bodies indicating early loss of NMJ circuitry 
[60–62]. Apart from mutant SOD1, transgenic mice 
expressing mutant FUS experienced early structural and 
functional alterations at the NMJ followed by MN degen-
eration [63, 64]. Transgenic mice with inducible expres-
sion of mutant TDP-43 (∆NLS, loss of nuclear localization 
signal) displayed significant denervation with no changes 
in number of LMN in spinal cord. Suppression of mutant 
TDP-43 in postsymptomatic stages prevented ongoing MN 
loss and increased NMJ re-innervation which helped in 
functional recovery from mutant TDP-43-mediated toxic-
ity [65]. Similarly, inducible expression of hexanucleo-
tide  (G4C2) C9ORF72 repeats in mice showed dipeptide 
repeats expression which led to structural NMJ abnormali-
ties and rapid muscle dystrophy with no change in number 
of LMN in spinal cord. Interestingly, early suppression of 
C9ORF72 expression was able to prevent but not reverse 
muscle dystrophy [66]. Mutant FUS-ALS drosophila dis-
played significantly impaired synaptic neuromuscular 
transmission with normal electrical excitability of MN 
cell bodies indicating early neuromuscular dysfunction 
[67]. Similarly,  SOD1G93A zebrafish displayed early loss 
of intact NMJs including decrease in postsynaptic volume 
followed by loss of MN cell bodies [68, 69].

It is important to mention that there is a temporal loss 
of different motor units during disease progression. ALS 
pathology involves presymptomatic loss of NMJs of fast 
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fatigable (FF) motor units followed by loss of fast fatigue-
resistant (FFR) motor units at symptomatic stage and even-
tual loss of slow (S) motor units at end-stage disease [60, 
70, 71] as illustrated in Fig. 3b. High metabolic demand 
and large size of FF MN makes them more vulnerable to 
degeneration whereas small size of type S MN makes them 
resistant. It has recently been highlighted that reduced 
neurotransmitter release in NMJs of FF motor units pre-
cedes NMJ denervation affecting pre- and postsynaptic 
elements in  SOD1G37R mice [72]. However, the initial den-
ervation triggers a compensatory mechanism where the 
nearby neurons increase their axonal arbors to form new 
synaptic connection to mask ongoing NMJ dismantling 
[73–75]. Repeated cycles of denervation and reinnerva-
tion results into an intermittent conduction block in newly 
formed nerve endings, indicating that immature sprouts 
and unstable conduction of NMJ are a result of degenerat-
ing axons in ALS.

In humans, very few studies have identified early changes 
at NMJ as it is difficult to obtain presymptomatic samples. 
Therefore, it is challenging to validate the findings from 
animal model in human patients at presymptomatic disease 
stages. In 1993, Maselli et al. [76] reported altered synaptic 
transmission in muscle biopsies of ALS patients. Histologi-
cal examination of NMJ in these patients showed absence 
of axon terminal indicating denervation and corresponding 
decrease in amplitudes of miniature endplate potentials as 
measured by electrophysiological techniques. In this study, 
normal postsynaptic folds were observed in limited number 
of denervated muscle samples analyzed. In contrast, a recent 
study revealed significantly altered postsynaptic apparatus 
and NMJ denervation with fragmented synaptic gutters in 
muscle samples of early and long-term ALS patients. They 
also observed flattened and fragmented postsynaptic appa-
ratus being partially innervated by axon terminal indicating 
reinnervation and remodeling of NMJ as observed in animal 
models. [77]. A case report also showed severe denervation 

Fig. 3  Neuromuscular junction disassembly in amyotrophic lateral 
sclerosis. a Structural and functional alterations in NMJ in ALS. Left 
panel shows the interaction of presynaptic and postsynaptic mem-
branes in humans and rodents in healthy and ALS condition. Presyn-
aptic membrane is in purple for healthy and gray for ALS, whereas 
postsynaptic is in red for healthy and light pink for ALS. Arrow heads 
denote orphaned nAChRs. Right panel defines the altered functional 

parameters of NMJ in ALS. b Specificity and temporal loss of motor 
units during ALS progression. Arrow heads denote retraction of pre-
synaptic nerve endings from skeletal muscle. c Cellular and molec-
ular alterations in the presynaptic neuron, postsynaptic muscle, and 
terminal Schwann cells resulting in NMJ denervation in ALS. ALS-
associated mutant proteins differentially affect the components of 
NMJ which trigger and/or amplify malfunctioning of NMJ in ALS
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with no changes in LMN in autopsy of a 58-year-old male, 
who died in a minor surgery, after 6 months of onset of 
ALS symptoms [61]. These studies on ALS patients indicate 
altered NMJ integrity as an early event in disease course. 
It is important to note that there are considerable differ-
ences in cellular architecture of NMJ of different species. In 
humans, NMJs are smaller and have “nummular” morphol-
ogy, whereas mouse NMJs are larger and “pretzel”-shaped. 
Despite these differences, evidences from human and animal 
models clearly supports that NMJ is compromised in early 
ALS stages (Fig. 3a).

Altogether, such studies corroborate that malfunctioning 
of NMJ may be the primary pathogenic event in ALS and 
MN loss proceeds in a dying back fashion. Evidences from 
animal and human studies supporting early role of NMJ 
in ALS have been summarized in Fig. 2b. In the sections 
below, role played by presynaptic motor neurons, postsyn-
aptic skeletal muscle cells, and terminal Schwann cells in 
triggering NMJ disassembly is described to delineate the 
series of events culminating in neurodegeneration.

Role of Motor Neuron in NMJ Disruption 
in ALS

Lower motor neuron communicates with skeletal muscles 
and executes voluntary actions by means of neuromuscular 
transmission. LMN cell bodies lie within the central nerv-
ous system, i.e., brainstem and anterior horns of spinal cord 
from where they extend long processes to reach target mus-
cle and form an indispensable link between CNS and skeletal 
muscles. Due to long axons, communication between cell 
body and nerve terminal is majorly dependent upon antero-
grade and retrograde axonal transport system. Maintaining 
homeostasis in cell body and distal nerve terminal is neces-
sary for healthy functioning of NMJ. ALS-associated mutant 
proteins may lead to deregulation of protein homeostasis, 
malfunctioning of axonal transportation, and cholinergic 
dysfunction and impairs mitochondrial dynamics as illus-
trated in Fig. 3c.

