
Vol.:(0123456789)1 3

https://doi.org/10.1007/s12035-021-02552-1

Mdivi‑1 Modulates Macrophage/Microglial Polarization in Mice 
with EAE via the Inhibition of the TLR2/4‑GSK3β‑NF‑κB Inflammatory 
Signaling Axis

Xiaoqin Liu1 · Xiaojuan Zhang2 · Xiaojie Niu1 · Peijun Zhang1 · Qing Wang3 · Xiuhua Xue4 · Guobin Song1 · 
Jiezhong Yu1 · Guoping Xi1 · Lijuan Song3 · Yanhua Li1,3 · Cungen Ma1,3

Received: 13 June 2021 / Accepted: 1 September 2021 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Macrophage/microglial modulation plays a critical role in the pathogenesis of multiple sclerosis (MS), which is an inflam-
matory disorder of the central nervous system. Dynamin-related protein 1 is a cytoplasmic molecule that regulates mito-
chondrial fission. It has been proven that mitochondrial fission inhibitor 1 (Mdivi-1), a small molecule inhibitor of Drp1, 
can relieve experimental autoimmune encephalomyelitis (EAE), a preclinical animal model of MS. Whether macrophages/
microglia are involved in the pathological process of Mdivi-1-treated EAE remains to be determined. Here, we studied the 
anti-inflammatory effect of Mdivi-1 on mice with oligodendrocyte glycoprotein  peptide35-55  (MOG35-55)–induced EAE. We 
found that Drp1 phosphorylation at serine 616 in macrophages/microglia was decreased with Mdivi-1 treatment, which was 
accompanied by decreased antigen presentation capacity of the macrophages/microglia in the EAE mouse spinal cord. The 
Mdivi-1 treatment caused macrophage/microglia to produce low levels of proinflammatory molecules, such as CD16/32, 
iNOS, and TNF-α, and high levels of anti-inflammatory molecules, such as CD206, IL-10, and Arginase-1, suggesting 
that Mdivi-1 promoted the macrophage/microglia shift from the inflammatory M1 phenotype to the anti-inflammatory M2 
phenotype. Moreover, Mdivi-1 was able to downregulate the expression of TRL2, TRL4, GSK-3β, and phosphorylated 
NF-κB-p65 and prevent NF-κB-mediated IL-1β and IL-6 production. In conclusion, these results indicate that Mdivi-1 
significantly alleviates inflammation in mice with EAE by promoting M2 polarization by inhibiting TLR2/4- and GSK3β-
mediated NF-κB activation.
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Introduction

Multiple sclerosis (MS) is a chronic inflammatory and neu-
rodegenerative disease, and its main pathological features 
include demyelination, axonal loss, reactive gliosis, and 
inflammatory lesions in the central nervous system (CNS) 
[1]. Experimental autoimmune encephalomyelitis (EAE) has 
been well used as an MS animal model and shares many 
clinical characteristics of MS patients, so it is an effective 
tool for understanding the inflammatory response through 
the disease process. In the EAE model, stimulated myelin-
specific T cells are activated in the periphery and then infil-
trate into the CNS across the blood–brain barrier (BBB). 
They are restimulated by antigen-presenting cells (APCs), 
promoting inflammatory response initiation and eventually 
demyelination and axonal damage [2].
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Macrophage/microglia play critical roles in the inflam-
matory process as important innate immune cells. They 
promote T cell activation as APCs and are considered key 
mediators in the course of MS [3]. In the periphery, mac-
rophages prevent microorganisms from invading as the ini-
tial line of defense, clean apoptotic cells, release cytokines 
and chemokines, and stimulate T cell proliferation [4]. In 
the CNS, there are two main macrophages. One is resident 
microglia derived from the embryonic yolk sac, and the 
other is infiltrated monocyte-derived macrophages, which 
are generally believed to develop from bone marrow pro-
genitors. The function of microglia is similar to that of mac-
rophages and can be supplemented by macrophages resident 
from tissue [5]. In response to various stimuli, macrophage/
microglia present two phenotypes: the proinflammatory phe-
notype M1 and the anti-inflammatory phenotype M2. M1 
macrophage/microglia rapidly respond to infection, while 
M2 macrophage/microglia contribute to the repair of lesions. 
Conversion of the M1 to M2 phenotype may provide effec-
tive treatments for inflammatory diseases, such as MS [6].

Mitochondrial fission/fusion is a dynamic process and plays 
an important role in normal cellular functions in response to 
metabolism and environmental stress. Mitochondrial fission 
leads to fragmentation of mitochondria, which produces more 
reactive oxygen species (ROS) and promotes mitophagy, while 
fusion between mitochondria decreases mutations in mtDNA 
and maximizes oxidative capacity [7]. Inhibiting the fission of 
mitochondria may improve cell longevity and is thought of as 
a survival mechanism in neurodegenerative diseases [8]. The 
conserved GTPase Dnm1/Drp1 is a major protein that regu-
lates mitochondrial fission. When Dnm1/Drp1 is phosphoryl-
ated, it translocates from the cytosol to the outer mitochondrial 
membrane (OMM), polymerizes at construction sites, and splits 
mitochondria [9]. Inhibition of Drp1 is neuroprotective and 
slows the progression of neurodegenerative disorders, such as 
Alzheimer’s disease (AD) [10]. Mitochondrial fission inhibitor 
1 (Mdivi-1) has been widely reported to prevent Dnm1/Drp1 
assembly on the surface of mitochondria to suppress mitochon-
drial fission and Bax/Bak-mediated apoptosis [11]. It can cross 
the BBB as a hydrophobic molecule and plays cytoprotective 
roles in different types of cells, such as neurons [12]. In addition 
to being an inhibitor of Drp1, Mdivi-1 is also involved in vari-
ous biological processes, such as ROS production, ATP release, 
and mitochondrial membrane potential modulation [13]. Our 
previous study showed that Mdivi-1 suppressed EAE by modu-
lating the immune response [14]. However, the exact therapeu-
tic mechanism of Mdivi-1 in these diseases remains unclear.

