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Abstract
The aggregation of alpha-synuclein (α-Syn) plays a critical role in the development of Parkinson’s disease (PD) and other 
synucleinopathies. α-Syn, which is encoded by the SNCA gene, is a lysine-rich soluble amphipathic protein normally 
expressed in neurons. Located in the cytosolic domain, this protein has the ability to remodel itself in plasma membranes, 
where it assumes an alpha-helix conformation. However, the protein can also adopt another conformation rich in cross-beta 
sheets, undergoing mutations and post-translational modifications, then leading the protein to an unusual aggregation in the 
form of Lewy bodies (LB), which are cytoplasmic inclusions constituted predominantly by α-Syn. Pathogenic mechanisms 
affecting the structural and functional stability of α-Syn — such as endoplasmic reticulum stress, Golgi complex fragmen-
tation, disfunctional protein degradation systems, aberrant interactions with mitochondrial membranes and nuclear DNA, 
altered cytoskeleton dynamics, disrupted neuronal plasmatic membrane, dysfunctional vesicular transport, and formation of 
extracellular toxic aggregates — contribute all to the pathogenic progression of PD and synucleinopathies. In this review, 
we describe the collective knowledge on this topic and provide an update on the critical role of α-Syn aggregates, both at 
the cellular and molecular levels, in the deregulation of organelles affecting the cellular homeostasis and leading to neuronal 
cell death in PD and other synucleinopathies.
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IF	� Intermediate filaments
IMM	� Internal mitochondrial membrane
LB	� Lewy bodies
LC3	� Microtubule-associated protein 1A/1B-light 

chain 3
LC3-II	� LC3-phosphatidylethanolamine conjugate
LN	� Lewy neurites
LP	� Lewy pathology
LRRK2	� Leucine-rich kinase 2
MPTP	� 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
NF	� Neurofilaments
NMR	� Nuclear magnetic resonance
O-GlcNAc	� O-glycosyl-N-acetylation
PBD	� Protein Data Bank
PD	� Parkinson’s disease
RAB1A	� Ras-related protein Rab-1A
RER	� Rough endoplasmic reticulum
ROS	� Reactive oxygen species
SER	� Smooth endoplasmic reticulum
SNpc	� Substantia nigra pars compacta
SNAP-25	� Synaptosomal-associated protein 25
SNARE	� Soluble N-ethylmaleimide sensitive factor-

attachment protein receptor
SUMO1	� Small ubiquitin-related modifier 1
TFEB	� Transcription factor EB
UPR	� Unfolded protein response
UPS	� Ubiquitine-proteasome system
VAMP2	� Vesicle associated membrane protein 2

Introduction

Signs and Clinical Symptoms of Parkinson’s Disease 
(PD)

Parkinson’s disease (PD) is the second most common neu-
rodegenerative disorder worldwide, affecting 1–2% of the 
global population aged 65 years and older. PD is charac-
terized by loss of dopaminergic neurons in the substantia 
nigra pars compacta (SNpc), with a subsequent decrease 
in dopamine (DA) levels and alterations in motor system 
function, evidenced by tremor, muscular rigidity, brad-
ykinesia, and postural instability [1]. Other non-motor 
symptoms of PD include hyposmia, autonomic alterations, 
urination dysfunction, rapid eye movement, sleep changes, 
dementia, and depression [2]. While 45% of patients with 
widespread cerebral Lewy pathology (LP) are diagnosed 
with dementia or motor symptoms [3], only 10% of 
patients with LP in the SNpc and/or basal forebrain are 
diagnosed with PD [4]. Moreover, neurodegeneration in 
the SNpc might precede LP [5]; therefore, caution should 
be taken in PD diagnosis.

Neuropathology of PD

Combined with the loss of mesencephalic nigrostriatal neu-
rons, PD is histologically defined by the presence of Lewy 
bodies (LB) and Lewy neurites (LN) [6], both originally 
identified in the brains of PD patients by Henrich Lewy in 
1912. For more than one century, Lewy’s disorders have 
been identified with the neuropathological characteristics of 
the postmortem PD brains [7]. Later, with the advent of more 
sophisticated histological techniques, α-Syn aggregates were 
discovered as a component of LB [8]. α-Syn aggregates were 
also identified in the central and peripheral nervous systems 
(CNS and PNS, respectively) of PD patients [8, 9]. Exten-
sive comparisons between normal and PD brains revealed 
that neuronal loci affected by α-Syn aggregation proceed 
in a relatively stereotypic manner, progressing from the 
brainstem to the cortex during the evolution of the disease 
[6], which has allowed for the implementation of grading to 
diagnose the severity of the disease when considering the 
neuroanatomical alterations resulting from α-Syn aggrega-
tion [6, 10]. The original locations of α-Syn aggregation 
in the CNS are the dorsal motor nucleus in the brainstem 
and the olfactory bulb. As the disease progresses, α-Syn 
aggregates appear in the pontine tegmentum, followed by 
the amygdala, and finally reach the temporal cortex and the 
neocortex at later disease stages [6].

As mentioned above, at the neuropathological level, PD 
is characterized by degeneration of dopaminergic neurons 
located in the SNpc, and the accumulation of α-Syn in LB 
and LN. While the progressive loss of dopaminergic neurons 
in the SNpc and the subsequent dopaminergic denervation 
in the forebrain are the main features of motor alterations in 
PD [11], the non-dopaminergic neuronal loss is associated 
with non-motor PD symptoms [12, 13].

Abnormal aggregates of α-Syn are prevalent in the syn-
dromes known as synucleinopathies [14]. α-Syn aggrega-
tion at the cellular level can be observed in several forms 
of inclusions: (1) deposits of α-Syn in neuronal LB and LN 
in PD (as already mentioned), and dementia with LB, as 
well as in a considerable number of other pathological con-
ditions; (2) protein deposits in oligodendroglia in multiple 
system atrophy (MSA); and (3) α-Syn inclusions in axonal 
spheroids in neuroaxonal dystrophies [14]. It is noteworthy 
that synucleinopathies are largely heterogeneous in regard 
to their clinical features; for instance, while MSA has been 
described to display several clinical phenotypes linked to dif-
ferent anatomical localization of lesions, PD has been linked 
to four different clinical phenotypes. Moreover, despite the 
challenges in diagnosing DLB compared with other synu-
cleinopathies, evidence suggests common clinical features 
across various pathological forms (typical DLB, DLB with 
Alzheimer’s disease (AD), and AD with amygdala predomi-
nant Lewy pathology) [14]. Therefore, heterogeneity among 
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synucleinopathies is closely associated with their pathologi-
cal phenotypes.

α-Syn pathology in PD patients leads to a wide spectrum 
of toxic effects in the PNS [15]. The first LB identified out-
side the CNS was found in the enteric nervous system (ENS) 
[16, 17]. α-Syn aggregates have also been identified in the 
gastrointestinal system, the spinal cord, the sympathetic 
ganglia, and the vagus nerve [18]. The presence of α-Syn 
aggregates outside the basal ganglia provides a potential 
mechanism for non-motor symptoms associated with PD [2], 
and a promising biomarker. For instance, gastrointestinal 
dysfunction is one of the most common non-motor symp-
toms associated with PD, starting several years before the 
beginning of motor or behavior alterations [19]. In agree-
ment, the most consistent localization of α-Syn in the ENS 
appears to be from the esophagus to the rectum [15]. It is 
noteworthy that α-Syn aggregates appear in the ENS years 
before the pathological signs develop in the CNS, parallel 
to gastrointestinal symptoms [18, 20], suggesting that α-Syn 
aggregations in neurons from the ENS are the main cause of 
gastric alterations.