Mutant Protein and Deregulated Protein 
Homeostasis

ALS-associated mutant proteins can cause structural and 
functional changes in the presynaptic nerve terminal which 
may trigger NMJ degeneration. Motor neuron of  SOD1G93A 
mice showed the presence of enlarged and vacuolated 
mitochondria in axons and presynaptic nerve terminal. 
There was also decrease in soma size and accumulation 
of small, empty vacuoles in axons which results in axonal 
loss and muscle denervation [78]. AAV vector-mediated 
silencing of SOD1 in motor neurons of  SOD1G93A mice led 

to delayed disease onset, preserved NMJ functionality, and 
prolonged survival [79]. In addition, interneurons play a 
key role in modulating synaptic activity. Transgenic SOD1 
ALS zebrafish showed the earliest sign of neuronal stress 
in inhibitory glycinergic interneurons at embryonic stage. 
This resulted in loss of inhibitory input which generated 
neuronal stress in LMN. In adult life, these stressed LMN 
showed retracted nerve terminal resulting in NMJ abnor-
malities whereas non-stressed neurons have normal NMJs 
[80, 81]. Systematic and structural screening of NMJs in 
mutant FUS and TDP-43 ALS mice showed early struc-
tural changes in presynaptic nerve terminal but no cor-
responding changes at the motor endplate. These changes 
preceded denervation which led to reduced interaction 
between pre- and postsynaptic membrane suggesting that 
cues for NMJ degeneration may arise from MN terminal 
[82]. Overexpression of mutant FUS in motor neurons of 
transgenic flies resulted in reduction in number and area 
of presynaptic bouton which led to significant locomotive 
impairment [83].

The large size of LMN makes them more vulnerable to 
proteome imbalance which causes ER stress, mitochondrial 
impairment, altered excitability, and synapse dysfunction 
[84]. Prolonged deregulation of protein homeostasis leads 
to aberrant accumulation of misfolded mutant proteins such 
as SOD1, TDP-43, and FUS which have been implicated 
in ALS. Most of the mutations in SOD1 enzymes have 
a propensity to form high molecular weight aggregates. 
These mutant SOD1 aggregates have been reported in 
ALS patients as well as mice models [85, 86]. Ubiquitin 
proteasome system (UPS) was found to be impaired with 
increased accumulation of ubiquitin and phosphorylated 
neurofilaments in motor neurons of  SOD1G93A mice 
[87]. Even, we have observed  effect of modulation of 
protein homeostasis pathways on high molecular-weight 
aggregates of  SOD1L84F [5] in motor neuronal cell line  
(unpublished work).

Expression of mutant FUS at physiological level in mice 
showed cytoplasmic mislocalization of mutant protein which 
accumulates at rough endoplasmic reticulum and alters 
expression of gene associated with ribosomes, mitochondria, 
and proteasome suggesting altered proteostasis as a potential 
pathomechanism of mutant FUS [88]. Mutant FUS decreases 
synaptic activity by downregulating expression of transport-
ers and ion channels required for synaptic functioning in 
ALS mice. Moreover, accumulation of mutant FUS gener-
ates stress response and inhibits local, intra-axonal protein 
synthesis [89]. Mutant TDP-43 mice exhibited alterations 
in gene splicing, and downregulation of genes is involved in 
ubiquitin proteasome pathway along with ubiquitin‐positive 
inclusions [90]. ALS-associated polydipeptide repeat expan-
sion in C9ORF72 gene causes ribosome-mediated distress 
and hampers protein translation in ALS mice [91].
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Degradation of improperly folded protein is mediated by 
ubiquitin proteasome system and autophagy. A recent study 
showed that cranial MN exhibit high proteasome activity 
making them more resistant to proteostasis stress as com-
pared to spinal MN indicating time-dependent death of spi-
nal and cranial MN in ALS disease course [92]. Autophagy 
plays a key role in maintaining cellular homeostasis in distal 
axons by balancing synthesis and degradation of proteins 
[93]. Activation and upregulation of autophagy has been 
observed in cytoplasm of MN in sALS patients [94]. Muta-
tions in several genes associated with autophagy including 
SQSTM1, OPTN, UBQLN2, and TBK1 have been associ-
ated with ALS [95–98]. NMJs of  SOD1G93A mice showed 
increased accumulation of autophagosomes in nerve ter-
minals of MN along with reduced expression of SQSTM1 
suggesting altered autophagy [99]. Spinal MN restricted 
expression of mutant  UBQLN2P497H in transgenic rats reca-
pitulated ALS-like phenotype such as MN degeneration, 
denervated NMJs, and abnormal protein accumulation [100]. 
Autophagy inhibition by Atg7 or TBK1 deletion in MN of 
 SOD1G93A mice accelerated NMJ denervation accompanied 
by significant decrease in endplate current amplitude in tibi-
alis anterior muscle [101, 102]. Moreover, deletion of TBK1 
in TDP-43G298S mice aggravated NMJ integrity [103]. These 
studies provide a vital link between mutant proteins, altera-
tion in protein degradation pathways, and NMJ stability in 
ALS pathology.

Disturbed Axonal Transport

Axonal transportation involves neuronal cytoskeleton 
(microtubules, actin, and intermediate filaments) and motor 
proteins such as dyneins, kinesins, and myosins. Antero-
grade transportation of various organelles and cargos (con-
taining mRNA, proteins, and lipids) from cell body to axon 
terminals as well as retrograde transportation of neuro-
trophic factors, signaling molecules, and damaged organelles 
from distal nerve terminal to cell body are crucial for func-
tioning and survival of MNs [104]. Most of kinesin motor 
family proteins are involved in unidirectional anterograde 
transportation, whereas dynein is responsible for retrograde 
transportation (Fig. 1b).

Dynein is a dimeric multisubunit complex and requires 
an essential cofactor dynactin to mediate axonal transporta-
tion. Dynactin is a large protein complex made up of several 
subunits and acts as a processivity factor for dynein. Muta-
tions in largest subunit, p150 (Glued), of dynactin complex 
have been reported in ALS patients [105–107]. Mutant dyn-
actin p150 (Glued) mice displayed pathological features of 
motor neuron disease characterized by impaired vesicular 
transport, denervation, axonal swelling, and axon-terminal 
degeneration [108]. Moreover, decreased mRNA and pro-
tein levels of dynactin1 are observed in spinal MN of sALS 

patients [109, 110]. Depletion of dynactin 1 in C. elegans 
and zebrafish displayed axonal degeneration accompanied 
by severe motor defects, abnormal innervation of fast twitch 
muscle fibers, NMJ instability, and locomotor defects [111, 
112].

Aberrant neurofilament aggregation is a pathological hall-
mark of ALS. Mutant SOD1-mediated toxicity is respon-
sible for abnormal accumulation of neurofilaments which 
disrupts axonal transport and leads to axonal degeneration 
and profound reduction in retrograde uptake in early stages 
of disease [113–117]. These defects in axonal transportation 
has been attributed to activated p38 MAP kinase. Inhibi-
tion of p38 MAPK rescued proximal axons from SOD1-
mediated toxicity and improved survival of SOD1 ALS mice 
[59, 118]. In addition, mutant SOD1 inhibits anterograde 
fast axonal transport by activating p38 MAP kinase [119]. 
Mutant TDP-43 impairs axonal trafficking in drosophila and 
MN derived from ALS patients [120]. Recently, a genome-
wide association study identified mutation in C-terminal of 
kinesin family member 5A (KIF5A) gene in ALS patients 
[121, 122]. These studies highlight the role of axonal trans-
port in maintaining distal synapse, and defects in transporta-
tion machinery may strongly impact NMJ stability.