Here, we further examined the anti-inflammatory function 
of Mdivi-1 in EAE mice. Our data indicated that Mdivi-1 
treatment decreases inflammatory response in the spinal 
cords of EAE mice, which is accompanied by a decreased 
antigen presentation capability, and promotes macrophage/
microglial M2 polarization in vivo and in vitro, which 

may be related to the inhibition of TLR2/4- and GSK-3β-
mediated NF-κB inactivation.

Methods

Animals

Female C57BL/6 mice were purchased directly from Beijing 
HFK Bioscience Co., Ltd. Eight- to ten-week-old mice were 
randomly divided into two groups (5 mice in each group) 
and housed in the same cages. The mice were kept in path-
ogen-free conditions at constant temperature, illumination, 
and humidity and provided food and water throughout the 
experimental process. The cages were changed weekly, and 
the experiment was performed three times. This study was 
supported by the Institutional Animal Care and Use Com-
mittee at Shanxi Datong University.

EAE Induction and Mdivi‑1 Treatment

As described previously [14], an emulsion mixture of myelin 
oligodendrocyte glycoprotein (200 µg)  (MOG35–55, Genscript, 
NJ, USA) was prepared in an equal volume of complete Fre-
und’s adjuvant (CFA, Sigma, St. Louis, MO, USA), and Myco-
bacterium tuberculosis H37Ra killed by heat was added at a 
concentration of 10 mg/ml (Difco, Detroit, MI, USA). Each 
female C57BL/6 mouse was injected subcutaneously at two 
points. After immunization, 200 ng pertussis toxin (Sigma, 
St. Louis, MO, USA) were followed injected. Two days later, 
the mice were given the same dose of pertussis toxin. Mice 
were injected intraperitoneally with Mdivi-1(25  mg/kg; 
0.1% DMSO) (Sigma, St. Louis, MO, USA) or vehicle (0.1% 
DMSO) starting from Day 3 postimmunization (p.i.) to Day 27 
p.i. The clinical evaluation of EAE was performed daily using 
a standard clinical score. Paralysis was monitored daily on five 
scales: (1) limp tail; (2) hind limb weakness; (3) paralysis of 
hind limb; (4) tetraparalysis; (5) moribund/dead.

Spleen Mononuclear Cell Isolation

Spleen mononuclear cell suspensions were isolated from mice 
with EAE at 28 p.i. as previously described [15]. Briefly, mice 
with EAE were euthanized after anesthetization, and then the 
mice were perfused with cold saline. Spleens were removed 
and pooled in IMDM containing penicillin (100 U), streptomy-
cin (10 μg/mL), L-glutamine (0.3 mg/mL), β-mercaptoethanol 
(55 μM), and 10% heat-inactivated fetal bovine serum (FBS) 
(all from Thermo Fisher Scientific, Carlsbad, CA). Spleens 
were mechanically disrupted and filtered with a 70 μm filter. 
The generated cells were incubated for 1 min with RBC lysis 
buffer (Sigma, St. Louis, MO, USA) for lysing the red blood 
cells and then washed with IMDM.
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Histology and Immunohistochemistry

The mice were pooled with saline and 4% paraformaldehyde 
(PFA), and then the spinal cords were separated and fixed 
with 2% PFA for 4 hours (h). The fixed spinal cords were 
dehydrated using gradient sucrose, and then paraffin or OCT 
embedding was performed. Consecutive 20 μm paraffin sec-
tions from six mice per group were collected, and Luxol 
Fast Blue (LFB) staining was used to assess pathological 
changes. For immunohistochemistry, 10 μm OCT slices 
from nine mice per group were blocked with 1% bovine 
serum for 2 h at room temperature, and then incubated with 
the indicated primary antibodies at 4 ℃ overnight. Anti-
bodies were purchased from BD Biosciences (GM-CSF, 
Arginase-1, CD16/32, CD11b, CD45, CD4, and MHC II), 
Abcam (IBa-1, Ki67, TNF-α, iNOS, IL-10, IL-1β, IL-6), 
Cell Signaling (pDrp1 (Ser616), p-NF-κB-p65, GSK-3β), 
Biolegend (CD68 and CD206), Thermo Fisher Scientific 
(TLR2, TLR4), Santa Cruz (p38), and Bioss (CD86). The 
next day, slices were incubated with the associated second-
ary antibody for 2 h at room temperature after washing with 
PBS for 30 min. Slices were then washed with PBS. The 
negative control was prepared similarly with the exception 
of omitting the primary antibodies. The results were cap-
tured with a confocal microscope (CLSM, Olympus, Tokyo, 
Japan). Total white matter in LFB and color photograph was 
outlined. The rate of pixel area of demyelination and positive 
expression in the total white matter of the spinal cord were 
qualified by Image-Pro Plus 6 software. At least two sections 
per mouse were subjected to histological analyses.

