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Abstract
Alzheimer’s disease (AD) is associated with a very large burden on global healthcare systems. Thus, it is imperative to find 
effective treatments of the disease. One feature of AD is the accumulation of neurotoxic β-amyloid peptide (Aβ). Aβ induces 
multiple pathological processes that are deleterious to nerve cells. Despite the development of medications that target the 
reduction of Aβ to treat AD, none has proven to be effective to date. Non-pharmacological interventions, such as physical 
exercise, are also being studied. The benefits of exercise on AD are widely recognized. Experimental and clinical studies 
have been performed to verify the role that exercise plays in reducing Aβ deposition to alleviate AD. This paper reviewed 
the various mechanisms involved in the exercise-induced reduction of Aβ, including the regulation of amyloid precursor 
protein cleaved proteases, the glymphatic system, brain-blood transport proteins, degrading enzymes and autophagy, which is 
beneficial to promote exercise therapy as a means of prevention and treatment of AD and indicates that exercise may provide 
new therapeutic targets for the treatment of AD.
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Introduction

Alzheimer’s disease (AD) is an irreversible and progres-
sive neurodegenerative disorder [1, 2]. It is the most com-
mon form of dementia and accounts for 60 to 70% of total 
dementia cases and affects about 27 million people world-
wide [3, 4]. This creates a large economic burden, as the 
global healthcare cost for people with dementia is estimated 
to increase from 818 billion US dollars in 2015 to 2 trillion 
US dollars by 2030 [5]. The typically clinical features of AD 
are a gradual loss of cognitive function, episodic memory, 

and learning ability, followed by a decline in visuospatial 
skills and language [6, 7]. Patients with AD also may have 
behavioral problems, such as aggression, apathy, depres-
sion, and sleeping problems [8]. These symptoms adversely 
affect the daily life and social participation of AD patients. 
Currently, the pharmaceutical treatments for AD include 
cholinesterase inhibitors, such as galantamine, donepezil 
and rivastigmine, and memantine, which protects against 
glutamate-mediated neurotoxicity [9]. However, these medi-
cations only offer short-term remission of the development 
of AD rather than long-term therapeutic effects for the dis-
ease; in addition, these drugs are frequently associated with 
unpleasant side effects, such as weight loss, dizziness, and 
nausea [10]. Therefore, to clarify the mechanism of AD is a 
crucial issue for seeking out an effective and novel therapy 
for AD is urgently required.

Two typically pathophysiological changes, consisting of 
extracellular deposits of insoluble β-amyloid peptide (Aβ) 
plaque and neurofibrillary tangles (NFT) of phosphorylated 
tau (P-tau) within neurons, are the hallmarks of AD [11]. 
The accumulation of Aβ and P-tau are considered to result 
in atrophy and death of neurons, leading to cognitive dys-
function [12]. As one of the pathological hallmarks of AD, 
Aβ is a crucial target to treat AD [13]. The molecular mass 
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of Aβ is 4 kDa and the amino acid sequence exhibits micro-
heterogeneity [14]. According to a widely accepted theory, 
Aβ originates from the sequentially proteolytic cleavage of 
amyloid precursor protein (APP) [15]. The main pathways 
of Aβ removal include clearance by the glymphatic system, 
transportation across the blood–brain barrier (BBB), proteo-
lytic degradation, and autophagy. An imbalance between the 
clearance and the production of Aβ causes cerebral dysfunc-
tion [16]. Aβ deposition has been proved to play a key role 
in AD progression, being other pathological events observed 
(including the NFT formation, endoplasmic reticulum stress, 
mitochondrial dysfunction, oxidative stress, or neuroin-
flammation), ultimately followed by neuronal loss [4, 17]. 
Decreasing the accumulation of Aβ is the main target for the 
treatment of AD. However, clinical trials using anti-amyloid 
drugs have repeatedly failed, which might be due to the pres-
ence of the blood–brain barrier or other factors. Therefore, 
we need to explore other types of interventions to alleviate 
the harmfulness of Aβ [18].

Due to the lack of a disease-modifying treatment for 
AD, researchers have been investigating the role that exer-
cise, a non-pharmacological intervention, plays in allevi-
ating AD symptoms and progression [19]. A variety of 
clinical studies demonstrated that aerobic exercise could 
promote cardiorespiratory fitness, memory, and executive 
function in patients with mild AD [20–24]. Fifteen weeks 
of physical activity was demonstrated to improve walking 
quality and alleviate cognitive decrease in AD patients. 
Another study showed that exercise can reduce the loss 
of global cognition in older individuals aged 70–80 with 
mild-to-moderate AD. The meta-analyses of randomized 
controlled trials indicate the slight-to-moderate effects 

of aerobic exercise on cognitive function across the AD 
spectrum [25, 26]. Due to the limitation of severe motor 
dysfunction in advanced AD patients, the evidence to 
investigate the effect of exercise on patients with advanced 
AD is limited. The increased physical activities caused by 
technology-aided program promote the positive personal 
involvement and independent occupation for advanced AD 
patients [27, 28]. Moreover, regular exercise may alleviate 
the progress of functional deterioration in mild AD and 
decrease falls in patients with advanced AD [29].``