Cholinergic Dysfunction and Altered 
Neurotransmission

Efficient cholinergic transmission is crucial for maintaining 
structural and functional integrity of NMJ. Cholinergic dys-
function is a common feature of various neurodegenerative 
disorders including ALS. Choline acetyltransferase (ChAT) 
is responsible for synthesis of ACh, patterning, and forma-
tion of neuromuscular synapses [123]. Decreased ChAT 
activity has been reported in spinal MN of ALS patients 
[124, 125]. Even  SOD1G93A ALS mice displayed early 
reduced ChAT content in soma and synaptic terminals of 
MNs indicating that presymptomatic cholinergic dysfunc-
tion could be the earliest event in ALS [126]. Previously, 
SOD1 aggregates also impaired transportation of ChAT by 
sequestering kinesin-associated protein 3 and thereby disrupt 
cholinergic system in SOD1 ALS mice [127].

Vesicular ACh transporter (VAChT) is involved in pack-
ing of ACh in synaptic vesicles at nerve terminals and serves 
as a marker for cholinergic synapses. Immunohistochemical 
staining of spinal MN of ALS patients displayed decreased 
VAChT but no decrease in activity of synaptophysin, a 
marker for synapse integrity, indicating loss of cholinergic 
input prior to MN degeneration [128]. Interestingly, increas-
ing synaptic ACh by overexpressing VAChT diminished 
motor functions and accelerated NMJ degeneration and 
death of  SOD1G93A mice [129]. These observations suggest 
that increased or decreased levels of VAChT have detrimen-
tal effect on cholinergic transmission.
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Efficient neurotransmission is quantified by measuring 
localized postsynaptic depolarization (endplate potential 
(EPP)) caused by release of synaptic vesicles. These changes 
in postsynaptic membrane in turn reflects the functioning 
of presynaptic neuron. Muscle biopsies from ALS patients 
revealed decreased amplitude of miniature EPP (MEPP) 
along with decreased mean quantal stores and EPP quan-
tal content suggesting impaired neuron and muscle com-
munication [76]. Prior to morphological NMJ alterations, 
 SOD1G37R ALS mice showed decreased quantal content 
indicating presymptomatic functional changes at NMJ [72]. 
Similarly, mutant TDP-43 Q331K mice displayed increased 
MEPP amplitude, decreased MEPP frequency, and quan-
tal content at the NMJs prior to motor neuron loss [130]. 
These results indicate early molecular alterations in fusion 
and release of synaptic vesicles from the presynaptic axon 
terminal.

Transgenic zebrafish harboring mutant TDP-43 or mutant 
FUS also showed aberrant synaptic fidelity with reduced 
frequency of miniature endplate currents (MEPCs) and 
quantal neurotransmission [131–133]. Mutant FUS ALS 
mice showed marked depletion in synaptic vesicles in axon 
terminal and reduced motor response amplitude in tibi-
alis anterior muscles suggesting altered neurotransmission 
[63]. Mutant FUS transgenic flies developed presynaptic 
structural and function defects prior to degeneration of MN 
cell body and axons. Mutant flies displayed disorganized 
active zone protein and reduced quantal content resulting 
in marked decrease in postsynaptic evoked current [67]. 
Overexpression of mutant FUS in C. elegans and in motor 
neurons of drosophila resulted in impaired synaptic vesicle 
docking and reduced quantal size and quantal content dem-
onstrating reduced neuromuscular transmission [134, 135]. 
In addition, silencing of C9ORF72 (C9-miR) in zebrafish 
resulted in NMJ abnormalities accompanied with reduced 
frequency of MEPC suggesting impaired presynaptic func-
tionality. C9ORF72 has been shown to interact with SV2a, a 
key component of presynaptic active zones. C9-miR causes 
decrease in release and uptake of neurotransmitter suggest-
ing loss of C9ORF72 affects exocytosis [136]. These stud-
ies suggest that derangements in neurotransmission (syn-
thesis, packaging, and release of neurotransmitter) are early 
events in ALS pathology which may contribute to distal 
degeneration.

Mitochondrial Dysfunction

MNs are large, polarized cells that rely heavily on mitochon-
drial ATP for their high energy demands. Nerve terminals 
at the NMJ are packed with mitochondria which are trans-
ported from cell body to synaptic terminals by means of 
fast axonal transport. Synaptic mitochondria are crucially 
involved in ATP production, calcium handling, synthesis, 

and release of neurotransmitter and thereby play a critical 
role in neuronal transmission [137].

Deficits in mitochondrial dynamics and their axonal 
transport have been observed in ALS [138, 139]. Mutant 
SOD1 and TDP-43 transgenic mice exhibited abnormal 
mitochondrial morphology and transport in distal part of 
motor axons of phrenic or sciatic nerve before disease onset 
indicating that altered mitochondria may trigger cascade of 
events leading to MN degeneration [140, 141]. Even, FUS 
ALS transgenic mice showed early mitochondrial abnor-
malities in presynaptic MN along with decreased synaptic 
vesicles and NMJ area before onset of clinical symptoms 
[142]. Similarly, transgenic mice with regulatable mutant 
TDP-43 (∆NLS) expression also displayed altered mito-
chondrial activity. Accumulation of mutant TDP-43 in axons 
and nerve terminals leads to formation of RNP granules and 
affects localized protein translation which in turn decreases 
level of key nuclear-encoded mitochondrial proteins (Alt-
man et al. unpublished work, https:// doi. org/ 10. 21203/ rs.3. 
rs- 87662/ v1).

Mutant SOD1 induces degradation of mitochondrial 
Rho GTPase 1 (Miro1) which inhibits mitochondrial axonal 
transport [143]. Miro1 is responsible for attachment of mito-
chondria to kinesin-1, and its activity depends on cytosolic 
 Ca2+ levels. Mutations in another ALS causing gene, VAPB, 
increase cytosolic  Ca2+ which effects Miro1/kinesin-1 inter-
action and hampers mitochondrial axonal movement [144]. 
NMJs of  SOD1G93A mice showed increased number of 
degenerating mitochondria with large vacuoles and irregu-
lar cristae spacing in presynaptic nerve terminals. Moreo-
ver, there was decreased expression of mitophagy-related 
proteins SQSTM1, Pink1, Parkin, and Bnip3 indicating 
impaired mitophagy [99]. Double knockout mice with abla-
tion of Pink1 and Parkin resulted in increased accumula-
tion of mitochondria in presynaptic terminal, axon swelling, 
and NMJ fragmentation which highlights the key role of 
impaired mitophagy in NMJ degeneration in ALS [99].

Impaired mitochondrial axonal transport and mitophagy 
causes decrease in healthy mitochondrial pool and improper 
turnover of damaged mitochondria in synaptic terminals 
which could significantly alter NMJ dynamics. Therefore, 
disruption of mitochondrial integrity alters NMJ dynamics 
and may lead to neurodegeneration.