SIM‑A9 Microglial Polarization

SIM-A9 immortalized microglial cells were purchased from 
ShenKe Biological Technology Co., Ltd. The cells were 
grown in DMEM/F-12 medium supplemented with 5% FBS 
(all from Gibco, Waltham MA, USA) and cultured at 37 °C 
in a cell incubator (ESCO, Singapore) with 95% air and 5% 
 CO2. A total of 5 ×  104 SIM-A9 cells were plated per well in 
a 24-well plate. Cells were allowed to attach to the culture 
dish for 2 h. Lipopolysaccharide (LPS) (Sigma, St. Louis, 
MO, USA) was added or not at 2.5 ng/mL for 12 h. Then, 
cells not treated with LPS and 2.5 ng/mL LPS-treated cells 
were incubated with 0.1% DMSO or 10 μM Mdivi-1 for 
24 h. Finally, the collected cells were used for further immu-
nostaining and flow cytometry analysis.

Flow Cytometry Analysis

For spleen mononuclear cells and SIM-A9 microglial cells, 
one million cells in FACS tubes were induced with 50 ng/
mL phorbol ester (PMA) and 500 ng/mL ionomycin in the 

presence of GolgiPlug (1 μg/106 cells) (all from Sigma, St. 
Louis, MO, USA) for 4 h at 37 °C. Cells were washed with 
PBS containing 1% FBS, and then immunostaining was per-
formed. For the staining of proteins expressed on the cell 
surface, cells were labeled with fluorochrome-labeled anti-
bodies in 100 μL PBS containing 1% FBS for 20 min at 4 °C, 
such as CD45 (BD Biosciences, NJ, USA), CD11b (BD Bio-
sciences, NJ, USA), CD16/32 (BD Biosciences, NJ, USA), 
and CD206 (Biolegend, San Diego, CA, USA). For the stain-
ing of molecules present inside the cell, Fix and Perm cell 
permeabilization reagents (Thermo Fisher Scientific, Carls-
bad, CA) were used for cell fixation and permeation. Intracel-
lular cytokines were labeled with antibodies against TNF-α 
(Biolegend, San Diego, CA, USA), IL-10 (BD Biosciences, 
USA), iNOS (Santa Cruz, Dallas, TX, USA), and Arginase-1 
(Santa Cruz, Dallas, TX, USA) in 100 μL permeable buffer 
overnight at 4 °C. To set up the instrument and compensa-
tion, single staining of the cell surface antibodies or intracel-
lular antibodies was performed, and an unstained cell sample 
was also used. The unstained cell sample did not contain 
antibodies and was treated in the same way as the stained 
samples. The results were obtained on a ZE5 Cell Analyzer 
(BioRad, USA), and analyzed using FlowJo Software.

Statistical Analysis

Data were analyzed as the mean SEM. The nonparametric 
Kruskal–Wallis test was first used for clinical mean score 
analysis, and then the comparison between any two sets of 
data was analyzed via the Mann–Whitney U-test. Student’s 
t-test was performed for comparisons between groups. All 
data were analyzed via GraphPad Prism software. When a 
p value was less than 0.05, the difference was considered 
statistically significant.

Results

Mdivi‑1 Decreased the Phosphorylation of Drp1 
(p‑Drp1; Ser616) in IBa‑1+ Macrophages/Microglia

As reported previously [14], mice with EAE were injected 
daily with 25 mg/kg Mdivi-1 or 0.1% DMSO from Day 3 
p.i. to 27 p.i. Reduced severity of EAE was observed in 
the mice treated with Mdivi-1, which showed a remarkable 
decrease in clinical scores and reduced spinal cord demy-
elination relative to those of the control group (Fig S1a-
b). Mdivi-1 is widely reported to inhibit Drp1-dependent 
mitochondrial fission, and the phosphorylation of serine 616 
promotes Drp1 translocation to the OMM and subsequent 
scissor mitochondria [9]. Macrophages/microglia play criti-
cal roles in the progression of MS. To verify the effect of 
Mdivi-1 on macrophages/microglia in the spinal cords of 
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EAE mice, the change in p-Drp1 at serine 616 upon Mdivi-1 
treatment was characterized by coimmunostaining of p-Drp1 
with IBa-1 in the white matter of EAE mouse spinal cords. 
The results showed that the number of Ser616 + IBa-1+ mac-
rophages/microglia was lower in the spinal cords of Mdivi-
1-treated mice with EAE than those of the DMSO-treated 
mice (Fig. 1).