On the other hand, exercise plays a multifactorial role 
in attenuating various pathophysiologic mechanisms that 
are associated with cognitive impairment and neurode-
generation in AD, such as the aggregation of tau and Aβ, 
inflammation, oxidative stress, pyroptosis, endothelial 
dysfunction, and so on [30–32]. Indeed, a series of stud-
ies have confirmed the effectiveness of exercise in reduc-
ing Aβ accumulation that is one of the most considerable 
roles in AD [16, 30, 33–39]. A study that used a mouse 
model of AD found evidence that voluntary running in the 
late stage of AD alleviated an increase in the number of 
Aβ plaques and improved hippocampus neurogenesis and 
memory [40]. However, up to now, it is still unclear how 
exercise reduces Aβ deposition. Hence, this review sum-
marized the evidence of the beneficial effects of exercise 
on Aβ-dependent pathophysiology of AD, including Aβ 
generation, the glymphatic system, Aβ transport proteins 
across the BBB, autophagy, degrading enzymes, and other 
mechanisms to clarify the mechanisms involved and to 
explore novel and effective interventional targets for the 
treatment of AD (Fig. 1).

Fig. 1   Summary of mechanisms by which exercise reduces Aβ. The 
beneficial effect of exercise on Aβ, including APP-cleaved proteases, 
the glymphatic system, Aβ transport proteins across BBB, autophagy, 
degrading enzymes, and others. Aβ, β-amyloid peptide; ER stress, 
endoplasmic reticulum stress; PGC1-α, peroxisome proliferator-acti-
vated receptor-gamma coactivator 1α; FNDC5, fibronectin type III 

domain-containing protein 5; BDNF, brain-derived neurotrophic fac-
tor; SIRT1, sirtuin-1; AQP4, aquaporin-4: BBB, blood–brain barrier; 
RAGE, the receptor for advanced glycation end products; LRP1, low-
density lipoprotein receptor-related protein 1; IDE, insulin-degrading 
enzyme; ABCA1, ATP-binding cassette transporter A1; GSK3, gly-
cogen synthase kinase-3
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The Mechanisms of the Inhibition of Aβ 
Deposition by Exercise Within Neurons in AD

The Effect of the Regulation of APP‑Cleaved 
Proteases by Exercise

According to the amyloid cascade hypothesis, Aβ is gener-
ated by the protease cleavage of APP, which is predomi-
nately expressed in the central nervous system (CNS) [41, 
42]. APP can undergo two alternative proteolytic processes 
through the non-amyloidogenic pathway and the amyloi-
dogenic pathway. In the non-pathogenic pathway, APP is 
cleaved by α-secretase, such as a disintegrin and metal-
loprotease-10 (ADAM10), which releases an N-terminal-
secreted APP (sAPPα) and C-terminal fragment of 83 
amino acids (C83); sAPPα may exert a neuroprotective 
function [14, 43, 44]. In the amyloidogenic pathway, APP 
is cleaved by β-secretase, such as beta-site APP-cleaving 
enzyme 1 (BACE1), and γ-secretase and results in the 

production of Aβ [45]. Under normal physiological con-
ditions, the two pathways coexist in equilibrium, although 
the non-amyloidogenic pathway is favored [46]. However, 
aging, genetic, and environmental factors related to AD 
may cause a metabolic shift that favors the amyloidogenic 
pathway of APP [47]. Although medications that target 
Aβ production to treat AD have been developed, such as 
γ-secretase modulators and BACE1 inhibitors, they have 
only recently become available [48]. Therefore, we need 
to explore novel methods to treat AD. Physical exercise 
has been proven to have the potential to reduce Aβ produc-
tion by activating or inhibiting APP-cleaved proteases via 
multiple pathways (Fig. 2), which are summarized in the 
following sections.

The Brain‑Derived Neurotrophic Factor

Brain-derived neurotrophic factor (BDNF) is a member of 
the growth factor family and plays a key role in neuronal 
growth, differentiation, and survival, as well as synaptic 

Fig. 2   Molecular mechanisms of the reduction of APP-cleaved pro-
teases by exercise. ADAM10, BACE1, and γ-secretase are the main 
proteases for APP metabolism. SIRT1, PGC-1α, FNDC5, BDNF, 
and the ER stress are all involved in the regulation of APP-cleaved 
proteases by exercise. Green arrows represent promotion; red lines 
represent inhibition; pink lines represent production. ER stress, endo-