Role of the Skeletal Muscle in NMJ 
Disruption in ALS

Skeletal muscle comprises the postsynaptic component of 
NMJ. Multiple mechanisms, such as alterations in post-
synaptic apparatus, acetylcholine esterase (AChE) abnor-
malities, misfolding, and clearance of mutant proteins and 
mitochondrial dysfunction, have been implicated for its 
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degeneration in ALS (Fig. 3c). The findings from various 
studies provide insight into the role of muscles in disease 
initiation and have been discussed below in-depth.

Alterations in Postsynaptic Apparatus

Structural and functional integrity of postsynaptic appa-
ratus including clustered nicotinic acetylcholine receptors 
(nAChRs), muscle-specific kinase (MuSK), and low-den-
sity lipoprotein receptor-related protein 4 (Lrp4) present 
on skeletal muscle is crucial for stability and functioning 
of NMJ (Fig. 1b inset 2). Earlier, muscles of ALS patients 
showed denervated endplates with various degrees of post-
synaptic structural changes including flattening of primary 
cleft but well-preserved nAChRs [145, 146]. Similar find-
ings were also observed in ALS transgenic mice [147]. 
However, elegant ex vivo experiments by Palma and team 
showed decreased ACh affinity and abnormal expression 
of AChR in skeletal muscle of ALS patients [148, 149]. 
Recently, muscle-specific expression of  SOD1G93A in ALS 
mice resulted in smaller and fragmented NMJ with dispersed 
endplates, decreased ramification of primary cleft, and high 
turnover, and fragmentation of AChRs indicating mutant 
SOD1 affects AChR clustering and NMJ stability [150]. In 
addition, FUS ALS mice showed reduced endplate area in 
newborn mutants. Even impaired endplate maturation was 
observed in iPSC-derived myotubes from FUS-ALS patients 
[64]. siRNA-mediated knockdown of FUS in C2C12 cell 
line decreased gene expression of nAChR subunits. Similar 
results were obtained in  FUSΔNLS/ΔNLS and  FUSΔNLS/+ mice 
[64]. Moreover, knockdown of TDP-43 in zebrafish resulted 
in denervation and fragmentation of nAChR cluster [151].

These studies show that AChRs can be targeted for ALS 
pharmacological therapy. In fact, riluzole, the first FDA-
approved drug for ALS, has been shown to block postsynap-
tic AChRs and may affect its function in denervated muscle 
fibers of ALS patients, but its biological significance still 
remains elusive [152, 153].

In addition to AChRs, alterations in other key postsynap-
tic proteins have also been documented in ALS. Lrp4 protein 
is essential for structural and functional integrity of NMJ. 
Loss of Lrp4 led to fragmented AChR clusters, reduced 
synaptic vesicles and junctional folds, and impaired neu-
romuscular transmission [154].  SOD1G93A transgenic mice 
also showed loss of postsynaptic structural proteins such 
as Lrp4, nestin, rapsyn, and dystrophin from NMJ before 
complete disassembly of AChRs [62]. Furthermore, neona-
tal rat muscle injected with cerebrospinal fluid (CSF) from 
ALS patients displayed structural damage and fragmentation 
of NMJ along with decreased rapsyn and increased calpain 
expression. However, no change in levels of AChRs protein 
was observed [155].

MuSK is another crucial postsynaptic protein involved in 
efficient functioning of NMJ. Increasing MuSK expression 
or stimulating MuSK via agonist antibody has been shown 
to reduce muscle denervation, delay in disease onset, and 
improve motor function in ALS mice [156, 157]. In con-
trast, another study showed that MuSK agonist antibody is 
not sufficient for preservation of motor neuron function and 
survival of ALS mice [158]. These opposing findings raise 
concern regarding MuSK activation as therapeutic for ALS.

Several studies have targeted Dok-7, a muscle cytoplas-
mic protein, for enhanced activation of MuSK. Muscle-
specific overexpression of Dok-7 in mice increased pre- and 
postsynaptic area and enhanced neuromuscular transmission 
in diaphragm muscle [159] as previously observed for neu-
romuscular disorders [160]. Recently, Dok-7 gene therapy 
in  SOD1G93A mice protected NMJ from degeneration, sup-
pressed muscle atrophy, improved locomotor activity, and 
prolonged life span [161].

Acetylcholine Esterase Activity in ALS

One of the primary roles of AChE is termination of neu-
romuscular transmission by degradation of ACh at the 
NMJ. AChE is also believed to play non-enzymatic roles 
such as regulating fate of AChRs, NMJ formation, and sur-
vival. AChE knockout mice  (AChE−/−) exhibited reduced 
AChR cluster density, shallow and irregular junctional 
folds, and fragmented nerve terminals [162]. Initial studies 
have identified decreased AChE activity in muscle biopsies 
and increased AChE activity in plasma and serum of ALS 
patients [163–165]. Muscle biopsies of ALS patients also 
revealed alterations in various isoforms of AChE which 
resulted in decreased AChE activity in motor endplates 
[146, 166]. Loss of function of TDP-43 in zebrafish resulted 
in decreased expression of AChE leading to its decreased 
activity in skeletal muscles [151]. Earlier clinical trials with 
AChE inhibitors displayed no therapeutic effects in ALS 
patients whereas downregulating AChE expression using 
anti-sense nucleotide in presymptomatic ALS mice exerted 
beneficial effects by reducing MN loss and increasing its 
survival [167, 168]. Abnormalities in AChE seem to play 
an important role in ALS but more studies are needed to 
elucidate its pathomechanism.

Mutant Protein Toxicity

Studies have demonstrated that MN-specific expression of 
mutant SOD1 in transgenic mice is not sufficient to produce 
ALS phenotype [169, 170] whereas muscle-specific expres-
sion of mutant SOD1 is sufficient to develop ALS pheno-
type [171–173]. Transgenic mice with muscle restricted 
expression of  SOD1G93A caused accumulation of reactive 
oxygen species (ROS) leading to structural and functional 
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aberration in muscles [171]. Later on, expression of mutant 
SOD in skeletal muscles was shown to cause NMJ abnor-
malities, distal axonopathy with swollen or vacuolated 
axon terminals, and loss of MN in spinal cord [172]. NMJ 
abnormalities included loss of presynaptic synaptophysin 
and postsynaptic nAChRs and rapsyn [173]. NMJ disrup-
tion and retrograde degeneration of MN may involve target 
deprivation of neurotrophic factors. Altogether, these studies 
strongly proposed the crucial involvement of skeletal mus-
cles in ALS pathogenesis and challenge the well-established 
dogma that muscle atrophy occurs as a consequence of MN 
degeneration and supports dying back phenomenon.

A longitudinal MRI analysis of  SOD1G93A mice showed 
significant reduction in muscle volume followed by progres-
sive muscle atrophy prior to onset of clinical symptoms indi-
cating skeletal muscle could be the primary target of mutant 
SOD1-mediated toxicity [174]. Mutant SOD1 causes early 
changes in muscle metabolic properties by altering glucose 
metabolism and fiber type composition and increasing lipid 
catabolism [175].