Pharmacological Treatments for PD

The pharmacological treatments available for PD are 
designed to reduce the symptoms, but not the progression 
of the disease. There are several drugs in use at the clinical 
level for treatment at different stages of the pathological con-
dition. Among them, the most relevant include carbidopa/
levodopa, inhibitors of monoamine oxidase B (MAO-B), DA 
agonists, and anticholinergic agents. Table 1 summarizes the 
main features of some of these agents.

Biological Functions of α‑Syn

α-Syn assumes several physiological functions given 
its presynaptic localization [27] and its ability to bind 
biological membranes; these functions include optimal 
neurotransmitter release, in which the protein regulates 
coupling and fusion of vesicles [28–31]. α-Syn has also 
been associated with exo- and endocytosis of synaptic 
vesicles [32]. In addition, neuroprotective and antiapop-
totic properties [33], as well as synaptic plasticity, have 
been attributed to this protein [34]. Neuronal protection 
against oxidative stress [35] and preservation of mito-
chondrial function in neurons [36] have also been shown 
to be part of α-Syn functions. An active role of α-Syn in 
axonal transport by its direct interaction with microtu-
bules has also been described [37]. Although all these 
important functions highlight the relevance of α-Syn to 
neuronal physiology, its modification, misfolding, and 

further aggregation are responsible for several pathologi-
cal events, as will be described below.

α‑Syn and Neuronal Damage in PD 
and Other Neuropathies

Neurons are morphologically different from other cells in 
several aspects, including compartamentalization: they 
possess dendrites, a unique cell body (neuronal soma), 
an axon, and several synaptic terminals (Fig. 1). In the 
cytoplasmic domain, several organelles are interconnected, 
forming a complex system of structures that display a 
wide variety of enzymatic characteristics. Lysosomes and 
mitochondria are accompanied and supported by vesicular 
structures and protein filaments forming the cytoskeleton 
[38], with all these structures playing specific roles in the 
transmission of electric and chemical signals [39].

At the cellular level, native α-Syn is present in synaptic 
terminals, organelles, and neuronal nuclei [27, 40]. While 
its physiological functions in each subcellular compart-
ment remain poorly understood, the expression of patho-
logical forms of α-Syn has been associated with aberrant 
cellular responses. In turn, the cytotoxic effects of α-Syn 
fibrils may cause oxidative stress, altered axonal transport, 
mitochondrial and synaptic dysfunction [41, 42], Golgi 
complex (GC) fragmentation, endoplasmic reticulum (ER) 
stress, plasmatic membrane, and cytoskeleton alterations, 
as well as disruption of lysosomal-autophagy and protea-
some-ubiquitin degradation systems [43, 44].

The accumulation of toxic α-Syn species in presyn-
aptic terminals is responsible for synaptic dysfunction 
and synaptotoxicity, leading to cell death by degenera-
tion (Fig. 4). Since the cellular and molecular mecha-
nisms inherent to PD and other synucleinopathies underlie 
α-Syn aggregation, and the precise role of the protein in 
neurodegeneration has yet to be fully characterized, the 
aim of this review is to update the reader known α-Syn 
gene mutations codifying for the protein and its differ-
ent structural forms, providing crystalographic structural 
representations of some of these forms, and describing 
the consequences of α-Syn misfolding and aggregation. 
We also describe post-translational modifications and 
correlate them with morphological and functional altera-
tions produced by oligomers in cellular organelles, with 
emphasis on altered synthesis in the rough endoplasmic 
reticulum (RER), GC fragmentation, inhibition of degra-
dative systems, damage of neural organelles, and defects 
in cytoskeleton dynamics (Fig. 1). By discusing these 
approaches, we aim to provide an integrative view of the 
molecular processes involved in the pathogenesis of PD 
and other synucleinopathies.
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Table 1   Common pharmacological treatments for Parkinson’s disease

Drug Chemical structure Role in therapy
Carbidopa/Levodo
pa (Sinemet)

(DrugBank 
Accession Number:
DB00190/DB01235)

This drug is an effective combination 
of carbidopa and levodopa, inducing 
an increased amount of the later in 
the brain. The recommended ratio 
for carbidopa:levodopa is 1:4. It is 
recommended for the treatment of 
motor symptoms due to its efficacy 
for the control of rigidity, 
bradykinesia and tremors [21]. 
Levodopa is the active component 
capable of crossing the blood-brain 
barrier in the brain, whereas 
carbidopa inhibits the peripheral 
metabolism of levodopa [22].

Amantadine 
(DrugBank 
Accession Number: 
DB00915)

This compound can decrease motor 
alterations and dyskinesia induced 
by levodopa. It is recommended for 
patients with advanced PD [23].

Benzatropine 
(DrugBank 
Accession Number: 
DB00245)

This anticholinergic agent can be 
used in patients with an age below 
the 65 years-old presenting only 
tremor. This drug is reserved for 
patients with early expression of PD 
[24].

Selegiline 
(DrugBank 
Accession Number: 
DB01037)

MAO-B inhibitors are considered as 
the most important drugs for therapy 
in young PD patients exhibiting 
moderate motor symptoms since 
they do not cause motor fluctuations 
or dyskinesia associated with 
levodopa [25].

Apomorphine 
(DrugBank 
Accession Number: 
DB00714)

This drug belongs to the group of DA
agonists, thereby exerting their 
action through the estimulation of DA
receptors. They are used in early 
stages of PD for severe freezing 
episodes [26].
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α‑Syn Gene Mutations

The gene encoding α-Syn is located in choromosome 4; 
this single gene is known as SNCA (4q23) and consists of 
7 axons (5 of which are encoder) [45] (Fig. 1). The gene 
may present genomic duplication and triplication, as well 
as nonsense mutations such as A30P, A53T, and E46K [46, 
47] (Fig. 1). These three mutations mainly affect the N-ter-
minal domain of α-Syn. A30P and A53T stimulate the 
formation of protofibrils, leading α-Syn small aggregates 
to larger inclusions [48]. Rospigliosi et al. [49] reported 
that the E46K mutation enhances the positive charge of 
the N-terminal domain, thus modifying the net charge 
of the protein and promoting the interaction contacts of 

the C-terminal with the N-terminal domain. In contrast, 
A30P and A53T mutations do not alter the charge of the 
N-terminal domain, nor promote N-terminal contacts with 
C-terminal domain. Several reports have demonstrated that 
the three mutations affect in different manners the proper-
ties and functions of α-Syn [50, 51]. Moreover, since the 
discovery of the A53T mutation, three additional muta-
tions on the SNCA gene identified as H50Q [52], G51D 
[53], and A53E [54] have been related to idiopathic PD 
[55]. Genome-wide association studies have consistently 
revealed highly significant regions of genetic variation 
around the SNCA gene that contribute to PD risk factors. 
Recently, Chang et al. [56] carried out the genome-wide 
association analysis identifying 17 novel risk loci.