plasmic reticulum stress; PGC1-α, peroxisome proliferator-activated 
receptor-gamma coactivator 1α; FNDC5, fibronectin type III domain-
containing protein 5; BDNF, brain-derived neurotrophic factor; 
SIRT1, sirtuin-1; RAR-β, retinoic acid receptor-β; BACE1, beta-site 
APP-cleaving enzyme 1; ADAM10, a disintegrin and metalloprotein-
ase-10; APP, amyloid precursor protein; Aβ, β-amyloid peptide
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plasticity [49, 50]. Converging studies have suggested that 
impaired BDNF signalling contributes to the pathological 
mechanisms of several main disorders and diseases, includ-
ing AD, Huntington’s disease (HD), and depression. BDNF 
is one of the elements responsible for synaptic integrity 
and cognitive function. Patients with AD have decreased 
expression of BDNF in the brain, and the infusion of BDNF 
can lessen cognitive dysfunction in elderly primates [51]. 
Moreover, high levels of peripheral BDNF may provide pro-
tection against the occurrence of AD [51, 52]. Importantly, 
BDNF can reduce Aβ deposition by activating α-secretase, 
which results in the increased levels of sAPPα, which has 
neuroprotective effects [53]. Several studies have shown that 
physical exercise in rats with AD obviously promotes the 
levels of BDNF and decreases the levels of Aβ [53–55]. Lin 
et al. also reported that 10-week treadmill training of APP/
presenilin 1 (PS1) double transgenic (TG) mice elevated the 
expression of the phosphorylated protein kinase B, tyrosine 
kinase B receptor, and protein kinase C, which were the 
BDNF signalling pathway molecules, and prevented AD-
related degeneration in the hippocampus and amygdala [56]. 
Therefore, we can infer that exercise partly reduces Aβ pro-
duction through the BDNF pathway.

Sirtuin‑1 Signalling Pathway

Sirtuin-1 (SIRT1), as an important member of the sirtuin 
family, plays a crucial role in maintaining cellular homeo-
stasis via influencing insulin sensitivity, mitochondrial bio-
genesis, glucose metabolism, and neuronal survival [57–60]. 
SIRT1 has been verified to be related to numerous neuro-
degenerative pathophysiological process, such as AD and 
Parkinson’s disease. Especially, SIRT1 can exert a neuropro-
tective effect against AD [61, 62]. Downregulation of SIRT1 
has been found in AD, causing increased Aβ production, 
while overexpression of SIRT1 can reverse this pathology, 
suggesting the profound effect of SIRT1 on Aβ production 
[63]. Porquet et al. also showed that SIRT1 activation by 
resveratrol improved neurodegeneration by decreasing oxi-
dative stress and neuroinflammation induced by amyloid 
accumulation in AD [64]. Revilla et al. have reported that 
the downregulation of SIRT1 in 3xTG (triple-transgenic) 
AD mice can be recovered by exercise treatment. Moreo-
ver, Koo et al. used a mouse model to show that treadmill 
exercise promoted the expression level of SIRT1, which sub-
sequently caused the activation of ADAM10 by increasing 
the retinoic acid receptor-β and inhibiting Rho-associated 
kinase 1; the SIRT1 signalling pathway eventually activated 
the non-amyloidogenic pathway. The promotion of SIRT1 
also increased the levels of peroxisome proliferator-activated 
receptor-gamma coactivator 1α (PGC-1α) and decreased the 
levels of BACE1, which suppressed the amyloidogenic path-
way [58].

Fibronectin Type III Domain‑Containing Protein 5 
and PGC‑1α

Fibronectin type III domain-containing protein 5 (FNDC5), 
which is the precursor protein of irisin, has been catego-
rized as a PGC-1α-dependent myokine [65]. FNDC5 is pro-
teolytically cleaved to myokine irisin, which regulates the 
beneficial role of exercise on human metabolism [66]. In 
recent years, studies have focused on the role of FNDC5 
as a mediator of AD. For instance, one study found that 
increased levels of FNDC5/irisin in the brains of mice with 
AD improved impaired memory and synaptic plasticity 
[67]. Another cell study reported that FNDC5 regulated the 
β-cleavage of APP through intercommunications with APP, 
which reduced the levels of Aβ [68]. Choi et al. reported 
that running exercise enhanced the expression of FNDC5 in 
the hippocampus of 5xFAD TG mice that coinherited and 
co-overexpressed familial AD mutant forms of human PS1 
and APP transgenes, and their results suggested that exercise 
attenuated the action of β-secretase through FDNC5 [69].

PGC-1α, an upstream activator of FNDC5, can be stimu-
lated during exercise. In addition, PGC-1α plays a regulatory 
role in energy metabolism during the early stages of neuro-
logical diseases [70]. For instance, the increase of PGC-1α 
could alleviate the damaged cognition and neuronal injury in 
TG mice with AD by improving mitochondrial dysfunction 
and alleviating oxidative stress and insulin resistance [71]. 
Interestingly, low levels of PGC-1α result in Aβ aggregation 
in the brains of patients with AD [72]. The reason for this 
may be that the decreased levels of PGC-1α fail to block 
the action of BACE1, which increases the production of Aβ 
[73]. In this regard, both FNDC5 and PGC-1α are involved 
in the mediation of exercise to Aβ pathology.

Furthermore, FNDC5 can also regulate the levels of 
BDNF in hippocampus of mice [74]. One study dem-
onstrated that treadmill exercise potentially reduced Aβ 
aggregation and improved impaired cognition through the 
PGC-1α/FNDC5/BDNF pathways in a rat model of AD 
[75]. Meanwhile, PGC-1α is a substrate of SIRT-1. Thus, it 
is logical to conclude that the interactions between SIRT1, 
PGC-1α, FNDC5, and BDNF are related to the exercise-
regulated reduction of Aβ production. However, these inter-
actions require further research.