Turner et al. [176] reported the presence of intracellu-
lar aggregates of mutant SOD1 in skeletal muscles of ALS 
mice. On the other hand, Onesto and colleagues showed 
that enhanced proteasome activity and autophagy in murine 
myoblast cell line (C2C12) efficiently removed mutant 
SOD1 aggregates whereas these aggregates impaired pro-
teasome activity in motor neuronal cell line (NSC-34) indi-
cating mutant SOD1 differentially affects MN and skeletal 
muscles [177]. Even in ALS mice, mutant SOD1 did not 
form aggregates in skeletal muscles throughout the disease 
course, possibly due to enhanced proteasomal activity [178]. 
These recent studies highlight that muscle cells are more 
efficient in managing mutant SOD1 aggregates as compared 
to MN, and it has been suggested that mutant SOD1-medi-
ated toxicity in muscle may involve a different mechanism 
[179].

Interestingly, Wei et al. [180] showed that despite the 
absence of insoluble mutant SOD1 aggregates in muscles, 
skeletal muscle proteins are sensitive to misfolding similar to 
spinal cord proteins. Moreover, they observed lower steady-
state levels of heat shock proteins in skeletal muscles as 
compared to spinal cord in  SOD1G93A mice and postulated 
that differential expression of molecular chaperones makes 
skeletal muscles proteins more vulnerable to misfolding, 
which probably explains early degeneration of muscles in 
ALS pathogenesis [180]. In addition, the two major protein 
degradation pathways showed a time-dependent activation in 
skeletal muscles during disease progression: ubiquitin–pro-
teasome degradation system (UPS) is activated during early 
symptomatic stages, whereas autophagy upregulation is 
observed in presymptomatic and end stages of disease [181].

Another important observation showed that mutant 
SOD1-associated toxicity in muscles can be rescued by 

decreasing mRNA and protein levels of SOD1 using anti-
sense oligonucleotides. The findings clearly demonstrated 
that lowering the expression of mutant SOD1 can maintain 
neuromuscular innervation, preserve compound muscle 
action potential, restore neuronal dysfunction, and prolong 
the life of ALS transgenic mice [182].

Similar to SOD1, hyper-phosphorylated TDP-43 aggre-
gates also plays a pathogenic role in central nervous system 
in ALS, but their role in skeletal muscles is unclear. Previ-
ous study reported the absence of phosphorylated TDP-43 
(pTDP-43) aggregates in quadriceps muscles [183], whereas 
recent studies have identified dense filamentous aggregates 
of pTDP-43 in diaphragm and axial muscles of ALS patients 
[184, 185]. These authors suggest that the opposing find-
ings could arise due to muscle group-specific difference in 
muscle pathology. Further studies are warranted to better 
understand TDP-43 pathology in skeletal muscles.

Mitochondrial Dysfunction

Mitochondrial dysfunction in muscle plays a pivotal role in 
ALS pathogenesis and contributes to rapid disease progres-
sion [186, 187]. Numerous studies revealed abnormalities 
in morphology, quantity, membrane potential, and dispo-
sition of skeletal muscle mitochondria in ALS [150, 171, 
188–192]. Mitochondrial dysfunction is also responsible 
for hypermetabolism, which is a common feature of ALS 
[193, 194]. Mitochondrial abnormalities are often accom-
panied by defective mitochondrial respiratory chain com-
plex and increased oxidative stress. Mice with mutation 
in CHCHD10, a mitochondrial protein, resulted in severe 
mitochondrial defects in skeletal muscles which led to NMJ 
abnormalities including hyper-fragmentation of motor end-
plate. Loss of MN in spinal cord was evident in end disease 
stages indicating abnormalities in muscle mitochondria can 
trigger MN degeneration in a dying back fashion [195]. 
 SOD1G93A mice showed tremendous increase in muscle 
mitochondrial ROS production accompanied by muscle 
atrophy [196, 197]. Recently, it has been shown that admin-
istration of cerebrospinal fluid from sALS patients into 
muscles of neonatal rats caused mitochondrial abnormali-
ties and increased oxidative stress in skeletal muscles [155]. 
An in vitro model system developed by differentiating iPSCs 
from C9ORF72 ALS patients into skeletal myocytes also 
showed altered mitochondrial gene expression and oxida-
tive stress [192].

Muscle mitochondria are crucially involved in maintain-
ing NMJ integrity. Overexpression of mitochondrial uncou-
pling protein 1(UCP1) in muscles significantly affected NMJ 
stability and led to motor neuron degeneration. Moreover, 
heterozygous (mutant SOD1/UCP1) transgenic ALS mice 
exhibited shortened progression from onset and survival as 
compared to homozygous mutant SOD1 ALS mice [198]. 
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Overexpression of mutant SOD1 in skeletal muscle of nor-
mal mice also led to defective mitochondrial dynamics by 
forming aggregates in muscle mitochondria without causing 
MN degeneration, indicating that ALS-associated muscle 
pathology is an early event in disease course [199].

Interestingly, mitochondrial functionality can be rescued 
by reducing oxidative-mediated damage. Treating  SOD1G93A 
mice with Trolox, a potent antioxidant, inhibited ROS and 
rescued mitochondrial function which in turn stabilized NMJ 
turnover and complexity [88]. In addition, increased mito-
chondrial biogenesis by overexpression of peroxisome pro-
liferator-activated receptor gamma (PPARγ) coactivator-1α 
(PGC-1α), in skeletal muscle of  SOD1G37R mice, main-
tained mitochondrial activity throughout disease course 
which improved muscle endurance, delayed muscle atrophy 
without improving lifespan [200]. Taken together, the above 
studies highlight the involvement of muscle mitochondrial 
abnormalities in ALS.

Autoantibodies Against Postsynaptic Proteins 
in ALS

Interestingly, autoantibodies against various postsynap-
tic proteins have been reported in ALS. The presence of 
anti-acetylcholine receptor antibodies, a hallmark feature 
of myasthenia gravis, has been observed in ALS patients 
with no history of myasthenia gravis or exposure to snake’s 
venom [201, 202]. Similarly, antibodies against Lrp4 have 
also been reported in peripheral blood of 9.8% Ameri-
can, ~ 15% Israeli, ~ 23% in Greek and Italian, and 5.4% in 
Chinese ALS patients [203–206]. Some studies have also 
reported the presence of autoantibodies against AChE in 
serum of ALS patients whereas others failed to observe the 
same [207, 208]. Although these are rare events but it raises 
an important question, whether autoimmune component is 
involved in ALS? These autoantibodies may be involved in 
denervation process and appear to be an important aspect to 
explore their role in disease mechanism.