Fig. 1   Alpha-synuclein: pathological progression in synucleinopa-
thies. In the left side, a representation of a typical neuron (1). A 
detail of the neuronal nucleus (2) is also shown. The gene codifying 
for α-Syn (SNCA) is located in chromosome 4. SNCA is composed 
by six exons, from which the last five codify for α-Syn. The domains 
and mutations of α-Syn are also depicted. Misfolded α-Syn induces 
endoplasmic reticulum (ER) stress (3). In addition, misfolded α-Syn 
is transported by vesicles producing fragmentation of organels such 
as the Golgi complex (GC) (4). At the mitochondrial level (5), α-Syn 
produces dysfunction by fragmentation after binding to membranes. 
The interaction of α-Syn with complex I reduces mitochondrial activ-
ity. In lysosomes (6), α-Syn is degraded by autophagy (CMA), or in 
the cytosolic domain by the ubiquitin–proteasome system (UPS); 
however, these degradative systems may present autophagic abnor-

malities linked to the pathology of Parkinson’s disease (PD), lead-
ing to the cytosolic accumulation of α-Syn toxic species. In turn, 
this process leads to the formation of Lewy bodies (LB) as dimers, 
oligomers, fibrils, and β-sheets (protofibrils). At the cytoskeleton (7), 
the presence of α-Syn aggregates produces structural impairment and 
compromised dynamics in axonal transport. At the synaptic mem-
brane (SM) (8) oligomeric α-Syn plays a multifunctional role, form-
ing transmembrane rings (pores) capable of compromising the mem-
brane integrity, disrupting Ca2+ homeostasis, and signaling. Various 
structures of the protein are shown (9): UPS is unable to degrade mis-
folded α-Syn (9a); dimers (9b); oligomers (9c); amyloid fibers (9d); 
β-sheets (9e); dense nucleus LB (9f1); halo lacking LB (9f2); pale LB 
(9f3)
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α‑Syn Interaction with Nuclear DNA

Although the name “synuclein” indicates the primary synap-
tic and nuclear distribution of this protein [27], its function 
within the nucleus has yet to be appreciated. α-Syn seems 
to modulate the physical properties of DNA. Experiments 
using wild-type α-Syn in nanofluids revealed that its binding 
to DNA is mainly stimulated by electrostatic interactions, 
resulting in a gradual increase in DNA length [57]. One of 
the key aspects in the interaction between α-Syn and the 
nucleus lies in its import from the cytoplasmic domain, evi-
denced by the crucial role of nuclear pore complex in α-Syn 
translocation across the nuclear membrane [58] (Fig. 1). 
When α-Syn and karyopherin alpha 6 (a nuclear adapter pro-
tein) were labeled in SH-SY5Y cells and fetal primary corti-
cal neurons from mice to evaluate their physical interaction 
using FRET, it was found that these two proteins interact 
once sumoylated in a process that is required for its nuclear 
transport. In addition, although nuclear co-localization of 
α-Syn and DNA has been described (Fig. 1), the precise 
role of α-Syn in the nucleus remains controversial since a 
nuclear synchronism responsible for negatively regulating 
the repair of DNA genes responsible for cell cycle has been 
reported. In this regard, Pinho et al. [59] described specific 
α-Syn phosphorylation sites and the nuclear localization of 
different α-Syn forms affecting gene expression responsible 
for neurotoxicity.

α‑Syn Structure, Aggregations, and LB

α‑Syn Chemical and Molecular Structure

Several groups have gathered structural information on 
α-Syn at the molecular level. α-Syn is a soluble pro-
tein highly expressed and conserved [60]. The protein is 
expressed in different isoforms composed by 98, 112, 126, 
or 140 amino acids [61, 62], with the latter being the most 
studied; this isoform possesses a molecular weight of 14 kDa 
and its 140 amino acids are distributed into three domains: 
(i) the frequently acetylated N-terminal domain, comprising 
the first 60 amino acids, is positively charged by lysine resi-
dues and displays an established series of KTKEGV repeats, 
forming an α-helix for binding with membrane lipids, thus 
reducing the formation of β structures [63–65]; (ii) the 
highly hydrophobic non-amyloid β component (or NAC), 
comprising amino acids 61 to 95 from the central region, 
which is fundamental for protein aggregation [65, 66]; and 
(iii) the highly acidic C-terminal domain, which is nega-
tively charged by glutamic and aspartic acids, comprising 
amino acids 96 to 140, and is prone to lack of stable struc-
ture (Fig. 1). In this last domain, several post-translational 
modifications can be found [65].

Several α-Syn structures have been determined by elec-
tron diffraction, nuclear magnetic resonance (NMR), and 
cryomicroscopy (Cryo-EM); these structures have already 
been deposited in the Protein Data Bank (PBD). Among 
them, the monomeric α-Syn structure bound to micelles can 
be obtained by NMR (PDB ID 1XQ8) [67]. As mentioned 
before, this monomeric structure contains three domains: 
N-terminal, NAC, and C-terminal domains (highlighted in 
different colors in Fig. 2). The three main mutations seem to 
be located in the N-terminal domain, although this structure 
is not mutated. Figure 2A shows where the mutations might 
be located in A30, E46, and A53 (orange color) [68], provid-
ing two β-hairpin folding mechanisms through molecular 
dynamics’ simulations; it was observed that A30P and A53T 
mutations accelerate the formation of β-hairpins, favoring 
the part of the core that constitutes the α-Syn fibrils, and 
undergoing stabilization through hydrophobic contacts and 
hydrogen bonds. However, E46K is responsible for enhanced 
aggregation with respect to A30P and A53T [69]. These 
authors also studied the effects of several mutations, mainly 
A30P, E46K, and A53T, on the rates of lipid-induced aggre-
gation; they emphasized the influence of a singular mutation 
on different steps of α-Syn aggregation. Furthermore, a short 
segment of residues (68 to 78) of the NAC domain (also 
highlighted in cyan color in Fig. 2A) plays a major role in 
the aggregation and cytotoxicity of α-Syn. This short seg-
ment, known as NACore (Fig. 2B), was obtained by micro-
electron diffraction (PDB ID 4RIL) [70]. Soon thereafter 
[71], the first tridimensional model of full-length α-Syn 
fibril obtained by solid state NMR (PDB ID 2N0A) was 
reported (Fig. 2C). The fibril core is formed by a β-strand 
set, and is stabilized by non-covalent interactions, mainly 
hydrophobic contacts and hydrogen bonds. More recently 
[72], a structure containing α-Syn cytotoxic fibrils from 
residues 1 to 121 (PDB ID 6H6B), which is composed by 
two connected protofilaments (Fig. 2D), was determined by 
Cryo-EM. Finally, the same group determined new α-Syn 
fibril structures referred to as polymorphous 2A (PDB ID 
6RT0) and 2B (PDB ID 6RTB) (Figs. 2E and F, respec-
tively) [73].

The last three structures are formed by two protofila-
ments exhibiting a staggered β-strand fold which could cause 
formation, growth, and stability of α-Syn cytotoxic fibrils 
(Figs. 2D, E, and F).

α‑Syn Aggregation and LB

In the cytosolic domain, α-Syn monomers are expressed as 
polypeptidic chains [74] organized as β-sheets or protofi-
brils. These monomers undergo conformational changes 
that interact to form two types of dimers: antiparallel (not 
propagating) and parallel (propagating) dimers. These pro-
cesses occur in the cytoplasmic domain or in association 
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with membranes. Propagating α-Syn dimers can be enlarged 
through the addition of displayed monomers to generate oli-
gomers and ring-like oligomers. Cytoplasmic α-Syn oligom-
ers are enlarged by the addition of soluble monomers, first 
forming small amyloid fibrils, and later larger fibrils [66] 
(Fig. 1: 9b, 9c, and 9d). During fibrillogenesis and α-Syn 
aggregation, the intermediate species (oligomers and amy-
loid fibrils) are highly toxic [75]. The accumulation of amy-
loid fibrils leads to the formation of intracellular inclusions 
known as LB [76]; however, recent studies have shown that 
the acetylated N-terminal of α-Syn is conserved in condi-
tions of a disordered monomer, compared to oligomerization 
in neuronal cells under physiological conditions [77, 78]. 
The accumulated membrane-bound monomers undergo con-
formational changes to form intermediates rich in β-sheets 
(protofibrils), and then associate with ring-like oligomers 
or amyloid fibrils [79]. Oligomeric α-Syn simultaneously 
localized to the cytosolic domain and the membrane, plays 

multifunctional roles, forming transmembrane pore-like 
rings capable of breaching membrane integrity, thus alter-
ing intracellular Ca2+ homeostasis and signaling [66] [80].