The Unfolded Protein Response Signalling Pathway

The endoplasmic reticulum (ER) is responsible for protein 
quality control and folding. Multiple environmental and 
genetic insults can destroy the function of the ER and induce 
ER stress [76]. The unfolded protein response (UPR) is a 
complicated adaptive cellular mechanism that is related to 
ER stress [77]. There are three main signalling branches 
of the UPR: activating transcription factor 6 (ATF6), 
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inositol-requiring enzyme 1α (IRE1α), and protein kinase 
RNA-like endoplasmic reticulum kinase (PERK) [78]. The 
UPR is triggered in multiple neurodegenerative diseases, 
including AD and Parkinson’s disease, due to the aggrega-
tion of misfolded proteins [79]. The accumulation of Aβ 
disrupted several cellular processes, caused ER stress, and 
activated the UPR, which aggravated the process of inflam-
mation and apoptosis [80, 81]. Conversely, the overactivated 
UPR contributes to β-amyloidogenesis. In 5xFAD TG mice 
that coexpress human APP and PS1 with five familial AD 
mutations, the activation of PERK in response to ER stress 
results in elevated eukaryotic initiation factor-2α (eIF2α, 
the downstream substrate of PERK) phosphorylation, which 
increases BACE1 translation and Aβ accumulation [82]. In 
addition, prolonged and excessive ER stress could enhance 
the expression of PS1 through activating transcription factor 
4 (ATF4), which could lead to an increase in Aβ secretion 
by activating γ-secretase activity [83]. Xia et al. showed 
that treadmill exercise inhibited the expression of glucose-
regulated protein 78 (GRP78) and suppressed activation of 
ATF4, eIF2α, and PERK, along with the downregulation of 
the BACE1 in APP/PS1 mice. Therefore, exercise-induced 
inhibition of ER stress may regulate the amyloidogenic path-
way. However, further research is needed to determine if 
exercise influences the activity of γ-secretase by inhibiting 
ATF4 [84].

Lipid Rafts

Lipid rafts are special cholesterol-rich membrane microdo-
mains that play a vital role in cell survival and signal trans-
duction [85]. In AD, lipid rafts are closely associated with 
Aβ deposition. Lipid rafts may obstruct autophagic-lysoso-
mal system, a degenerative pathway of Aβ, thus accelerat-
ing AD development. In addition, previous studies indicated 
that Aβ production was dependent on lipid rafts [86]. The 
amyloidogenic pathway of APP cleavage primarily occurs 
in lipid rafts where BACE1 and γ-secretases show their opti-
mum activities [87]. Zhang et al. reported that 12 weeks of 
treadmill exercise inhibited the formation of lipid rafts in 
the hippocampus of APP/PS1 TG mice, which hindered the 
function of BACE1 [88].

Thus, exercise exerts a beneficial role in reducing Aβ lev-
els by mediating ADAM10 and BACE1 through the path-
ways of BDNF, SIRT-1, PGC-1α, and FNDC5, activating 
the UPR and decreasing lipid rafts. Besides, these pathways 
may alleviate cognitive impairment and pathophysiology of 
AD through an Aβ-independent manner, including increased 
synaptic plasticity and decreased inflammation and oxida-
tive stress. Relatively little is known about the underlying 
mechanisms of the association between physical exercise 
and γ-secretase, which requires further investigation.

The Effect of the Regulation of Autophagy by Exercise

Autophagy is a key cellular pathway that is responsible for the 
disposal of waste components, which allows for cell renewal 
and ensures cellular bioenergetic homeostasis. As a conservative 
self-degrading process, autophagy can remove useless and toxic 
proteins or damaged cytoplasmic constituents and organelles 
through a lysosomal degradation system [5, 89]. Disorders in the 
autophagy process accelerate the aggravation of various neuro-
degenerative diseases that are associated with the aggregation 
of pathological proteins, such as PD, HD, and AD [90]. Bordi 
et al. investigated the relationship between autophagy and the 
pathogenesis of AD and found that lysosomal biogenesis and 
autophagosome formation were activated by various forms of 
cellular stress, such as damaged organelles Aβ aggregates, reac-
tive oxygen species, and so on, as an early disease response, and 
in the late stages of AD, autophagy flux was increasingly hin-
dered due to the inefficient substrate clearance by the lysosomes 
[91]. Under normal circumstances, Aβ degradation is imple-
mented through the autophagy-lysosomal pathway, which is 
involved in protein quality control and the clearance of abnormal 
forms of proteins [92]. In contrast, impaired autophagy results 
in Aβ deposition. For instance, one study found that the genetic 
deletion of beclin 1, which was an essential autophagy gene, 
disrupted autophagy and elevated Aβ accumulation in cultured 
neurons from APP TG mice; the effect could be reversed by 
the administration of a beclin 1 viral gene delivery vector [93].

Recently, Li et al. reported that swimming exercise for 
12 weeks could promote the autophagy and alleviate the 
formation of atherosclerosis in the aorta of apolipoprotein 
E knockout mice [94]. Zhao et al. showed that 12 weeks of 
treadmill exercise in an APP/PS1 TG mouse model elevated 
autophagy-lysosomal activity, as evidenced by a reduction 
in the levels of lysosome-associated membrane protein 1, a 
lysosomal marker, and p62, an autophagy marker, as well 
as a decreased Aβ burden [95]. Improvement of abnormal 
autophagy that is induced by exercise might be achieved by 
regulating the mTOR signalling pathway, which is a repressor 
of autophagy; however, the excessive activation of the mTOR 
signalling pathway could inhibit autophagy and result in the 
malfunction of Aβ clearance [92, 96, 97]. Thus, exercise has a 
positive effect on autophagy, which plays an important role in 
the regulation of Aβ clearance within neurons.