Mdivi‑1 Suppresses Macrophage/Microglial 
Activation in the Spinal Cords of Mice with EAE

To further explore the effect of Mdivi-1 on macrophages/
microglia, the activation of macrophages/microglia in the 
spinal cords of mice with EAE was investigated. The 
expression of CD68 was examined via immunofluores-
cence as an activated macrophage/microglia marker. The 
results revealed that fewer  CD68+ macrophages/micro-
glia were present in the white matter of spinal cords of 
mice with EAE treated with Mdivi-1 than in DMSO-
treated mice with EAE (Fig. 2a). CD11b is a common 
marker of macrophages and microglia. However, mac-
rophages show higher CD45 expression, whereas micro-
glia express lower CD45 expression. To further quantify 
the infiltrated macrophages from the peripheral system, 
a combination of CD11b and CD45 labeling was per-
formed. As shown in Fig. 2b, the high yellow signals 
were calculated as markers of macrophages. We found 
that Mdivi-1-treated mice with EAE had fewer mac-
rophages in the white matter of the spinal cord than 
DMSO-treated EAE mice. These data demonstrated that 
Mdivi-1 effectively inhibited macrophage/microglia 
activation and decreased infiltrated macrophages in the 
spinal cords of EAE mice.

Mdivi‑1 Inhibited the Antigen Presentation Capacity 
of Macrophages/Microglia

Macrophages/microglia play critical roles in activating the 
adaptive immune response as APCs. The activation of APCs 
is commonly associated with increased levels of MHC II 
and cell surface markers such as CD86. To evaluate the 
effect of Mdivi-1 on the antigen presentation capacity of 
macrophages/microglia after activation, immunofluorescent 
staining for CD86 and MHC II in macrophages/microglia 
from spinal cords was conducted. The data showed that the 
coexpression of CD86 and IBa-1 was dramatically lower in 
Mdivi-1-treated mice with EAE than in the DMSO control 
group (Fig. 3a), and Mdivi-1 suppressed the expression of 
MHC II in IBa-1+ cells in the white matter of EAE mouse 
spinal cords (Fig. 3b). We also used Ki67, a T cell activation 
marker, to quantify proliferating  CD4+ T cells [16]. Consist-
ent with the downregulated antigen presentation capacity, 
the immunostaining results indicated that the high densities 
of  Ki67+  CD4+ cells in the white matter of the spinal cord 
of DMSO-treated mice with EAE were significantly reduced 
by Mdivi-1 administration (Fig. 3c). Activated  CD4+ T 
cells mediate many aspects of autoimmune inflammation, 
and accumulating evidence demonstrates that GM-CSF is 
produced locally at sites of inflammation to modulate mac-
rophage function as an important cytokine [17]. Thus, we 
assessed the level of GM-CSF in  CD4+ T cells in spinal 
cords of mice with EAE by immunofluorescence. GM-CSF-
expressing  CD4+ T cells were observed in the white matter 
of EAE mouse spinal chords, but were significantly reduced 
by Mdivi-1 treatment (Fig. 3d). These findings indicated 
that Mdivi-1 inhibited the antigen presentation capacity of 
macrophages/microglia and suppressed the inflammatory 
response in the spinal cords of EAE mice.

Fig. 1  Mdivi-1 inhibits Drp1 
phosphorylation at serine 616 
in IBa-1+ microglia. On Day 
28 p.i., the lumbar cords were 
separated from mice with EAE 
treated with Mdivi-1 or DMSO 
under anesthesia. Coimmu-
nostaining of lumbar cords for 
p-Drp1 at serine 616 and IBa-1 
was performed. Representative 
images of p-Drp1 at serine 616 
distribution in IBa-1+ cells are 
shown, and the IBa-1+ser616+ 
signal was quantified. N = 5–8. 
Mean ± SEM. ** p < 0.01. One 
representative of two experi-
ments is shown
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Mdivi‑1 Shifted the M1 Phenotype to the M2 
Phenotype in the Spinal Cords of Mice with EAE

Macrophages/microglia play two key roles in the response 
to inflammation: the classically activated (M1) and the 
alternative activated (M2) phenotypes. It is hypothesized 
that promoting macrophage shift from M1 to M2 pheno-
type is a therapeutic strategy for MS. To evaluate the level 
of macrophage/microglia polarization, we analyzed the 

macrophage/microglia phenotype by coimmunostaining 
of M1 markers CD16/32, TNF-α, and iNOS as well as the 
M2 markers CD206, IL-10, and Arginase-1 with IBa-1 
in Mdivi-1-treated mice spinal cords. The results showed 
that Mdivi-1 treatment markedly decreased the foci of 
CD16/32+ IBa-1+, TNF-α+ IBa-1+, and  iNOS+ IBa-1+ in 
the white matter of EAE mouse spinal cords compared 
to those of DMSO-treated mice with EAE (Fig. 4a–c). In 
contrast, the foci of  CD206+ IBa-1+, IL-10+ IBa-1+, and 

Fig. 2  Mdivi-1 suppresses macrophage/microglial activation in the 
spinal cords of EAE mice. On Day 28 p.i., the lumbar cords were 
separated from mice with EAE treated with Mdivi-1 or DMSO under 
anesthesia. CD68, CD45, and CD11b in lumbar cords were stained. 
Representative images of  CD68+ (a) and CD11b + cells with high 
CD45 expression (b) are shown, and the red signal of  CD68+ (a) 

and the high yellow signal of  CD11b+  CD45+ (b) were quantified. 
White arrow indicates  CD11b+  CD45low cells. Yellow arrow indi-
cates  CD11b+  CD45high cells. DAPI was used for nucleus staining. 
N = 5–8. Mean ± SEM. * p < 0.05. ** p < 0.01. One representative of 
two experiments is shown

5Molecular Neurobiology (2022) 59:1–16
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Arginase-1+ IBa-1+ were significantly increased in the 
white matter of Mdivi-1-treated mouse spinal cords com-
pared with those without Mdivi-1 treatment (Fig. 4d–f), 

emphasizing the anti-inflammatory role of Mdivi-1 in the 
spinal cord by promoting M2 microglia polarization and 
attenuating the M1 phenotype.