Although LB are intracellular inclusions composed 
mainly of α-Syn fibrils [76, 81], they also comprise other 
proteins, such as ubiquitin, parkin, neurofilaments (NF) [76], 
leucine-rich kinase 2 (LRRK2) [82], histone deacetylase 6 
(HDAC6) [83], and the endosomal sorting related protein 
charged multivesicular body protein 2B (CHMP2B) [84]. 
Histologically, these structures appear as spherical bodies 
displacing all other cell components; three varieties have 
been described: the first one is an eosinophilic inclusion with 
a dense core radiating fibrils [85], the second form lacks 
the halo [86], and the third one is a pale body composed 
by eosinophilic round granules, which are believed to be 
precursors of LB (Fig. 1: 9f1, 9f2, and 9f3) [87].

About 90% of α-Syn in LB is phosphorylated at Ser129 
(pS129-α-Syn) in the C-terminal region. It has been 

Fig. 2   α-Syn structures. A Monomeric α-Syn structure obtained by 
NMR (PDB ID 1XQ8) [67]. B Segment of the non-amyloid β com-
ponent obtained by electron diffraction (PDB ID 4RIL) [70]. C First 
tridimensional model of α-Syn fibers determined by solid state NMR 

(PDB ID 2N0A) [71]. D Structure containing cytotoxic α-Syn fibrils 
(PDB ID 6H6B) [72]. E α-Syn fibril polymorphic 2A structure (PDB 
ID 6RT0) [73]. F α-Syn fibril polymorphic 2B structure (PDB ID 
6RTB) [73]
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demonstrated that modifications at these sites inhibit α-Syn 
aggregation [88, 89]. Similarly, tyrosine phosphorylation at 
Y125, Y133, and Y135 is associated with suppression of 
aggregation and α-Syn toxicity [90, 91].

Neurotoxic Association of α‑Syn with Neuronal 
Membranes

ER Stress and PD

α-Syn synthesis takes place in the ER. Folding, in coopera-
tion with chaperones, constitutes the first step of the trans-
port mechanism of the RER-GC-lysosome complex [92]. ER 
is a membranous organelle that projects into the cytoplasm 
as an extension of the external nuclear membrane; it forms 
flattened closed coats known as cisterns, which conform 
an interconnected tubular net [93]. The ER is classified as 
smooth endoplasmic reticulum (SER) and RER, according to 
its morphology. The ER establishes several sites of contact 
with various organelles such as mitochondria, endosomes, 
the endo-lysosomic system, and the cytoplasmic membrane. 
Its association with mitochondrial membranes allows for the 
exchange of Ca2+ and lipids [38]. The ER also constitutes 
the main site of intracellular storage and regulation of Ca2+, 
and mediates several key signals in various cellular pro-
cesses, including appropriate protein folding [94].

Altered RER function, such as altered Ca2+ levels, 
increased oxidative stress, and dysfunctional N-glyco-
sylation, may trigger stress and promote the activation of 
signaling pathways grouped under the term UPR (unfolded 
protein response) in an attempt to squash the stress in its 
course, thus rescuing cells and restoring RER homeostasis. 
However, neurodegenerative disorders include the accumu-
lation of endogenous mutant misfolded proteins [95] and a 
decrease in Ca2+ reserves in the lumen. Chaperons, such as 
HSPA5 (heat-shock protein 5) and CALR (calreticulin), are 
located in the lumen of the RER. Since they require high 
levels of Ca2+ [96], the exhaustion of this cation in deposits 
leads chaperons to be inactive, thus altering protein fold-
ing processes, and resulting in the accumulation of α-Syn 
oligomers in the lumen. In addition, the stress induced by 
α-Syn overexpression (gene duplications and triplications) 
may facilitate the increase in oligomer concentrations. 
Combined, these studies indicate that ER stress induced by 
oligomers is involved in PD pathology [97] by inhibiting 
vesicular trafficking from RER to GC [98], thus triggering 
chronic stress-induced cell death [99] (Figs. 1 and 3).

GC Fragmentation of PD

α-Syn synthesized in normal conditions in the RER is trans-
ported to the GC by conventional mechanisms (RER-GC-
lysosome); α-Syn travels within vesicles to the GC. This 

organelle is formed by cisterns stacked in dichthyosomes 
which are joined together through tubular interconnections, 
each one showing two distinct surfaces: cis (entrance) and 
trans (exit). These special compartments are strongly associ-
ated with each other and are formed by a network of tubular 
and cistern structures: cis Golgi network (CGN) and trans 
Golgi network (TGN), forming a single complex. The GC 
is responsible for transporting, modifying, and packing 
proteins. The location of the GC depends on microtubules’ 
organization [38, 100]. One common feature of neurode-
generative disorders is the considerable number of neurons 
showing fragmented GC [101–103], resulting in a loss of 
vesicles, probably due to the formation of α-Syn oligom-
ers [103, 104], with ensuing alterations in axonal transport 
(Figs. 1 and 3). Since this organelle is the central hub for 
vesicular trafficking and an important center for the inte-
gration of several signaling pathways, it makes sense that 
some regulatory proteins are altered; among them, Rab1, a 
small GTPase regulating the RER transport to GC, is over-
expressed in surviving neurons [105].

Intracellular Protein Degradation Systems: Chaperone‑Medi‑
ated Autophagy (CMA) and Ubiquitin–Proteasome System 
(UPS)  As mentioned above, protein exportation occurs in 
the RER-GC, while degradation is carried out by lysosomes, 
which are spherical organelles delimited by a single mem-
brane. Lysosomes contain more than 60 different acidic 
hydrolases for the degradation of misfolded proteins and old 
organelles, and more than 50 proteins for membrane recog-
nition [106]. In neurons, due to their morphology, metabolic 
characteristics, and post-mitotic status, the autophagy-lyso-
somal system is particularly vulnerable to the deregulation 
of degradative protein systems. This is a crucial process for 
the preservation of intracellular homeostasis, which is main-
tained by two independent but complementary systems: the 
CMA system and the UPS, both receiving the names of their 
final destinations: lysosome and proteasome, respectively 
(Figs. 1 and 3).

α-Syn contains a recognition site for CMA known as the 
KFERQ sequence, which is sensed by the cytosolic HSC70 
chaperone; the α-Syn-chaperone complex binds the lyso-
somal membrane, interacting with LAMP-2A receptor at 
CMA, followed by α-Syn translocation into the lysosomal 
lumen for its degradation [107] (Fig. 3). However, altera-
tions in α-Syn due to mutations or post-translational modi-
fications may compromise the α-Syn exchange in CMA. 
Some mutant forms of α-Syn in PD (A30P and A53T) do not 
undergo efficient degradation through CMA; instead, these 
mutants can bind to LAMP-2A on the lysosomal surface 
with high affinity, but they do not internalize into lysosomes, 
thus avoiding degradation. In addition, the CMA system is 
inhibited by the decreased capacity of these α-Syn forms to 
be degraded by this pathway, thus favoring the increase in 
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these soluble forms in the cytosolic domain and stimulating 
the formation of oligomeric protofibril intermediates, which 
progress to cytotoxic insoluble α-Syn fibrils [108] (Fig. 3).