The Mechanisms of Aβ Clearance by Exercise 
Outside Neurons in AD

The Regulation of Aβ Clearance from the Glymphatic 
System by Exercise

Recently, a cerebral lymphatic system, known as the glym-
phatic system, was determined to be responsible for the 
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removal of neuronal extracellular waste protein through a 
paravascular pathway [98]. In the glymphatic system, the 
CSF accesses the brain through the periarterial spaces, 
crosses the interstitium through the astrocytic aquaporin-4 
(AQP4) water channels located on the perivascular cells, 
and drains the interstitial fluid and its solute into the 
perivenous zones and the deep cervical lymph nodes [99]. 
The subsequent influx of the CSF into the dense brain 
parenchyma is implemented by the expression of the 
AQP4 water channels in significantly polarized astrocytic 
endfeet that ensheath the cerebral vasculature [100, 101]. 
The glymphatic system can clear a major percentage of 
Aβ, tau protein, and other metabolites in the brain paren-
chyma [99]. However, a damaged glymphatic system is 
commonly found with senile and neurodegenerative dis-
eases, such as AD [102–104]. Moreover, Aβ accumulation 
in the periarterial space can block perivascular pathway, 
consequently decreasing glymphatic clearance [105]. As 
the most affluent water channel in the CNS, AQP4 plays 
a key role in maintaining brain-water homeostasis and 
modulating the glymphatic system to accelerate Aβ clear-
ance [106, 107]. Altered localization and expression of 
AQP4 are related to AD pathology and status [108]. When 
the glymphatic system is damaged, interstitial clearance 
decreases by approximately 70%, which leads to a 55–65% 
inhibition of Aβ clearance in AQP4 knockout mice [100, 
101]. Xu et al. demonstrated that AQP4 knockout mice 
with AD showed more evident spatial memory and learn-
ing dysfunction, as well as enhanced amyloid angiopathy, 
Aβ deposition, atrophy of astrocytes, and synaptic protein 
loss in both the cortex and hippocampus compared with 
untreated AD mice [109].

Interestingly, one study showed that after 5  weeks 
of running on a wheel, the perivascular CSF influx was 
enhanced in young, awake, and freely behaving mice, 
which indicated that exercise increased the glymphatic 
activity and had beneficial effects on brain health through 
the increased clearance of neurotoxic products from the 
brain [110]. Moreover, 5 weeks of wheel exercise was 
shown to improve glymphatic activity, reduce the aggre-
gation of Aβ plaques and neuroinflammation, enhance the 
level of AQP4, and ultimately prevent spatial cognitive 
decline and synaptic impairment [111]. Therefore, we pro-
pose that exercise may contribute to the clearing function 
of the glymphatic system via regulating AQP4 expression, 
which could alleviate the symptoms of AD.

Studies have found that the glymphatic system is sug-
gested to function almost completely during sleep [112]. 
In addition, a genetic variation in AQP4 may impair the 
clearance mechanism and impact the relationship between 
sleep and the brain Aβ-amyloid burden [113]. These evi-
dences suggest that Aβ removal by the glymphatic system is 
closely linked to sleep. Unfortunately, sleep disorders occur 

frequently with AD and affect nearly 45% of patients with 
AD [114]. Enhanced sleep latency is related to higher brain 
Aβ burden in older adults with normal cognition [115]. Sev-
eral clinical trials have suggested that exercise could exert 
a positive influence on improving sleep quality in patients 
with AD [116, 117]. Therefore, exercise may be an auxiliary 
treatment choice for sleep dysfunction in patients with AD 
because it plays a crucial role in the clearance of Aβ via 
the glymphatic system, which can delay the progress of AD 
[118].

The Effect of the Regulation of Neuroinflammation 
by Exercise

Neuroinflammation is considered as a main feature of AD, 
which contributes to the pathogenesis of AD [119, 120]. In 
physiological conditions, astrocytes, microglia, and the other 
types of innate immune cells in the CNS can deal directly 
with multiple pathogens, toxins, and tissue damage [21]. 
As for astrocytes, AD-related neuroinflammation is gener-
ally along with reactive astrogliosis and significant changes 
of morphology and function following CNS damage [121]. 
Reactive astrocytes can seek, absorb, and degrade Aβ, poten-
tially through its high binding ability to the nicotinic acetyl-
choline receptors of astrocytes [122]. However, astrocytes 
may become overloaded with Aβ, resulting in consequent 
lysis, which in turn contributes to forming Aβ plaque depo-
sition [123]. With respect to microglia, AD-induced polari-
zation of microglia to M1 phenotype causes the release of 
various pro-inflammatory factors and the failure of remov-
ing pathological protein accumulation, thus facilitating Aβ 
deposition and APP expression [124, 125]. In contrast, the 
shift of activated microglia from the M1 phenotype to the 
M2 phenotype inhibits inflammation by expressing various 
cytokines, thus alleviating the toxic effect of Aβ deposi-
tion[126, 127]. Thus, neuroinflammation promotes amyloid 
pathology, whereas anti-inflammatory strategies potentially 
hold promise for alleviating AD.