Fig. 3  Mdivi-1 inhibits the 
antigen presentation capacity of 
macrophages/microglia. On Day 
28 p.i., the lumbar cords were 
separated from mice with EAE 
treated with Mdivi-1 or DMSO 
under anesthesia. Immunostain-
ing of lumbar cords for CD86, 
MHC II, IBa-1,  Ki67, GM-
CSF, and CD4 was performed. 
Representative images of 
 CD86+ (a) and MHC  II+ (b) in 
IBa-1+ cells, and  Ki67+ (c) and 
GM-CSF+ (d) in  CD4+ cells 
are shown. The pixel areas of 
 CD86+ IBa-1+ (a), MHC  II+ 
IBa-1+ (b),  Ki67+  CD4+ (c), 
and GM-CSF+  CD4+ (d) in the 
white matter were quantified. 
DAPI was used for nucleus 
staining. N = 5–8. Mean ± SEM. 
* p < 0.05. ** p < 0.01. One 
representative of two experi-
ments is shown

6 Molecular Neurobiology (2022) 59:1–16
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Mdivi‑1 Promotes Macrophage M2 Polarization 
in the Spleen of EAE Mice

Next, we also assessed whether Mdivi-1 affected macrophage 
polarization in the spleen of EAE mice.  CD11b+ cells 
were gated on  CD45+ cells (Fig. 5a), and then the signals 
of CD16/32, TNF-α, Arginase-1, and IL-10 in  CD11b+ 
macrophages were detected by flow cytometry. The data 
showed that the percentage of  CD11b+ cells expressing M1 
markers (CD16/32 and TNF-α) in mice with EAE treated 
with Mdivi-1 was decreased significantly compared with that 
in the control group (Fig. 5b). However, the percentage of 
 CD11b+ cells expressing M2 markers (Arginase-1 and IL-10) 

in Mdivi-1-treated mice with EAE was markedly elevated 
compared with that in the control group (Fig. 5c). These data 
suggested that Mdivi-1 treatment facilitated the macrophage 
phenotypic switch from M1 to M2 in the spleen of EAE mice.

Mdivi‑1 Promotes M2 Polarization of SIM‑A9 
Microglial Cells In Vitro

To further determine the influence of Mdivi-1 on M1/
M2 polarization in  vitro, SIM-A9 microglial cells 
were stimulated with or without 2.5 ng/mL LPS for 
12 h and cultured supplemented with 10 μM Mdivi-1 
for 24 h. Then, f low cytometry was used to assess 

Fig. 4  Mdivi-1 inhibits the M1 
phenotype and promotes the 
M2 phenotype of microglia in 
the spinal cords of EAE mice. 
Expression of M1 markers such 
as CD16/32 (a), TNF-α (b), and 
iNOS (c) or M2 markers such 
as CD206 (d), IL-10 (e), and 
Arginase-1 (f) in IBa-1+ cells 
in the spinal cords of mice with 
EAE was determined by double 
immunohistochemical staining, 
and the pixel area of double-
positive cells was computed. 
Representative images show 
the distribution of M1 and M2 
markers in IBa-1+ cells. DAPI 
was used for nucleus stain-
ing. N = 5–8. Mean ± SEM. 
* p < 0.05, ** p < 0.01, *** 
p < 0.001. One representative of 
two experiments is shown

7Molecular Neurobiology (2022) 59:1–16
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the levels of specific biomarkers of the M1and M2 
phenotypes. The results revealed that Mdivi-1 sig-
nificantly decreased LPS-induced gene expression of 
iNOS and TNF-α in CD16/32+ M1 cells (Fig. 6a–b). 
However, Mdivi-1 treatment strikingly increased the 
levels of IL-10 and Arginase-1 in  CD206+ M2 cells 
both with and without LPS stimulation (Fig. 6c–d). 
These findings add significant weight to the idea that 
administration of Mdivi-1 facilitates the M1 to M2 
phenotype shift.

Mdivi‑1 Suppresses the TLR2/4‑GSK‑3β‑NF‑κB 
Pathway to Reduce Inflammatory Responses in EAE 
Mice

To explore the mechanism by which Mdivi-1 is involved 
in the anti-inflammatory response, the possible signaling 
pathways were subsequently determined. The NF-κB path-
way plays an important role in the inflammatory microen-
vironment, and the p65:p50 dimers are the most abundant 
form in the canonical NF-κB pathway, and can be activated 