Role of Terminal Schwann Cells in NMJ 
Disruption in ALS

Unlike well-characterized nerve-muscle interaction, ter-
minal Schwann cells (TSCs) are important but overlooked 
component of tripartite synapse. TSCs play an impera-
tive role in NMJ formation, maturation, maintenance, and 
regeneration [209, 210]. TSCs can sense and modulate 
synaptic activity to ensure appropriate neuromuscular 
transmission. Due to the close association, TSCs have a 
bidirectional relationship with motor nerve terminals in 
regulating synaptic output. Release of neurotransmitter 
from nerve terminal activates TSC’s muscarinic AChRs 

(mAChRs) which causes intracellular release of  Ca2+ from 
internal stores of TSCs [211, 212]. In response, TSCs 
release gliotransmitter such as ATP which acts on presyn-
aptic  A1 (inhibitory) and  A2A (excitatory) adenosine recep-
tors and fine-tunes acetylcholine release from the nerve 
terminal [213]. It has been demonstrated that degenerat-
ing nerve terminals release signaling molecules which 
causes TSC to acquire a macrophage like behavior. The 
acquired phagocytic activity helps TSCs to engulf degen-
erating nerve terminal, assist nerve regeneration [214], and 
induces new AChR clustering and helps in neuromuscular 
junction remodeling [215].

Studies based on ALS transgenic mice showed involve-
ment of TSCs abnormalities in ALS (Fig. 3c). Altered  Ca2+ 
signaling accompanied by higher mAChR-mediated TSC 
activation led to major synaptic alterations [216]. NMJs 
of fast medial gastrocnemius muscle lacked TSC cell bod-
ies followed by an increased denervation as compared to 
NMJs of slow soleus muscle [217]. Previously, TSCs 
showed increased expression of Sema3A, an axon repellent 
molecule, in NMJs of FF type IIb/x muscle fibers which 
highlights the early loss of FF motor units observed in ALS 
pathology [218]. Another study demonstrated increased 
level of adenosine at the synaptic cleft during symptomatic 
phase suggesting impaired release of TSC gliotransmitter 
[219].

Importantly, muscle samples from ALS patients also 
exhibited altered TSC morphology with extensive cytoplas-
mic processes. It was observed that in certain NMJs, TSC 
processes invaded synaptic cleft leaving limited accessible 
space for synaptic neuromuscular transmission [77]. Owing 
to the dynamic role played by TSC in regulating NMJ home-
ostasis, its altered function may exacerbate ALS phenotype.

Is Targeting NMJ a Possible Treatment 
for ALS?

Currently, riluzole and edaravone are the only two FDA-
approved drugs for ALS treatment. Edaravone, a potent 
antioxidant, scavenges oxygen radicals, whereas riluzole 
exerts inhibitory effects on glutamate release [220]. Both 
drugs display modest benefits in prolonged survival and/
or function by alleviating symptoms and slowing disease 
progression [221].

As several evidences discussed above support that NMJ 
impairment is an early event in ALS pathology, therapeutic 
treatments aimed at preserving NMJs may play an impera-
tive role in fighting against ALS. Globally, the major focus 
of research has been to investigate role of neurotrophic fac-
tors, microRNAs, and small molecules to preserve NMJ 
integrity (Fig. 4).
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Neurotrophic Factors

Neurotrophic factors are endogenous soluble signaling pro-
teins which promote growth and survival of neurons. Skel-
etal muscle is a rich source of neurotrophic factors such as 
glial-derived neurotrophic factor (GDNF), transforming 
growth factor-beta (TGF-β), vascular endothelial growth 
factor (VEGF), insulin-like growth factor-1 (IGF-1), and 
brain-derived neurotrophic factor (BDNF) which are crucial 
for NMJ stability, MN survival, and axonal growth. Neuro-
trophic factors are internalized by axon terminals at NMJ 
and retrogradely transported to cell bodies of MN. Altera-
tions in expression of muscle-derived neurotrophic factors 
influence NMJ denervation and spinal MN degeneration.

a) Glial Derived Neurotrophic Factor

GDNF is a potential neuronal growth factor which plays 
pivotal role in presynaptic branching and hyperinnerva-
tion [222]. Exogenous GDNF treatment in healthy mice 
resulted in enhanced axonal branching and arborization 
at the NMJ in early post-natal days suggesting GNDF 
plays a key role in synaptic maintenance and remodeling 
[223]. Therefore, it is important to evaluate its role during 
NMJ denervation in ALS. Increased GDNF mRNA levels 
were observed in muscle biopsies of alive ALS patients, 

whereas muscle biopsies from post mortem patient sam-
ples showed decreased expression of GDNF [224, 225]. 
These observations indicate GDNF expression varies dras-
tically with disease progression.

Three independent studies observed that increasing 
expression of GDNF in skeletal muscle of  SOD1G93A 
mice resulted in significant delay in disease onset, 
improved locomotor performance, and prolonged survival 
[226–228]. Interestingly, delivery of GDNF secreting neu-
ral progenitor cells (NPCs) in spinal cords remarkably pre-
served MN degeneration but failed to preserve NMJ den-
ervation resulting in no beneficial effect on limb function 
[229]. However, when GDNF secreting mesenchymal stem 
cells (MSCs) were injected in skeletal muscles, an appar-
ent increase in NMJ connections, survival of spinal MNs 
delayed disease progression [230]. These findings indicate 
that survival of motor neurons and innervation of muscle 
fibers are independent events. GDNF, secreted by muscle 
and terminal Schwann cells, binds to Ret tyrosine kinase 
receptor localized at the nerve terminals of presynaptic 
region and promotes synapse maturation [231]. On the 
other hand, it has been suggested that binding of GDNF to 
GPI-linked coreceptors and Ret tyrosine kinase receptors 
on motor neurons increases its survival by activating PI3-
kinase signaling pathway [232, 233]. Therefore, combined 
therapy aimed at targeting MN cell perikarya and NMJ 

Fig. 4  Rescuing potential of 
neurotrophic factors and miR-
NAs in preserving NMJ integ-
rity in ALS. a Intramuscular 
transplantation of neurotrophic 
factors helps preserve NMJ 
integrity and improves life span 
of ALS mice. b Manipulating 
muscle-specific miRNA expres-
sion rescues MN degeneration 
and NMJ disruption
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would help reduce disease progressing and alleviate ALS 
symptoms.

b) Transforming Growth Factor-Beta

TGF-β, a motoneuron survival factor, is involved in the 
development and maintenance of NMJ. TGF-β is localized 
at the synaptic region of muscle fibers, and its receptors 
are distributed along the length of motor axons and nerve 
terminals [234]. Schwann cells also express TGF-β and pro-
mote synapse formation at NMJ. TGF-βs belong to a small 
family of multi-functional cytokines, consisting of three 
isoforms: TGF-β1, β2, and β3. A significant increase in all 
three isoforms of TGF-β has been observed in human and 
mouse ALS muscle [235]. Circulating levels (serum, plasma, 
and CSF) of TGF-β1 have been found to be significantly 
enhanced in ALS patients [236–239]. TGF-β1 activation 
has also been shown in both spinal cord and muscle of ALS 
mice [240]. In skeletal muscle of symptomatic  SOD1G93A 
mice, TGF-β-mediated signaling is enhanced as compared 
to presymptomatic mice [241]. It has been hypothesized that 
reduced TGF-β signaling at early stage induces glutamate 
excitotoxicity and prevents its neuroprotective effect. And 
at the later stage, increased TGF-β levels activate microglia 
and hamper NMJ [242]. Another study showed increased 
levels of TGF-β1 at NMJs of even presymptomatic SOD1 
ALS mice which repressed FGFBP1 expression and modu-
lated NMJ innervation [243].

