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Abstract
Alzheimer’s disease (AD) is the most common cause of dementia, which affects more than 5 million individuals in the 
USA. Unfortunately, no effective therapies are currently available to prevent development of AD or to halt progression of 
the disease. It has been proposed that monoacylglycerol lipase (MAGL), the key enzyme degrading the endocannabinoid 
2-arachidonoylglycerol (2-AG) in the brain, is a therapeutic target for AD based on the studies using the APP transgenic 
models of AD. While inhibition of 2-AG metabolism mitigates β-amyloid (Aβ) neuropathology, it is still not clear whether 
inactivation of MAGL alleviates tauopathies as accumulation and deposition of intracellular hyperphosphorylated tau pro-
tein are the neuropathological hallmark of AD. Here we show that JZL184, a potent MAGL inhibitor, significantly reduced 
proinflammatory cytokines, astrogliosis, phosphorylated GSK3β and tau, cleaved caspase-3, and phosphorylated NF-kB 
while it elevated PPARγ in P301S/PS19 mice, a tau mouse model of AD. Importantly, tau transgenic mice treated with 
JZL184 displayed improvements in spatial learning and memory retention. In addition, inactivation of MAGL ameliorates 
deteriorations in expression of synaptic proteins in P301S/PS19 mice. Our results provide further evidence that MAGL is a 
promising therapeutic target for AD.
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Introduction

Alzheimer’s disease (AD), the most common form of 
dementia, is a degenerative brain disease characterized by 
neuroinflammation, accumulation of β-amyloid (Aβ) plaques 
and neurofibrillary tangles, neurodegeneration, synaptic dys-
function, and cognitive decline. Based on “the 2020 Alzhei-
mer’s Disease Facts and Figures” reported by Alzheimer’s 
Association, more than 5 million Americans age 65 and 
older are living with Alzheimer’s dementia in 2020 and AD 
is the sixth-leading cause of death in the USA. However, no 
effective pharmacotherapies are currently available for pre-
vention and treatment of AD. This is largely due to the fact 

that etiology of AD is multifactorial and development of AD 
is linked to multiple mechanisms or signaling pathways. This 
means that the ideal AD therapy should be able to modify 
the disease through multiple mechanisms.

Endocannabinoids are endogenous bioactive lipid media-
tors involved in a variety of physiological and pathological 
processes. The endocannabinoid 2-arachidonoylglycerol 
(2-AG) is the most abundant endogenous cannabinoid and 
a full agonist for both CB1R and CB2R [1]. Several lines of 
evidence indicate that 2-AG displays anti-inflammatory and 
neuroprotective properties in responses to harmful insults 
[2–6]. 2-AG is primarily synthesized from diacylglycerol 
(DAG) by diacylglycerol lipases α/β and metabolized by 
the enzymes, including monoacylglycerol lipase (MAGL) 
and α/β hydrolase domain–containing proteins 6 and 12 
(ABHD6/12). 2-AG is also converted by cyclooxygenase-2 
(COX-2) to a new class of prostaglandins, prostaglandin 
glycerol esters (PG-Gs), when COX-2 is excessively acti-
vated during inflammation [6, 7]. Although these enzymes 
are capable of metabolizing of 2-AG, it has been estimated 
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that 85% of 2-AG in the brain is degraded by MAGL [8, 9], 
suggesting that MAGL plays a dominant role in control of 
endogenous 2-AG levels in the brain. Recent studies pro-
vided further evidence that 2-AG in neurons and astrocytes 
is primarily hydrolyzed by MAGL, while it in microglial 
cells is predominantly degraded by ABHD12 [10, 11]. The 
immediate metabolite of 2-AG is arachidonic acid (AA), a 
precursor of prostaglandins catalyzed by COX-1/2 and leu-
kotrienes via arachidonate 5-lipoxygenase (LOX). Prosta-
glandins (i.e., PGE2) and leukotrienes are important inflam-
matory mediators or proinflammatory [12, 13], while 2-AG 
is anti-inflammatory and neuroprotective [2–6, 14]. Appar-
ently, inactivation of MAGL would result in augmentation 
of anti-inflammatory and neuroprotective 2-AG signaling, 
while lowering proinflammatory and neurotoxic eicosanoid 
levels [7, 9, 10, 15], suggesting that inhibition of 2-AG 
metabolism in the brain will lead to activate neuroprotective 
signaling pathways and concurrently turn off signaling path-
ways that are detrimental to brain function [16, 17]. Indeed, 
previous studies from our group and others demonstrated 
that inactivation of MAGL reduces Aβ formation and accu-
mulation, neuroinflammation, and neurodegeneration and 
improves synaptic and cognitive functions in APP transgenic 
mice, animal models of AD [15, 18–20]. However, it is still 
not clear whether inhibition of 2-AG metabolism mitigates 
tauopathies as intracellular neurofibrillary tangles that rep-
resent hyperphosphorylated tau proteins are an important 
neuropathological hallmark of AD [21, 22]. Here we show 
that inactivation of MAGL attenuates neuroinflammation 
and tau phosphorylation and prevents deterioration in syn-
aptic proteins and cognitive decline in P301S/PS19 mice, 
a tau mouse model of AD, supporting generalizability of 
MAGL as a promising therapeutic target for AD.