Fig. 4  (continued)
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by proinflammatory cytokines and pathogens [18]. We first 
measured the level of NF‐κB p65 phosphorylation (p-NF-
κB-p65) in macrophages/microglia in the spinal cord by 
immunostaining. The result showed that the foci of p-NF-
κB-p65+ IBa-1+ were decreased in the white matter of EAE 
mouse spinal cords treated with Mdivi-1 (Fig. 7a). Then, we 
analyzed the expression of the proinflammatory cytokines 
mediated by the p65 subunit-dependent NF-κB pathway, 
such as IL-1β and IL-6. As expected, Mdivi-1 caused the 
expression of IL-1β and IL-6 in IBa-1+ cells to decrease in 
the white matter of EAE mouse spinal cords compared with 
the control group (Fig. 7b–c). Considering that Toll-like 
receptor 2/4 (TLR2/4) can activate the downstream NF-kB 
pathway as the cell surface receptors [19], the coexpression 

of TLR2/4 and IBa-1 in the spinal cord was measured by 
immunostaining. As shown in Fig. 7d–e,  TLR2+ IBa-1+ 
and  TLR4+ IBa-1+ foci were abundant in the white matter 
of DMSO-treated EAE mouse spinal cords. In contrast, the 
expression of TLR2/4 was strongly inhibited by Mdivi-1 in 
macrophages/microglia. Next, we further investigated the 
mechanisms involved in Mdivi-1-inhibited NF-κB activa-
tion. Previous studies have reported that glycogen synthase 
kinase (GSK-3β) positively regulates in NF-κB activation 
by regulating the phosphorylation of p65 at serine 468 [20]. 
Moreover, several studies have demonstrated that inhibi-
tion of GSK-3β can attenuate LPS-induced inflammatory 
reactions [21–23]. Therefore, we detected the expression 
of GSK-3β in macrophages/microglia in the spinal cords of 

Fig. 5  Mdivi-1 shifts inflammatory macrophages into anti-inflamma-
tory macrophages in the spleen of EAE mice. Mice with EAE treated 
with Mdivi-1 or DMSO were euthanized on Day 28 p.i. A single 
spleen mononuclear cell was isolated, and flow cytometry analysis 
was performed. a Representative dot plots illustrating the source of 
 CD11b+ cells in the peripheral spleen system. First, dead cells and 
debris were excluded using FSC/SSC gating. Subsequently, single 
cells were gated on an FSC-W/FSC-H pot. Leukocytes were further 

gated by CD45 expression, and mononuclear cells were defined as 
 CD11b+  CD45+. b Upper panel: representative flow plot of the M1 
markers CD16/32 and TNF-α in the  CD11b+ cells and quantifica-
tion of the CD16/32 and TNF-α in  CD11b+ population. Lower panel: 
Representative flow plot of M2 markers Arginase-1 and IL-10 in the 
 CD11b+ cells and quantification of the Arginase-1 and IL-10 in the 
 CD11b+ population. N = 5–8. Mean ± SEM. * p < 0.05, ** p < 0.01. 
One representative of three experiments is shown
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mice with EAE. The results showed that Mdivi-1 treatment 
strongly lowered the level of GSK-3β in macrophages/micro-
glia in the white matter of spinal cords of mice with EAE 
(Fig. 7f), suggesting that GSK-3β-mediated promotion of 
the NF-κB pathway was dampened by Mdivi-1 in the EAE-
induced inflammatory response.

Discussion

Mitochondria play central roles in cellular metabolism, 
antiviral response, and virus stress responses as orga-
nelles for ATP production. It is highly dynamic and under-
goes fission and fusion processes to regulate mitophagy, 

apoptosis, and cell proliferation. Thus, mitochondrial 
dysfunction is involved in a series of diseases, such as 
neurodegenerative, metabolic, neuromuscular, and car-
diovascular diseases [24]. Drp1, a conserved GTPase in 
the dynamin family, mediates mitochondrial fission and is 
thought to be a potential molecule for therapies for associ-
ated disorders. Mdivi-1 was discovered as the first specific 
inhibitor of Drp1 and has shown therapeutic promise in 
animal models of neurodegenerative diseases, such as Par-
kinson’s Disease (PD), AD, and MS [8, 14, 25–27].

Consistent with our previous research [14], Mdivi-1 
treatment delays the onset of EAE and alleviates the 
severity of EAE. While our previous work dedicated that 
Mdivi-1 played a role in T cell polarization in EAE mice, 

Fig. 6  Mdivi-1 inhibits the M1 phenotype and promotes the M2 phe-
notype in SIM-A9 microglial cells. SIM-A9 microglial cells were 
induced with or without 2.5  ng/mL LPS for 12  h and then treated 
with or without 10 μM Mdivi-1 for 24 h. Flow cytometry analysis of 
CD16/32+  iNOS+ (a), CD16/32+ TNF-α+ (b),  CD206+ IL-10+ (c), 

and  CD206+ Arginase-1+ (d) cells and relative quantitative analysis 
of CD16/32+  iNOS+ (a), CD16/32+ TNF-α+ (b),  CD206+ IL-10+ (c), 
and  CD206+ Arginase-1+ (d). N = 5–8. Mean ± SEM. *** p < 0.001, 
**** p < 0.0001. One representative of three experiments is shown
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the effect of Mdivi-1 on macrophage/microglial polariza-
tion in EAE remains poorly understood.