Interestingly, intraperitoneal injection of TGF-β2 in 
SOD1 mice with resulted in enhancement of motor per-
formance without preventing motor neuronal degeneration 
[244]. Though the mechanistic action was not defined, but 
TGF-β2 has been shown to locally regulate neurotransmis-
sion by increasing the quantal content (presynaptic vesicles) 
[245]. All these evidences suggest that TGF-β pathway plays 
a role in ALS pathogenesis, but detailed analysis to under-
stand the fine balance between levels of different TGF-β 
isoforms and downstream targets is important to explore its 
role in diagnostics and therapeutics.
iii) Vascular Endothelial Growth Factor

VEGF exerts its protective effects by decreasing astro-
gliosis and increasing NMJ formation in ALS mouse [246]. 
Lentiviral expression of VEGF in skeletal muscles of ALS 
mice protected MN degeneration, slowed disease onset and 
progression, and enhanced life expectancy by 30% [247]. 
Intramuscular transplantation of MSCs expressing GDNF 
and VEFG improved lifespan, NMJ stability, and decreased 
MN loss in  SOD1G93A transgenic rats [248].
iv) Insulin-Like Growth Factor-1

IGF-1 plays a key role in neuronal survival and mainte-
nance of neuromuscular connections. Significantly reduced 
serum levels of IGF-1 were observed in ALS patients [249]. 
Even skeletal muscle samples from ALS patients showed 

decreased levels of IGF-1 and IGF binding proteins [250]. 
However, a recent study reported increased serum IGF-1 
levels in ALS patients with longer survival indicating higher 
IGF-1 levels may be involved in delaying disease progres-
sion [251].

Muscle-specific expression of IGF-1 in ALS mice atten-
uated muscle atrophy and displayed well-preserved AChR 
clusters and stabilized innervation of muscle fibers. Moreo-
ver, increased IGF-1 led to prolonged MN function and life 
span [252, 253]. IGF-1 injected in skeletal muscle of ALS 
mice was retrogradely internalized by MN which protected 
mitochondria from autophagy by reducing cytochrome C 
release and inhibited apoptosis [254].

e) Brain-Derived Neurotrophic Factor

BDNF is involved in maintaining structural integrity 
and synaptic function in adult muscular synapses by bind-
ing to tropomyosin-related kinase B receptor (TrkB) [255]. 
Nerve-induced muscle contraction regulates BDNF/TrkB 
signaling which in turn affects release of ACh by modulat-
ing presynaptic protein kinases PKC and PKA [256]. Earlier 
studies have reported alterations in BDNF expression and 
TrkB signaling in spinal cord and muscle tissues of ALS 
patients [257–259]. A recent study identified C270T poly-
morphism in BDNF as susceptibility locus in Han Chinese 
ALS patients [260].

Impaired BDNF/TrkB signaling was observed in NMJs 
of plantaris muscle in symptomatic  SOD1G93A mice [261]. 
Exercise regime modulated BDNF/TrkB signaling resulting 
in reduced MN death [262]. Interestingly, in vitro incuba-
tion with ALS-CSF downregulated BDNF expression and 
induced neurodegeneration in NSC-34 motor neuronal cell 
line [263, 264] and exogenous supplementation of BDNF-
ameliorated ALS-CSF-induced neurodegeneration [264]. 
Even intrathecal administration of ALS-CSF led to sig-
nificant downregulation of BDNF mRNA levels in spinal 
cord and upregulation in extensor digitorum longus muscle 
of neonatal rats [155, 265]. The increased muscle BDNF 
expression could be a compensatory mechanism to restore 
homeostasis, but due to increased NMJ denervation, MNs 
are not able to harness the enhanced neurotrophic levels.

MicroRNAs

MicroRNAs (miRNAs) are non-coding, single-stranded 
RNA molecules involved in post-transcriptional regulation 
of gene expression. miRNAs typically bind to 3′ untranslated 
region (3′UTR) of messenger RNAs (mRNAs) and lead to 
translational repression or mRNA degradation. Recent evi-
dences suggest that deregulated expression of miRNAs can 
contribute to motor neuron disorders [266, 267]. miRNAs 
are key mediators for development of skeletal muscle and 
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nervous system. They have also been implicated in matu-
ration, maintenance, and repair of NMJ. Altered levels of 
miRNA expression have been reported in motor neurons 
and skeletal muscles of ALS patients [268, 269]. Moreover, 
mutations in FUS, TDP-43, and SOD1 have been shown 
to reduce miRNA biogenesis in MN by inhibiting DICER 
catalytic activity [269]. Thus, it is important to evaluate the 
role of these non-coding RNAs in ALS pathology.

a) miR-1 and miR-133

miR-1, a conserved muscle-specific miRNA, has been 
shown to contribute to NMJ stability. miR-1 and miR-133 
mediate differentiation and proliferation of skeletal muscle 
by regulating histone deacetylase 4 (HDAC4, a transcrip-
tional repressor of muscle gene expression) and serum 
response factor, respectively [270, 271].

Lower levels of miR-1, miR-133a, miR-133b, and miR-
206 were observed in ALS patients undergoing physical 
rehabilitation which shows that miRNA expression is altered 
during skeletal muscle recovery in ALS patients [272].

Muscle-specific expression of  SOD1G93A has been shown 
to affect spinal cord miRNA. The levels of miR-1, miR-9, 
miR-133, and miR-330 were reduced in ALS transgenic 
mice. These miRNAs are involved in activation of genes 
linked with myelination events in spinal cord and upregu-
late expression of peripheral myelin protein 22 and myelin 
protein zero [273]. In contrast, miR-133b was found to be 
upregulated following denervation in ALS mice [274].

b) miR-126-5p

miR-126-5p has been shown to regulate ALS-associated 
genes, like VEGF-A, agrin, and C9orf72. In presymptomatic 
ALS mice model, lower levels of miR-126-5p induced over-
expression of Sema3A and other destabilizing factors in 
skeletal muscles and its coreceptor Neuropilin 1 in axons. 
This triggered NMJ disruption and axon degeneration [275]. 
At the same time, overexpressed miR-126-5p transiently res-
cued axonal degeneration and NMJ disruption.
iii) miR-206

miR-206, a skeletal muscle-specific microRNA, has been 
shown to promote maintenance and repair of NMJ [274]. 
In  SOD1G93A mice, knocking out miR-206 enhanced dis-
ease progression and accelerated skeletal muscle atrophy. 
Elevated expression of miR-206 in  SOD1G93A mice after 
nerve damage promoted reinnervation at NMJ by regulat-
ing HDAC4 and fibroblast growth factor pathway, thereby 
delaying disease progression [276]. Further, levels of miR-
206 were found to be upregulated in plasma and muscles of 
 SOD1G93A mice and serum of ALS patients suggesting its 
possible role in ALS pathogenesis [277].
iv) Other miRs

In skeletal muscle of ALS patients, miR-23a, miR-29b, 
miR-206, miR-455, and miR-31 were found to be signifi-
cantly upregulated. It was demonstrated that miR-23a binds 
3′UTR of PGC-1α mRNA, a regulator of mitochondrial bio-
genesis, and suppresses protein translation, thereby impair-
ing skeletal muscle mitochondrial function [268]. On the 
contrary, miR‐9 and miR‐124 were downregulated in MN 
of ALS patients [269].