On the other hand, the UPS, independently of lysosomes, 
acts in the cytosol by polyubiquitinating proteins to be 
degraded by proteasome. Unfolded or misfolded soluble 
proteins are directed to the UPS, cross the proteasomal pore, 
and undergo degradation into short peptides [109] (Fig. 3). 

It has been observed that mutant α-Syn found in dopamin-
ergic cells may induce functional alterations in proteasomal 
20/26S protein [110]. Other studies have demonstrated that 
α-Syn overexpression leads to early catalytic disruption of 
proteasome 26S, with a consequent dysfunction of UPS. 
This alteration has been associated with the selective accu-
mulation of phosphorylated α-Syn (p-α-Syn) at S129 in neu-
rons, which in turn is related with an enhanced toxicity [111] 

Fig. 3   The unfolded protein response (UPR) pathway. UPR is con-
trolled by three transducers: IRE1, ATF6α, and PERK (signaling 
pathways appear detailed by color lines in the scheme). Under physi-
ological conditions, IRE1, ATF6α, and PERK associate with each 
other and remain inactive by the complex BIP/GRP78, which resides 
in the ER. In contrast, under ER stress conditions, BIP/GRP78 dis-
sociates, then allowing the activation of the UPR. ATF6 is trans-
ported from ER to GC, where it undergoes proteolitic cleavage by 
proteases S1P/S2P. The cytosolic ATF6 fragment (active ATF6α) is 
finally translocated into the nucleus where it acts as a transcription 
factor for the genes required for endoplasmic reticulum-associated 
degradation (ERAD) and modulates the transcription of XBP1. ER 
stress also activates PERK, which phosphorylates prostaglandin 
F2α to attenuate protein translation. Simultaneously, ATF4 transla-
tion stimulates the expression of ER chaperones and other genes 
controlling autophagy, redox activity, and the metabolism of nutri-
ents. Under conditions of severe ER stress, the PERK-ATF4 com-
plex regulates proapoptotic genes, including CHOP, thus leading to 
programmed cell death. In turn, once activated, IRE1 coordinates 
the alternative splicing of XBP1, which upregulates genes codifying 

for ER chaperones, ERAD components, and proteins involved in the 
pathway of lipid biosynthesis. ER stress also induces mitochondrial 
fragmentation and mitophagy in a PERK/ATF4 pathway-dependent 
manner. In turn, ATF4 acts as a transcription factor for the gene codi-
fying for parkin, which is recruited in mitochondrial membranes by 
PINK1. The PINK1-parkin complex regulates mitophagy, though 
under pathological conditions, the system is deregulated, leading to 
cell dysfunction. The α-Syn-chaperone complex binds the lysosomal 
membrane and interacts with the LAMP-2A receptor for chaperone-
mediated autophagy (CMA); then, under physiological conditions, 
α-Syn translocates into the lysosomal domain to be degraded. Soluble 
α-Syn is also directed to the UPS, crossing through the proteasomal 
pore to be degraded into small peptides. However, alterations in the 
function of cell organelles and or disruption of the described signal-
ing pathways may induce changes in the protein structure and func-
tion, leading to the production of toxic forms of α-Syn. In addition, 
misfolded, aggregated, and/or mutated forms of α-Syn (appearing in 
the scheme in several places as an aggregated structure and denoted 
at the left bottom as “α-Syn aggregation”) interact with several orga-
nelles, affecting their function and signaling
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responsible for dopaminergic degeneration. The dysfunction 
of any of the cellular degradative systems, or both, has been 
implicated in the onset and progression of PD.

Cross‑linking α‑Syn Toxicity, Autophagy, ER Stress, and 
PD  Mutations in the gene responsible for α-Syn encoding, 
the SNCA gene, are linked to autosomal-dominant forms 
of PD. These mutations include A53T, duplication, and/or 
triplication [112]. Autophagy is one of the most effective 
α-Syn degradation systems [113]. All forms (wild-type, 
mutant, phosphorylated, and oligomeric) of α-Syn can acti-
vate ER stress, thereby promoting autophagy; however, they 
can also block autophagy induction by impairing autophago-
some maturation, fusion with lysosomes, and lysosomal bio-
genesis or function [112]. Autophagy can be promoted by 
both wild-type and A53T mutant α-Syn by upregulating the 
Beclin-1 and microtubule-associated protein 1A/1B-light 
chain 3 (LC3) expression [114, 115]. In contrast, enhanced 
expression of wild-type α-Syn decreases autophagy by 
inhibiting Ras-related protein Rab-1A (RAB1A), thus lead-
ing to decreased formation of autophagosomes [116]. It is 
known that dopaminergic neurodegeneration is protected by 
RAB1 overexpression in several PD animal models [98, 117, 
118]. In addition, both wild-type and A53T α-Syn increase 
mTOR activity and decrease autophagy [119, 120]. Animal 
models overexpressing α-Syn display impaired autophagy 
by sequestering the transcription factor EB (TFEB) in the 
cytoplasm and accumulating p62 and microtubule-associ-
ated protein 1A/1B-light chain 3-phosphatidylethanola-
mine conjugate (LC3-II) proteins [115]. In addition, PC12 
cells loaded with A53T α-Syn exhibit autophagic-vesicular 
structures and reduced lysosomal hydrolysis [121]. Highly 
neurotoxic phosphorylated α-Syn species, also known as 
“pα-Syn*,” are present in primary neurons cultured in the 
presence of α-Syn fibrils. The accumulation of these species 
results from incomplete autophagic degradation of α-Syn 
[122], hence contributing to the cross-talk between ER 
stress, mitochondrial fission, and mitophagy. It is notewor-
thy that while wild-type α-Syn contains a KFERQ sequence 
allowing its degradation by the CMA pathway (already men-
tioned above), pathogenic α-Syn mutants act as CMA uptake 
inhibitors [123]. Moreover, it has been shown that adeno-
associated virus (AAV)-induced overexpression of A53T 
α-Syn in neurons, or A53T α-Syn in transgenic mice, can 
reduce CMA-mediated proteolysis of other substrates [124, 
125]. Wild-type α-Syn can be also modified by DA, result-
ing in impaired CMA proteolysis, which resembles the one 
produced by mutant α-Syn [126]. Altogether, the evidence 
described above contributes to better understanding of the 
role of α-Syn modifications and mutations in nigrostriatal 
pathogenesis in PD.

Cross‑linking α‑Syn Toxicity, UPS, Mitochondrial Dysfunc‑
tion, and UPR  Degradation of aggregated, misfolded, 
damaged, and mutant proteins is carried out by the UPS 
through a highly regulated process involving the tagging 
of the target protein by polyubiquitination and further deg-
radation by the 26S proteasome [127]. UPS dysfunction is 
inherent to all forms of PD, which has been inferred from 
sporadic, toxin-induced studies as well as genetic forms of 
PD [128]. Experimental evidence demonstrates that protea-
somal inhibition induces dopaminergic degeneration and 
α-Syn both under in vitro and in vivo conditions in several 
PD models [129, 130]. An active mitochondrial role in 
this process has been suggested since mtDNA depletion 
is tightly linked to UPS downregulation and α-Syn oli-
gomerization [131], while reduced ATP production impairs 
proteasomal function [132]. It is also known that mutations 
in the gene encoding the neuromodulatory protein parkin 
are responsible for impaired E3 ubiquitinprotein ligase 
activity, thus reducing the mitochondrial quality control 
and accumulating parkin-specific substrates such as α-Syn 
[133], thus leading to impairment of dopaminergic neurons 
[134]. Remodeling the protein profile of the outer mito-
chondrial membrane by UPS-associated parkin is essen-
tial for the preservation of mitophagy, thus supporting a 
link between the UPS and autophagy [135]. PINK1 also 
participates in the UPS-parkin interaction, increasing the 
degradation of misfolded proteins [136]. Therefore, it is 
generally accepted that the stimulation of the UPS activ-
ity and the preservation of mitochondrial activity reduce 
the risk of α-Syn aggregation and inclusion by the protein 
clearance [134] (Fig. 3).