MS/EAE is an autoimmune and neuroinflammatory 
disease in which major pathological characteristics are 
demyelinated plaques and astrocytic scars resulting from 
local inflammatory lesions [28]. In the EAE model, mye-
lin antigens are presented by APCs to native T cells and 
prime the immune reaction in the peripheral system, and 
then activated cells infiltrate into the CNS across the BBB. 
The predominant immune cells are macrophages and micro-
glia, followed by  CD4+ T cells [5, 29]. Once inside, both 
infiltrated and resident macrophages/microglia are acti-
vated, release cytokines, and restimulate T cells, leading 
to disease progression. During MS pathology, APCs play 
pivotal roles in multiple stages. Macrophages/microglia are 

main the APCs and highly express MHC II, CD80, CD86, 
and CD40 molecules once activated [30, 31]. It has been 
reported that the elimination of perivascular macrophages 
attenuates the clinical signs of EAE, suggesting the potential 
roles of macrophages in the pathogenesis of EAE [32]. Our 
results showed that Mdivi-1 inhibited p-Drp1 at serine 616 
in IBa-1+ cells in the spinal cords of EAE mice, suggesting 
that Mdivi-1 plays the roles in macrophages/microglia in 
the spinal cord, which may be associated with the regulation 
of mitochondrial dynamics. In macrophages/microglia from 
the EAE mouse spinal cord, the levels of MHC II and CD86 
were reduced in the Mdivi-1-treated group compared to 
those in the DMSO-treated group, and proliferative  CD4+ T 
cells in the spinal cord were decreased with Mdivi-1 admin-
istration. It is likely that the decrease in APC activation and 

Fig. 7  Mdivi-1 inhibits the 
TRL2/4- and GSK-3β-mediated 
NF-κB pathways. On Day 28 
p.i., the lumbar cords were 
separated from mice with EAE 
treated with Mdivi-1 or DMSO 
under anesthesia. Immunostain-
ing of p-NF-κB-p65, IL-1β, 
IL-6, TLR2, TLR4, GSK-3β, 
and IBa-1 was performed. The 
foci of IBa-1+p-NF-κB-p65+ 
(a), IBa-1+IL-1β+(b), IBa-
1+IL-6+(c), IBa-1+TLR2+(d), 
IBa-1+  TLR4+ (e), and IBa-1+ 
GSK-3β+ (f) were quantified. 
DAPI was used for nucleus 
staining. N = 5–8, Mean ± SEM. 
*p < 0.05, ** p < 0.01, *** 
p < 0.001. One representative of 
two experiments is shown
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the T cell response contributes to a lower inflammatory 
response in the spinal cord of Mdivi-1-treated EAE mice, 
as lower expression of CD68 and GM-CSF was shown.

In response to different microenvironments, both mac-
rophages and microglia are activated and present remark-
able plasticity. At present, most studies divide macrophages/
microglia into M1 and M2 phenotypes [20]. The cell surface 
markers expressed in macrophages/microglia are recognized 
by antibodies to assess their activation, including CD11b, 
IBa1, CD68, and glycoprotein F4/80. M1 macrophages/
microglia secrete proinflammatory cytokines and immuno-
globulin Fc receptors, such as IL-1β, IL-6, TNF-α, iNOS, 
and CD16/32, whereas the M2 phenotype is generally char-
acterized by upregulation of Arginase-1, IL-10, CD206, and 
CD163 [33]. Due to the prominent roles of the M2 phe-
notype in tissue repair, promoting the conversion of mac-
rophages/microglia from M1 to M2 may have potential as 

a therapeutic strategy for neuroinflammatory diseases. The 
results of our in vivo data indicated that Mdivi-1 treatment 
polarized macrophages/microglia from the M1 phenotype 
to the M2 phenotype in both the spinal cord and spleen of 
EAE mice. Meanwhile, Mdivi-1 also promoted the trans-
formation of SIM-A9 microglia to an anti-inflammatory 
phenotype, as shown by decreased levels of the M1 marker 
CD16/32 and increased levels of the M2 marker CD206, 
accompanied by decreased secretion of iNOS and TNF-α 
and enhanced release of IL-10 and Arginase-1. These results 
may explain why Mdivi-1 ameliorated the severity of EAE 
in mice. Previous studies have shown that M2 polarization 
within microglia and macrophages derived from peripheral 
tissues are essential during remyelination and contribute to 
neuroprotective effects [34, 35]. The drug lenalidomide pre-
vents the progression of EAE by promoting macrophage M2 
polarization and differentiation of proinflammatory T cells 

Fig. 7  (continued)
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in both the peripheral lymph system and CNS [36]. Fasudil 
ameliorates the severity of mice with EAE as a Rho kinase 
inhibitor and promotes the shift of BV-2 microglia from the 
M1 to M2 phenotype [37]. In summary, coinciding with past 
studies, we did observe that macrophages/microglia were 
polarized toward the anti-inflammatory M2 phenotype both 
in the peripheral spleen system and spinal cord after Mdivi-1 
treatment, which was confirmed by the in vitro data from 
SIM-A9 microglial cells, resulting in the reduced severity 
of EAE by Mdivi-1 administration.