Taken together, these evidences suggest that miRNAs 
are key elements responsible for regeneration and repair of 
NMJ, proliferation, and differentiation of skeletal muscles. 
However, the role of miRNAs in disruption of NMJ in ALS 
etiology remains to be elucidated.

Small Molecules

Various therapeutic compounds including neuroleptics 
are being explored for stabilizing NMJ in ALS. Pimozide, 
T-type  Ca2+ channel blocker, has been shown to stabilize 
synaptic transmission in C. elegans, zebrafish, and mice 
model of ALS. Further, pimozide displayed its beneficial 
effects on NMJ function in a 6-week long phase II rand-
omized controlled trial on ALS patients [278]. On the con-
trary, Pozzi et al. [279] reported chronic administration of 
pimozide exerted no beneficial effect on muscle strength 
performance but rather resulted in diminished motor per-
formance and exacerbated NMJ loss in  SOD1G93A and TDP-
43A315T ALS mice. Pimozide is undergoing a long-term 
clinical trial to determine its effectiveness in slowing ALS 
progression (ClinicalTrials.gov Identifier: NCT03272503). 
Recently, TRVA242, a derivative of pimozide, substantially 
rescued locomotor deficits, NMJ structural abnormalities, 
and restored NMJ transmission in C. elegans, zebrafish, 
and mice model of ALS [280]. Although TRVA242 showed 
promising results, further studies evaluating pharmacody-
namics, pharmacokinetics, behavioral effects, and other 
measures are required.

Conclusion

ALS, primarily considered as a motor neuron disorder, is 
now being viewed as a non-cell autonomous disease which 
involves interplay of neuronal and non-neuronal cell popu-
lations which act together to exacerbate the disease [281]. 
Non-neuronal cell populations such as glial cells, skeletal 
muscles, and peripheral blood mononuclear cells play a key 
role in ALS pathophysiology [171, 282–284]. Despite leaps 
of advancement in the field of ALS, one of the key unre-
solved issues is site of disease initiation. Considering the 
complex etiology of ALS, it is postulated that MN degenera-
tion involves multifactorial origin and can progress in either 
a “dying forward” or a “dying backward” manner. There is 
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an ongoing debate regarding cortical hyperexcitability or 
neuromuscular junction as the site of ALS onset. Evidences 
supporting both the hypothesis have been reviewed, but we 
have focused more on the dying back hypothesis.

Research in the past 2 decades have identified neuromus-
cular junction alterations in early disease course. This review 
presents a plethora of clinical and experimental evidences 
describing cellular and molecular alterations in motor 
neurons, skeletal muscles, and terminal Schwann cells in 
ALS. MN in ALS display disturbed anterograde and retro-
grade axonal transport leading to insufficient maintenance 
of distal terminals affecting cholinergic transmission and 
mitochondrial dynamics as well as poor uptake of neuro-
trophic factors. Impaired protein homeostasis and proteins 
aggregation have been shown to trigger NMJ denervation. 
Similar to MNs, skeletal muscles are also involved in NMJ 
malfunctioning. Muscle-specific expression of ALS-asso-
ciated protein is able to generate ALS phenotype indicating 
causal role of skeletal muscle in disease pathogenesis [171, 
172]. Alterations in postsynaptic structures such as AChRs, 
Lrp4, and AChE lead to endplate dispersion, fragmentation 
of AChRs, decreased ramification of junctional folds, and 
impaired neuromuscular transmission in ALS. Interestingly, 
autoantibodies against these postsynaptic structures have 
been reported in ALS, but their pathological significance 
is still elusive. Unlike MNs, muscle cells have a robust pro-
teasome machinery due to which ALS-associated mutant 
proteins fail to accumulate in muscles. These deleterious 
proteins cause mitochondrial dysfunction and alters mus-
cle metabolic properties which leads to hypermetabolism 
in ALS. Decreasing mutant SOD1 expression or reducing 
oxidative stress have been shown to rescue mitochondrial 
function, restore neuronal dysfunction, and stabilize NMJ 
complexity [150, 182]. Terminal Schwann cells, a less 
explored component of NMJ, plays a pivotal role during 
NMJ reinnervation. TSCs abnormalities such as altered  Ca2+ 
signaling, morphology, and irregular release of gliotransmit-
ter, axon repellant molecule can impair NMJ maintenance 
and regenerative capabilities of TSCs. Apart from these tri-
partite components, basal lamina also plays a critical role in 
structural and functional organization of NMJ. Limb muscle 
samples from ALS patients showed absence of laminins α4 
from NMJs [285].

The current therapies targeting motor neurons have not 
been very effective against ALS, and therefore, new tar-
gets for developing effective therapies for ALS are being 
explored. Experimental strategies aimed at preserving NMJ 
by increasing muscle expression of neurotrophic factors have 
shown to exert beneficial effects such as preserving innerva-
tion, enhancing MN survival, delaying disease onset, and 
improving lifespan. Similarly modulating miRNAs expres-
sion rescues NMJ denervation and aids in alleviating ALS 
symptoms.

Although recent studies have highlighted early NMJ 
pathomechanism in ALS, information regarding the series 
of events leading to NMJ denervation are scattered. It is 
still unclear whether NMJ denervation is a MN or muscle 
induced event? In order to find answer to such questions, 
extensive research is required to closely observe early patho-
logical events involved in disease initiation. In vivo stud-
ies focusing on monitoring various aspects of NMJ during 
presymptomatic stages will help in better understanding of 
cellular and molecular changes occurring in early disease 
stages. Similarly, in vitro studies exploring co-culture of 
motor neuron, skeletal muscles, and TSCs could provide 
deep insights into NMJ formation, functioning, and main-
tenance in ALS. Furthermore, time-dependent studies 
comparing NMJs of vulnerable (limb muscles) and resist-
ant (extraocular muscles) motor units in ALS will enhance 
our understanding of altered synaptic functionality in ALS. 
Altogether, such studies will provide a better understanding 
of early pathological changes at NMJ and help in connecting 
the missing dots that will unravel the mystery behind ALS.
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