Accumulating evidence from animal experiments and 
clinical trials proves the general anti-inflammatory effect 
of exercise on AD. In AD rats, treadmill exercise improved 
spatial learning memory function by inhibiting neuronal 
apoptosis and suppressing pro-inflammatory cytokines via 
inhibiting NF-κB/MAPK signalling pathway [128]. Moreo-
ver, resistance exercise alleviated the locomotor hyperac-
tivity associated with AD behavior and elevated microglia 
recruitment, which might further contribute to the reduction 
in the volume of Aβ deposition, and reduced the overexpres-
sion of cytokines in APP/PS1 TG mice [129]. Furthermore, 
12 weeks of treadmill exercise obviously suppressed oxida-
tive stress, elevated the shift of M1 to M2 microglia polari-
zation, and inhibited neuroinflammation in the hippocam-
pus of APP/PS1 TG mice, which were related to significant 
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improvement of cognition ability and decrease of Aβ deposi-
tion [130]. In clinical research, the quality of life and psy-
chological states of AD patients were improved following 
aerobic exercise training, along with inhibition of systemic 
inflammation, including the decreased levels of interleukin 
(IL)-6 and tumor necrosis factor (TNF)-α in serum [131]. 
Moreover, physical training evidently improved the problem-
solving ability and judgment function, and reduced the level 
of reactive oxygen species, catalase activity, and neuron-
specific enolase (a sign of neuronal injury) in AD patients 
[132]. However, Camilla et al. found that physical exer-
cise exerted a mild inflammatory systematic effect on AD 
patients, which is inconsistent with abovementioned results 
[133]. Therefore, the further research is required to confirm 
the effect of exercise on AD and explore detailed molecular 
mechanisms of exercise in AD-associated inflammation.

The Effect of the Regulation BBB Transport 
Proteins by Exercise on AD

The BBB is a dynamically protective boundary between the 
CNS and the peripheral circulation. The BBB is a highly 
specific chemical barrier with a semipermeable structure 
that isolates the brain from circulating blood and extra-
cellular fluids [134, 135]. It provides an extremely stable 
intracerebral environment and prevents foreign materials, 
such as toxins or microorganisms, from disrupting the brain 
homeostasis [136].

The Receptor for Advanced Glycation End Products 
and Low‑Density Lipoprotein Receptor‑Related 
Protein 1

There is a tight balance between Aβ influx and efflux across 
the BBB, which is disturbed in AD and results in aggrega-
tion of toxic protein. This balance partly depends on the 
BBB receptors; receptor for advanced glycation end prod-
ucts (RAGE) and low-density lipoprotein receptor-related 
protein 1 (LRP1) control the transport of Aβ into and out of 
the brain, respectively [137]. RAGE, a multiligand recep-
tor, belongs to the immunoglobulin superfamily. Its ligands 
consist of Aβ, advanced glycation end products, amphoterin, 
and S100/calgranulin family members [138]. The increased 
expression of RAGE in the astroglial and neural cells was 
reported in animal models of AD and closely related to 
cognitive impairment and AD pathogenesis [139, 140]. 
LRP-1 is a lipoprotein receptor in the cytomembrane that 
induces endocytosis or the cellular internalization of diverse 
ligands; the ligands for LRP1, which include secreted APP, 
α2-macroglobulin (α2M), apolipoprotein E, and Aβ, are 
involved in the pathogenesis of AD [138, 141]. Various 
studies have reported that LRP1 plays an essential role in 

the three-step mechanism that regulates Aβ clearance from 
the brain and body [142]. A recent study showed that the 
upregulation of LRP1 by vitamin D was responsible for the 
Aβ clearance in models of AD [143].

Studies have confirmed that physical exercise improves 
several pathological mechanisms of AD, such as neurovas-
cular unit dysfunction or cognitive deficits, through differ-
ential modulation of RAGE and LRP1 to reduce the amy-
loid plaque load in the brain [144–146]. However, in 2018, 
Zhang et al. found no obvious alteration in LRP1, although 
they did find a decrease in RAGE in the hippocampus after 
long-term treadmill exercise, which resulted in the reduc-
tion of Aβ deposition mainly through the suppression of the 
amyloidogenic pathway of APP cleavage [146].

LRP1 in the liver induces rapid peripheral Aβ clearance 
[147]. In healthy human or mice, plasma soluble LRP1 
(sLRP1) binds more than 70% of circulating Aβ in order to 
prevent it from accessing the brain; it also takes part in main-
taining brain Aβ homeostasis [148, 149]. In rats treated with 
Aβ1–42, researchers found that 4 weeks of treadmill exercise 
elevated the sLRP1 levels in plasma and the LRP1 protein 
and mRNA levels in the liver and reduced the levels of circu-
lating sAβ1–42 [145]. Other studies found that soluble RAGE 
(sRAGE) could restrict the binding of RAGE to its ligands 
as a decoy in plasma, thus inhibiting a variety of pathologi-
cal processes of AD, such as oxidative stress and inflamma-
tion [150–153]. One study reported that physical activity for 
8 months caused a significant elevation in plasma sRAGE 
levels in 98 participants [154]. These results highlighted 
the protective effect of exercise on cardiovascular disease 
or other diseases, such as AD, that were partially mediated 
by an increase in inflammatory conditions. In conclusion, 
RAGE and LRP1 have beneficial effects on Aβ clearance 
in the brain and in the blood. Exercise training can regulate 
these two factors and remove generated Aβ to alleviate AD.