Based on these observed data in EAE mice, we ques-
tioned whether Mdivi-1 treatment converts macrophage/
microglia polarization from M1 to M2 via the NF-κB path-
way, which releases proinflammatory cytokines leading to 
neurotoxicity and is considered the major signaling path-
way in response to inflammation [38]. Our data showed 
that Mdivi-1 decreased the expression of p-NF-κB-p65 
in the white matter of EAE mouse spinal cords, which 
was correlated with significantly decreased production 
of proinflammatory cytokines, such as IL-1β and IL-6. 
Because TLR2/4 are the main receptors that stimulate the 
NF-κB signaling pathway, we observed that the expression 
of TLR2 and TLR4 was significantly inhibited in IBa-1+ 
cells treated with Mdivi-1. GSK-3β, as a key regulator 

of glycogen metabolism, plays a central role in multiple 
signaling pathways, including the NF-κB signaling path-
way [39]. Inhibition of GSK3β activity leads to a dramatic 
decrease in NF-κB activity [40]. Here, we observed that 
the expression of GSK3β was dramatically decreased in 
IBa-1+ cells in the white matter of Mdivi-1-treated EAE 
mouse spinal cords, suggesting that Mdivi-1 ameliorated 
the inflammatory reaction in mice with EAE through the 
TLR2/4-GSK3β-NF-κB pathway but did not exclude other 
pathways involved in the mechanism of alleviation of mice 
with EAE by Mdivi-1. For example, MAPKs, similar to 
the NF-κB pathway, are another downstream pathway reg-
ulated by LPS-induced TLR2/4 signaling, including ERK, 
p38, and JNK [41]. Previous studies have reported that p38 
is needed for the activation of the NF-κB pathway, and the 
TLR-ASK1-p38 pathway may serve as a promising target 
for MS therapy [42, 43]. Therefore, we further investigated 
whether p38 regulation by Mdivi-1 confers a neuroprotec-
tive effect in EAE mice. The results showed that Mdivi-1 
markedly decreased p38 expression in IBa-1+ cells in the 
white matter of EAE mouse spinal cords compared with 
the control group (Fig. S2). Taken together, these findings 
imply that TLR2/4-activated GSK3β-NF-κB-p65 pathway 
is targeted by Mdivi-1 to decrease neuroinflammation 

Fig. 8  Schematic diagram of Mdivi-1 promoted M2 polarization through the TLR2/4-GSK-3β-NF-κB pathway in EAE mice
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during MS pathogenesis; meanwhile, Mdivi-1 can down-
regulate the level of p38 to alleviate the severity of EAE 
in mice (Fig. 8).

Increasing evidence has suggested that the macrophage/
microglia phenotype is regulated by cellular metabolism. 
While M1 macrophages/microglia show enhanced glyco-
lysis and the pentose phosphate pathway (PPP), increased 
ROS production, and accumulated succinate, M2 mac-
rophages/microglia are characterized by efficient oxidative 
phosphorylation and reduced PPP [44, 45]. Mitochondria 
play a critical role in regulating metabolic dynamics as 
a center of metabolism. Mitochondrial fission regulated 
by the Drp1 protein leads to increased ROS production 
[46], while mitochondrial fusion facilitates oxidative phos-
phorylation of the electron transport chain [47]. However, 
little is known about mitochondrial fusion/fission contrib-
uting to the metabolic reprogramming of macrophages/
microglia. It has been reported that aerobic glycolysis is 
reduced in bone marrow–derived macrophages after LPS 
stimulation through the inhibition of the phosphorylation 
of Drp1 by Mdivi-1 [7]. Our data showed that Mdivi-1 pro-
moted M2 polarization in EAE mice, but it was not clear 
whether this effect depended on the inhibition of pDrp1 
at Ser616 by Mdivi-1, including changes in mitochondrial 
and metabolic dynamics. In addition, Mdivi-1 plays multi-
ple functions in other pathways. For example, some studies 
indicated that Mdivi-1 inhibited mitochondrial complex 
I and decreased ROS production [48]. A recent study 
showed that Mdivi-1 blocks peroxynitrite-induced Drp1 
assembly, leading to a decrease in mitophagy and attenuat-
ing EAE pathology [49]. Thus, Mdivi-1 may reduce EAE 
severity through multiple pathways, and the exact mecha-
nisms need further research.

Next, we will further explore the effect of mitochondrial 
dynamics on the polarization and antigen presentation capac-
ity of macrophages/microglia. Moreover, dendritic cells 
(DCs) are the main immune cells that induce the peripheral 
immune response and are involved in the T cell response in 
the CNS system. It is also involved in immune infiltration in 
EAE [50]. Our results showed that Mdivi-1 suppressed the 
activation and antigen presentation capacity of macrophages/
microglia, and further decreased activated  CD4+ T cells and 
the inflammatory response in the spinal cord of EAE mice, 
but we did not determine the effect of DCs on  CD4+ T cell 
activation as an APC with Mdivi-1 treatment. Future work 
using the CD11c marker could evaluate whether Mdivi-1 
affects the antigen presentation capacity of DC cells in EAE 
progression, which is also an interesting issue.

In conclusion, the present data showed that Mdivi-1 
facilitated the polarization of macrophages/microglia from 
the M1 to M2 phenotype and decreased the antigen pres-
entation capacity of macrophages/microglia, leading to a 
reduced inflammatory response in the spinal cords of EAE 

mice, which was regulated by preventing TLR2/4-activated 
GSK3β-NF-κB-p65 signaling pathways.
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