The use of cell models of PD with biochemical recon-
struction assays has demonstrated that α-Syn inhibits 
the processing of the transcription factor ATF6 either 
directly through physical interactions or indirectly by a 
restricted incorporation of COPII (vesicles associated to 
the transport of RER and GC). Decrease ATF6 signaling 
was accompanied by impaired degradative ER function 
(ERAD) and an increased proapoptotic signaling [137]. 
In addition, ER stress and UPR activation have been 
observed in cell and murine models of PD accompanied by 
α-Syn aggregation. Both the 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) and the 6-hydroxydopamine 
(6-OHDA) PD models cause upregulation of the C/EBP 
homologous protein (CHOP) and ATF4, pointing to ER 
stress, while CHOP deletion can prevent the neurodegen-
eration induced by 6-OHDA. Congruently, post mortem 
brain samples of PD patients show the presence of several 
markers of ER stress and UPR activation due to increased 
levels of misfolded α-Syn, such as phosphorylated ERK 
[138] (Fig. 3).

629Molecular Neurobiology  (2022) 59:620–642

(0123456789)1 3



Post‑translational Modifications

Several α-Syn post-translational modifications include phos-
phorylation, oxidation, acetylation, ubiquitination, glycation, 
glycosylation, proteolysis, and nitration, mainly occurring at 
the carboxy-terminal domain and resulting in changes in the 
net charge and protein structure. These modifications lead 
to alterations in the binding affinity for other proteins and 
lipids, and the subsequent changes in hydrophobicity. Which 
of these post-translational modifications are physiologically 
relevant, and which of them emerge from the pathology 
associated to a synucleinopathy, has yet to be elucidated. In 
the interim, it seems clear that α-Syn structure and function 
may be significantly altered by the following post-transla-
tional modifications:

a	 Phosphorylation is one of the most common post-
translational modifications and plays a major role in the 
function of several target proteins. A common phospho-
rylation occurs at α-Syn Ser129 [139], being relevant to 
neurodegeneration in PD.

b	 Acetylation of α-Syn amino-terminal augments its pro-
pensity for helical folding, its affinity for membranes, 
and its resistance to aggregation mediated by binding 
of the acetyl group to the amino group at the first amino 
acid [140, 141].

c	 Sumoylation of α-Syn is modified by small ubiquitin-
related modifier 1 (SUMO1); monosumation occurs at 
a single site, and this process seems to inhibit α-Syn 
aggregation by increasing its solubility [142, 143].

d	 Glycation: advanced glycation end products (AGEs) and 
α-Syn are both found in the brain of PD patients. Indeed, 
AGEs co-localize with α-Syn in LB in the CNS [144]. 
It has been reported that glycation of α-Syn reduces 
monoubiquitination, as well as degradation via protea-
some and autophagy in cellular models of PD [145]. 
The intracellular accumulation of α-Syn precedes the 
accumulation of LB, while the formation of extracel-
lular AGEs accelerates the intracellular process of LB 
formation [146]. Glycation with D-ribose generates the 
formation of molten globule-like aggregates, leading to 
oxidative stress and toxicity [147].

e	 Glycosylation: α-Syn is post-translationally modified 
by O-glycosyl-N-acetylation (O-GlcNAc); however, 
the consequences of this process remain unknown. The 
O-GlcNAc modification plays a major role in the preven-
tion of aggregation and toxicity of extracellular α-Syn 
fibers [148].

f	 Truncation: another modification of a-Syn is proteol-
ysis, which is caused by a truncation on this protein, 
removing the acidic terminal. In vitro studies have used 
enzymes involved in α-Syn proteolysis such as neuro-
sin, cathepsin D, and metaloproteases, among several 

others. Here, we highlight the role of neurosin, a serine 
proteinase whose viral administration has been shown 
to promote α-Syn degradation and co-localization in 
LB. Recently [149], it has been reported that neurosin 
truncates α-Syn beyond the residue 80, thus inhibiting 
polymerization; however, if the protein is truncated 
beyond the residue 97, it tends to polymerize. On the 
basis of these findings, it has been assumed that neurosin 
constitutes a therapeutic target in PD.

g	 Nitration of α-Syn may occur in most of filaments and 
insoluble fractions from the affected brain regions in 
synucleinopathies [150]. Four tyrosine residues (Y39, 
Y125, Y133, and Y136) are susceptible to nitration 
[151–153], with Y39 nitration accelerating α-Syn oli-
gomerization. In addition, it has been shown that both 
monomeric and dimeric forms of nitrated α-Syn may 
accelerate the formation of fibrils, as well as the addi-
tional fibrillation of unmodified α-Syn. The specific 
incorporation of 3-nitrotyrosine in several regions of 
α-Syn [152] suggests that different species of nitrated 
α-Syn display distinct aggregation properties. In addi-
tion, it has been demonstrated that the intermolecular 
interactions between N- and C-terminal regions of 
α-Syn play a crucial role in mediating nitration-induced 
α-Syn oligomerization [152]. Moreover, there is greater 
nitration of tyrosine residues in positions 125 and 136 
(Y125/136) than in the nitrated residues in position 39 of 
tyrosine (Y39) in early-onset PD [154]. α-Syn residues 
may be nitrated in a differential manner, causing diverse 
effects; for instance, nitration located in Y39 is responsi-
ble for a reduced binding of this protein to vesicles and 
a decrease in the rate of protein degradation [155].

h	 Oxidative and nitrative stress: PD and other synucle-
inopathies are neurodegenerative disorders character-
ized by oxidative stress and neuroinflammation [156]. 
As any other biological substrate, α-Syn is susceptible 
to attack and modification by reactive oxygen species 
(ROS). These modifications include the formation of a 
complex with 4-hydroxy-2-nonenal (4-HNE-α-Syn), its 
nitration (n-α-Syn), and its oxidation (o-α-Syn), all of 
which have been implicated in the stimulation of various 
forms of protein oligomerization, with the 4-HNE-α-Syn 
modification being selectively toxic to neurons [157]. 
Consequently, oxidative stress has been shown to affect 
patterns of α-Syn aggregation and membrane binding, 
thus affecting mitochondrial function, neurotransmitter 
recycling, protein degradation, and trafficking [156]. 
These observations have led to the hypothesis that under 
physiological conditions, α-Syn might act as a free radi-
cal scavenger prior to the onset of synucleinopathies. 
Indeed, some of these modifications have been shown 
to be responsible for augmented ROS formation, thus 
contributing to a toxic feedback loop, contributing to 
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neuronal damage [157]. Finally, environmental factors 
favoring oxidative and nitrative α-Syn modifications 
include exposure to heavy metals, pesticides, and poly-
cations, to name a few [158].