The Glucose Transporter 1

Glucose transporter 1 (GLUT1), which is mainly expressed 
at the BBB, is the major transporter of glucose to mediate 
glucose enter into the brain [155]. The supply of glucose is 
vital for maintaining brain energy metabolism homeostasis 
and supporting the activated nerve cells to function properly 
[156]. Early decrease in glucose transport related to reduced 
levels of GLUT1 at the BBB is one of the characterized fea-
tures of AD [157]. Diminished expression of GLUT1 and 
GLUT3 (the glucose transporter 3) caused the impairment 
of brain glucose uptake process in the cerebral cortex of AD 
patients, resulting in hyperphosphorylation of tau protein 
[158]. The reduction of GLUT1 at BBB aggravated cog-
nitive dysfunction, cerebrovascular degenerative changes, 
and neuropathology of AD [159]. In addition, GLUT1 defi-
ciency resulted in decrease of Aβ clearance and facilitated 
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Aβ pathology by decreasing the expression of LRP-1, indi-
cating that GLUT1 reduction could promote the disease pro-
cess via amplifying vascular injury and Aβ deposition [159]. 
The regular exercise training increased GLUT1 and GLUT3 
expression levels in the central nervous system (CNS) of 
AD model mice, playing an important role in the process of 
energy metabolic adaptation [156]. In summary, exercise can 
reduce Aβ by elevating GLUT1/LRP1 expression levels at 
BBB in AD. However, the exact mechanism among exercise, 
GLUT1, LRP1 still needs further exploration.

The Effect of the Regulation 
of Aβ‑Degrading Enzymes by Exercise on AD

In the brain, Aβ clearance can also be enzymic [160]. For 
example, neprilysin (CD10) and insulin-degrading enzyme 
(IDE) are two key enzymes that are involved in the clearance 
of Aβ, especially the proteolytic degradation to monomeric 
Aβ. These enzymes are expressed in multiple cellular con-
stituents of the brain, including the BBB endothelium [161]. 
Studies have shown that CD10 and IDE are upregulated in 
mice with AD after a period of exercise [18, 145]. However, 
other studies have yielded different results. For instance, 
Adlard et al. found that exercise induced a reduction in the 
extracellular Aβ plaques that was independent of CD10 and 
IDE [162]. The researchers concluded that the reduction in 
Aβ might be related to neuronal metabolic alterations that 
were known to be modulated by exercise and to influence 
APP processing [162]. Zhang et al. discovered that APP/
PS1 TG mice that were subjected to 5 months of treadmill 
exercise had decreased CD10 and IDE expressions, which 
indicated an inhibited degradation pathway [40]. One pos-
sible explanation for these discrepancies is that these studies 
involved different types and durations of exercises or animal 
models [138].

Other Mechanisms Involved 
in the Therapeutic Effect of Exercise on AD

It has been well established that tau phosphorylation is a key 
pathophysiological change in AD patients. The resistance 
training inhibited tau pathology and neuroinflammation, and 
improved synaptic plasticity in the hippocampus and frontal 
cortex of AD mice [163]. The treadmill exercise exerted 
inhibitory effects on tau phosphorylation, neuronal apop-
tosis, and mitochondrial dysfunction, as well as improved 
hippocampal-dependent cognitive function in the strepto-
zotocin-induced rat model of AD after 4 weeks of tread-
mill exercise [30]. In addition, voluntary running exercise 
diminished the loss of neurons and spatial memory, reduced 
the levels of tau phosphorylation and Aβ accumulation, and 

increased hippocampal neurogenesis in TG mice of AD 
[164].

Glycogen synthase kinase-3 (GSK3) that is a main kinase 
in AD, which can inhibit hippocampal neurogenesis and 
stimulate neuroinflammation, is a regulator of tau hyper-
phosphorylation [165, 166]. Its role in APP phosphorylation 
may be involved in aberrant APP processing and the patho-
logical aggregation of Aβ. A previous study reported that 
5 months of treadmill exercise led to a strong reduction in 
Aβ accumulation and tau phosphorylation, along with a sig-
nificantly decreased PS1 expression and APP phosphoryla-
tion by inhibiting the GSK3-dependent signalling pathway 
in APP/PS1 mice [167]. Moreover, exercise training could 
promote the phosphorylation of PI3K/AKT, the upstream 
precursors of GSK-3, and then suppress the kinase activity 
of GSK-3 via phosphorylation, thus mitigating the patho-
logical changes of AD [168].

ATP-binding cassette transporter A1 (ABCA1) is a key 
transmembrane protein that promotes the extracellular 
transport of cholesterol; it is mainly regulated by retinoid 
X receptor (RXR) and liver X receptor (LXR) [169]. It has 
been shown that LXR and RXR accelerate the intracellular 
cholesterol efflux by modulating ABCA1, which participates 
in the deposition and transport of Aβ. However, the exact 
mechanism by which ABCA1 affects APP processing is not 
clear. One study found that long-term exercise changed cho-
lesterol transportation and reduced soluble Aβ by increasing 
ABCA1 expression and influencing the levels of RXR and 
LXR [146].

Developmental Origins of Health and Disease (DOHaD) 
is a rising field that aims to delay the rapid growth of non-
communicable chronic diseases [170]. The environmental 
exposures during important periods of development may 
result in subtle alternations in certain biological functions, 
although almost invisible, and can raise the risk of dysfunc-
tion and disease later in life [129]. DOHaD research lays 
emphasis on how environmental conditions sustained by 
the developing fetus affect the subsequent development of 
health or disease in adulthood. Consistently, there is evi-
dence for beneficial effects of physical or cognitive activity 
at early stage of ontogenesis [171]. Clinical trials showed 
that maternal exercise during pregnancy positively affected 
the fetal health and the cognitive functioning of offspring 
until childhood [172, 173]. Additionally, Herring et al. stud-
ied female transgenic (TG) CRND8 mice with the human 
APP 695 transgene and reported that wheel running during 
pregnancy alleviated amyloidogenic APP processing and 
provided long-lasting protection from neurodegeneration in 
their unstimulated progeny, indicating that maternal exercise 
interferes with the AD-like pathology of offspring [174]. 
Therefore, we can conclude that intrauterine milieu mediated 
by exercise in the period of pregnancy can provide long-
lasting benefits to the health of offspring and some resistance 
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against chronic diseases in adult stage. In summary, exercise 
could exert neuroprotective effects on AD via different types 
of mechanisms.

The Related Mechanisms of Exercise 
on Other Neurodegenerative Diseases

Except for AD, exercise also could exert benefits on various 
neurodegenerative diseases, such as Parkinson’s disease (PD) 
and Huntington’s disease (HD). PD is characterized by the 
deficiency of dopaminergic neurons and the existence of Lewy 
bodies within the substantia nigra [175, 176]. Exercise could 
markedly improve motor dysfunctions, such as gait and bal-
ance, and non-motor disorders, such as cognitive function and 
quality of life, in PD patient [177]. Moreover, aerobic exercise 
can exert neuroprotective and neurorestorative effects in PD 
via modulating neurotrophic factors to promote angiogenesis 
and synapse formation, enhancing mitochondrial function 
and suppressing oxidative stress and apoptosis [178]. HD is 
an autosomal dominant neurodegenerative disease, resulting 
from polyglutamine expansion in the Huntingtin gene [179]. 
In HD patients, neuropathology leads to progressive motor 
dysfunction, cognitive impairment, psychiatric symptom, and 
peripheral organ disturbances [180]. Exercise training can 
exert a beneficial role in motor behavior by reducing deficits 
in mitochondrial function in a HD rodent model [181]. More-
over, a series of studies with physical activity have displayed 
an improvement in motor function and specific tasks, suggest-
ing that exercise is safe and feasible treatment for HD patients 
[182]. To sum up, exercise is an effective treatment for various 
neurodegenerative diseases. More research is required to solve 
the detailed problems, including the exercise type, appropriate 
intensity, duration, and so on.

Conclusion

As the elderly population gradually increases and no disease-
modifying treatments are available, AD has been one of the 
central global medical issues in the twenty-first century. AD 
proceeding is closely related to extracellular accumulation of 
Aβ in the brain. Exercise provides a cost-effective and non-
invasive way to influence many of the mechanisms that have 
been displayed to reduce Aβ levels and alter AD progression, 
which can serve as the basis for non-pharmacological means 
to combat neurodegeneration in AD.

In Table 1, we have summarized some details in the above-
mentioned literatures on the mechanisms of exercise on Aβ, 
including models, AD ages/stages (no matter animals or 
humans), and exercise time and strength in the referenced 
studies. In addition, most longitudinal prospective studies 
have confirmed that higher levels of physical exercise are Ta
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protective against AD dementia and, conversely, lower levels 
of physical activity are relevant to higher risks of AD devel-
opment [183–185]. Of note, at very high intensity, exercise 
may become a stressor that has negative effects on human 
because of the diminished protective response to oxidative 
stress in brain [187]. Therefore, a medium amount of physi-
cal exercise seems to be beneficial for AD patients. Although 
exercise has multiple positive effects on regulating Aβ and 
AD, a few studies reported no changes of Aβ after exercise. 
Such discrepancies are probably explained by the age of mice, 
the phase of AD progression and different exercise protocols, 
and environment. Moreover, vigorous exercise might do more 
harm than good for the elderly. Exercise strategies should be 
recommended by experts to avoid excessive intensity.

In summary, this review summarized the related mecha-
nisms that are involved in the effect of exercise on AD. How-
ever, it remains unclear whether the intensity or duration 
of the exercise affects Aβ clearance, degradation, and APP 
processing; it is also unknown how exercise initiates the 
changes to remove Aβ. Moreover, it needs to be stated that 
the aggregation of all these mechanisms might be important 
and acting on a single target might not be sufficient, and 
exercise might be of interest in that it may act on multiple 
targets concurrently. The application of exercise to allevi-
ate AD abnormalities still needs further and more detailed 
research in the future.
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