α‑Syn Interactions with Mitochondrial Membranes

Mitochondria are double-membrane organelles involved 
in the oxidation of metabolites, ATP generation, oxidative 
phosphorylation, and electron transport chain activation. 
When α-Syn binds to both mitochondrial membranes (inner 
mitochondrial membrane (IMM) and outer mitochondrial 
membrane (OMM)), it leads to mitochondrial dysfunction. 
This effect is induced by α-Syn binding at sites enriched 
with cardiolipin (CL), similar in content to that of synaptic 
vesicles. The biophysical characteristics of mitochondrial 
membranes facilitate the binding of α-Syn oligomers due 
to the CL content [159], which may lead to IMM and EMM 
permeation. The insertion of β-sheet oligomers is responsi-
ble for the formation of a toroidal protein-lipid pore [160] 
(Fig. 3), causing membrane rupture and cell death. It has 
been shown that α-Syn, in its α-helix conformation, binds to 
IMM at high concentrations [161] (Fig. 3). In addition, oli-
gomers bound to CL form a triple complex with cytochrome 
C (Fig. 3), acting as substrates for the peroxidase activity of 
cytochrome; in turn, this interaction favors the permeation 
of mitochondrial membranes, also contributing to oxidative 
stress in dopaminergic neurons [162].

Increased levels of α-Syn bound to mitochondria have 
also been associated to a reduced activity of complex I and a 
subsequent increase in ROS, reducing the respiratory activ-
ity and inducing oxidative damage to mitochondrial DNA in 
PD. Another consequence of the α-Syn-CL complex forma-
tion is the loss of function of the ADP/ATP carrier, leading 
to a precipitous fall in the mitochondrial membrane potential 
(Δψm), thus compromising the respiratory function [163, 
164].

Cytoskeletal Alterations in PD

The neuronal cytoskeleton comprises a delicate intracellular 
net of filaments located in the cytoplasmic matrix, where 
three forms of filaments are distinguished: intermediate fila-
ments (IF) or NF (10 nm diameter), actin-based microfila-
ments (FA) (6 nm diameter), and tubulin-based microtubules 
(24 nm diameter) [165].

Neurons possess a NF network [166] which carries out 
several functions, such as the definition of the axonal caliber, 
signaling and nerve conduction [167], regulation of synaptic 
vesicles transport, synaptic plasticity modulation, cell shap-
ing, and intracellular signaling and transcription [168]. In 
addition, NF organize the cellular environment, and deter-
mine nuclear and organelle positioning. The activity of NF 

is modulated by post-translational modifications [169]. An 
abnormal display of assembly and accumulation of NF is 
associated with the onset of neurodegenerative diseases. 
Although the precise mechanism of NF aggregation remains 
unknown, hyperphosphorylation is considered one of the 
main triggering factors [170]. When axonal damage occurs 
in neurodegenerative disorders, NF are released and secreted 
into the cerebrospinal fluid (CSF), and circulate in the blood. 
Therefore, detection of NF in blood is considered a useful 
marker of axonal damage with diagnostic value for a variety 
of acute and chronic neurological disorders [171].

Another protein involved in neuronal degeneration is 
tubulin, a structural component of microtubules, which pro-
vide structural support and organelle positioning to neurons 
[172], as well as vesicular and mRNA transport [173, 174]. 
Alterations in microtubule stability, such as variations in 
the levels of tubulin and depolymerization, may lead to a 
deficient maturation of α-Syn protofibrils, causing neurotox-
icity [175] due to deregulation of proteins associated with 
microtubules and hyperphosphorylation of tau protein. This 
modification facilitates the release of tau from microtubules, 
affecting axonal transport after the hyperphosphorylated 
protein is aggregated. In PD, several alterations induced by 
α-Syn have been observed in the cytoskeleton dynamics of 
microtubules [176, 177], causing axon degeneration [178].

Analogous to NF, actin is abundant in the presynaptic 
terminals, where it plays a role in the organization and 
mobilization of synaptic vesicles, exocytosis, and endocy-
tosis [179]. Actin fibers form a dense filamentous net located 
near the cytoplasmic membrane, which undergoes reorgani-
zation upon cellular stimulation to allow access of vesicles 
to their fusion sites [180]. In neurons, actin deregulation may 
have implications for cell morphology and function [181]. 
Both actin and cofilin-actin rods may excessively accu-
mulate affecting synapses and ensuing neurodegeneration 
[182, 183]. α-Syn interacts directly with actin to regulate 
the dynamics and function of the latter, which are altered 
by pathogenic mutation of A30P [184], thus compromising 
vesicular release. Given its cellular localization, actin might 
function as a physical barrier for exocytosis upon binding 
to synaptic vesicles and block their mobilization, since this 
protein plays a crucial role in amassing the molecular com-
plexes needed to facilitate the fusion of vesicles to neuro-
transmitter release sites [185] (Fig. 4).

α‑Syn Interaction with the Plasma Membrane

The plasma membrane is a separate structure that protects 
cells from exogenous chemical components in the envi-
ronment, regulating the cells’ perimeter. This structure 
is composed of a phospholipidic bilayer (5–6 nm thick) 
with proteins (ionic channels and diverse receptors) [38]. 
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Specifically, the neuronal membrane plays a key role in 
synaptic functions since it is able to transmit electric and 
chemical signals [186].

Toxic α-Syn species, specifically oligomers, may induce 
alterations in plasma membrane [28], causing synaptic dys-
function and other insults. Several studies have demostrated 
that the combination of lipids negatively charged with phos-
phatidic acid (PA) is sufficient to trigger the α-Syn oligomer 
binding to plasma membrane, leading to membrane permea-
tion [187, 188]. α-Syn monomers may also interact with ves-
icles containing phosphatidylglycerol (FG), including deep 
insertion into membranes, resulting in their rupture [189]. 
The plasma membrane may also thicken upon interaction 
with β-helix oligomers [190], forming ring-like structures 
similar to pores [80] that compromise the cellular structural 
stability and its function (Fig. 1).

α-Syn has been shown to bind membranes at N-terminal 
and NAC sites [191]. The binding of the α-helix protein to 
membranes occurs in two distinct steps: first, the protein 
anchors to amino acid residues 3 to 25 at the N-terminal 
region. Next, a fraction of the α-helix binds to residues 26 to 
97, which in turn determines the affinity for the membrane, 
whereas the C-terminal domain presents a weak binding 
[192, 193]. A computational modeling study revealed that 

α-Syn rapidly assembles with the lipid bilayer due to its 
high propensity to aggregate; in this model, the interaction 
α-Syn–membranes is posited to play a critical role during 
the aggregation process [194].

Vesicular Transport, Membrane Fusion, Neurotransmission, 
Synapse (SNARE Proteins), Synaptotoxicity, 
and Neurotoxicity

The vesicular trafficking in secretory and endocytic path-
ways includes the formation, translocation, anchoring, and 
fusion of the plasmatic membrane [195]. The formation 
of vesicles is a budding process originated in the GC and 
mediated by COPI, COPII, and clathrin, as well as the small 
GTPases Sar1 and Arf [196–198]. The vesicular transport is 
carried out by the protein rails inherent to the cytoskeleton, 
reaching the plasmatic membrane [199]. The anchoring pro-
teins and Rab regulate coupling of vesicles to the plasmatic 
membrane [199, 200].

The fusion of vesicles with the membrane constitutes the 
final step of their transport system; this step is mediated by 
a family of proteins known as SNARE (soluble N-ethylma-
leimide sensitive factor-attachment protein receptor) [201, 
202]. The specific binding of vesicular SNARE (v-SNARE) 

Fig. 4   Schematic representation of a typical synapse in physiologi-
cal and pathological conditions. In 4a, the synapse is highlighted 
by the green circle. In 4b, the synaptic function is mediated by the 
soluble N-ethylmaleimide sensitive factor-attachment protein receptor 
(SNARE) complex (the synaptic vesicle has been magnified for bet-
ter visualization). In the presynaptic membrane, the vesicle associated 
membrane protein 2 (VAMP2) is shown inserted in the vesicle in red. 
Also in the presynaptic membrane, the proteins syntaxin and synapto-
somal-associated protein 25 (SNAP-25) are shown in green, whereas 

complexin, which stabilizes the complex [204], is shown in light blue. 
In 4c, the approach of synaptic and vesicular membranes is regu-
lated by VAMP2, syntaxin, and SNAP-25. In 4d, membrane fusion 
and neurotransmitter release are mediated by Munc13 and Munc18 
proteins [225, 226]. In 4e, the accumulation of toxic α-Syn species 
bound to VAMP2 in presynaptic terminals causes synaptic dysfunc-
tion or synaptotoxicity, preventing the release of neurotransmitters. In 
4f, cytoskeletal impairment is mediated by the accumulation of toxics 
α-Syn species
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with target SNARE (t-SNARE) at the membrane forms the 
SNARE complex, which mediates the fusion of the vesicle 
membrane with the plasmatic membrane [203, 204]. The 
neurotransmitter release requires not only of SNARE pro-
teins but also of Munc18 and Munc13 proteins (Fig. 4).

It is known that α-Syn facilitates the vesicular coupling 
to plasmatic membrane via the formation of the SNARE 
complex [205–207]. It is noteworthy that α-Syn can facilitate 
the binding of secretory vesicles with the plasmatic mem-
brane. Through modeling, the N-terminal of α-Syn binds to 
the plasma membrane, while simultaneously, its C-terminal 
interacts with the vesicle associated membrane protein 2 
(VAMP2), forming a membrane-vesicle bridge to facili-
tate coupling [207]. Another proposal suggests that α-Syn-
helix complex, spreading between synaptic vesicles and the 
membrane, may facilitate membrane-vesicles coupling [208] 
(Fig. 4).

The largest α-Syn oligomers preferentially bind to the 
N-terminal of VAMP2, thus inhibiting the formation of the 
SNARE complex and blocking the vesicles coupling [28], 
contradicting the concept that α-Syn multimers bind the 
membrane to block the SNARE complex formation [206]. In 
addition, mutants linked to PD, including A30P and A53T, 
are toxic for exocytosis [209]. Collectively, α-Syn seems to 
play a crucial role in coupling, priming steps, and exocytotic 
fusion, probably serving as an atypical chaperone that facili-
tates SNARE assembly [205, 206, 210].

The continuous cycle of assembly and disassembly of the 
SNARE complex is essential for neurotransmitter release, 
implying constant conformational changes of SNARE 
proteins. Some studies have demonstrated that α-Syn and 
cysteine string protein α (CSPα) share the chaperon function 
endowed with the assessment of the stability of the SNARE 
complex [211]. It is noteworthy that in the absence of CSPα 
activity, neurodegenerative processes emerge.

Neurotransmitter release requires the fusion of synap-
tic vesicles to the plasmatic membrane and the subsequent 
release of their content to the synaptic cleft [186]. The neu-
ronal communication occurs at the moment in which neuro-
transmitters are released, cross the synaptic cleft, and bind 
to membrane receptors of the neighboring postsynaptic ter-
minal, transforming the chemical signal into a new electric 
signal. Several proteins mediate and control the process of 
fusion with high precision [212] (Fig. 4).

The accumulation of α-Syn toxic species in presynap-
tic terminals causes synaptopathy (synaptic dysfunction or 
synaptotoxicity), further leading to cell death by neurode-
generation. Under physiological conditions, α-Syn functions 
as monomer in presynaptic terminals, whereas the oligo-
meric forms of α-Syn are considered the most toxic species 
[75]. This suggests that the magnitude of the pathology can 
be related not only with the formation and accumulation 
of oligomers but also with their structural and functional 

properties [213]. As the result of excessive accumulation, 
synaptic transmission is affected, leading to the loss of neu-
ral connectivity. Yet to be demonstrated is whether distinct 
α-Syn oligomeric species exert differential toxic mecha-
nisms with distinct signatures of compromised neurotrans-
mission at the synaptic terminal (Fig. 4e).

Toxic Extracellular α‑Syn Aggregates

α-Syn is present in the extracellular domain of cells overex-
pressing α-Syn, suggesting that its release is independent of 
cell death. α-Syn aggregates intra- or extracellularly in vari-
ous aggregation forms [40]. Exosomes represent a vehicle 
for the release of excess protein; next, α-Syn is endocytosed 
by microglia and astrocytes [214]. Several brain cell types, 
such as glia, are capable of phagocyting protein aggregates 
[215, 216]. Astrocytes have been identified as key media-
tors in the elimination of extracellular α-Syn. These α-Syn 
toxic species can be internalized by astrocytes and readily 
degraded by endo-lysosomal processing [217–219]; how-
ever, after extensive endocytosis of α-Syn aggregates, astro-
cytes may develop high amounts of intracellular deposits 
while the protein degradation capacity is reduced [217]. 
Since astrocytes do not express the native form of α-Syn 
[220], this suggests that the aggregated species are released 
from affected neurons and then endocytosed by astrocytes 
to limit the propagation of neuropathological events. It has 
been shown that aggregated species (oligomers and fibrils) 
exhibit a more pronounced accumulation in cell receptors 
with a compromised lysosomal activity, accompanied by 
accumulation of expanded lysosomes. Extracellular α-Syn 
plays a role in pathological conditions as it may cause cel-
lular toxicity and dysfunctional synaptic transmission. It has 
also been suggested that α-Syn propagation from cell to cell 
plays a key role in the progression of synucleinopathies; 
however, the main mechanism regulating the extracellular 
levels of α-Syn has yet to be fully elucidated [221].

Conclusion

The structural integrity and functional stability of orga-
nelles constitute a sine qua non condition for adequate 
neuronal viability and ability to respond to adverse con-
ditions. Mutated α-Syn associates with several cellular 
organelles while being trafficked in cells, causing toxicity 
by compromising cellular integrity and altering synaptic 
transmission, protein trafficking, and energy production. At 
the clinical level, and of relevance for therapeutic design, 
differences between synucleinopathies are also accom-
panied by distinct neuroanatomical localization of α-Syn 
deposits: while PD and LBD are characterized by α-Syn 
aggregates located in the neuronal soma and neurites [8], 
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MSA displays α-Syn deposits in myelin produced by oli-
godendrocytes [222]. Given the major role α-Syn plays in 
the etiology of PD and other neurodegenerative disorders, 
future research should be directed at fully characterizing 
α-Syn function/dysfunction, which will be instrumental for 
the understanding of the molecular mechanisms underly-
ing its neurotoxic profile and facilitate the design for novel 
therapies for synucleinopathies.

A final consideration for the evidence discussed in this 
review is Braak’s hypothesis, which suggests that a given 
environmental factor or pathogen is responsible for spo-
radic PD when it penetrates the body via the nasal cav-
ity, reaching the gut and initiating LP from the digestive 
tract [223]. In turn, LP might be responsible for α-Syn 
aggregation in the CNS, reaching the SNpc via olfactory 
bulbs and the vagus nerve. While there is experimental 
and clinical evidence supporting Braak’s hypothesis, it is 
important to mention that not all PD patients adhere to 
Braak’s hypothesis since some do not develop LP in the 
vagal nerve or the ENS, though they develop LP in brain 
regions [224]. Whether or not the onset and development 
of PD and other synucleinopathies are subordinated to the 
pattern of LP expression, the pathogenic role of α-Syn 
mutation, misfolding, and aggregation remains a key factor 
for the understanding of these and other neurodegenera-
tive disorders.
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