Results

JZL184 Mitigates Neuroinflammation in P301S/PS19 
Mice

Neuroinflammation is one of the major pathogenic mech-
anisms that contribute to neuropathology and cognitive 
decline in AD. Previous studies demonstrate that pharma-
cological inhibition MAGL attenuates neuroinflammation 
evident by decreases in proinflammatory cytokines and 
astroglial reactivity in APP transgenic mice [15, 18–20]. 
To determine whether inhibition of MAGL produces anti-
inflammatory effects in tau P301S/PS19 transgenic (TG) 
mice [23], we treated mice at 5 months of age with JZL184 
(10  mg/kg, three times/week for 8  weeks, Fig.  1a), as 
described previously [15]. We first assessed hippocampal 
cytokines IL-1β and TNFα in 7-month-old TG mice and age-
matched wild-type (WT) control mice treated with vehicle 

or JZL184 using ELISA analysis. As shown in Fig. 1b, the 
levels of IL-1β and TNFα were significantly elevated in 
PS19 TG mice when compared with WT mice. Treatment 
with JZl184 significantly decreased hippocampal IL-1β 
and TNFα in both WT and TG mice. These results indicate 
that inhibition of 2-AG metabolism with JZL184 reduces 
neuroinflammation in tau TG mice. To further confirm 
anti-inflammatory effects of MAGL inactivation in tau TG 
mice, GFAP immunoreactivity, a marker for inflammatory 
responses in astrocytes, was assessed in the brain of P301S 
TG mice treated with vehicle or JZL184 three times a week 
for 8 weeks. As shown in Fig. 2, GFAP immunoreactiv-
ity was robustly reduced in the cortex and hippocampus of 
7-month-old P301S TG mice treated with JZL184. Next, 
we detected Iba1 immunoreactivity, a marker for inflamma-
tory responses in microglia, as microglial cells are the innate 
immune system of the brain and play an important role in 

a

b

Fig. 1  Inactivation of MAGL reduces proinflammatory cytokines in 
P301S/PS19 transgenic (TG) mice. a Schematic illustration of the 
experimental protocol. P301S tau TG mice and their age-matched 
wild-type (WT) controls received vehicle or JZL184 (10 mg/kg, i.p.) 
three times per week starting at 5 months of age for 8 weeks. All the 
assessments were made at 7 months of age. b Changes in hippocam-
pal IL-1β and TNFα in mice treated with JZL184. Cytokines were 
detected using ELISA analysis. Data are means ± SEM. *P < 0.05, 
***P < 0.001 compared with WT-vehicle; §§P < 0.01, §§§P < 0.001 
compared with TG-vehicle (ANOVA with Bonferroni test, n = 5/
group)
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neuroinflammatory processes. As shown in Fig. 3, JZL184 
also greatly suppressed reactive microglial cells in the cortex 
and hippocampus of the P301S TG mice. These results are 
consistent with previous observations where inhibition of 
MAGL mitigates neuroinflammation in APP TG mice [15, 
18, 19].

Inhibition of 2‑AG Metabolism Alleviates 
Tauopathies in P301S/PS19 TG Mice

Accumulation of intracellular neurofibrillary tangles result-
ing from hyperphosphorylated tau is the neuropathological 
hallmark of AD [21, 22]. However, no studies have been 
conducted to assess whether disruption of 2-AG metabo-
lism reduces phosphorylated tau (p-tau). To this end, we 

assessed total tau (Tau-5) and p-tau, including p-tau Thr181 
(p-tauT181), and p-tau Ser202/Thr205 (AT8) in the hip-
pocampus of PS19 TG mice treated with JZL184. As shown 
in Fig. 4a, p-tauT181 and AT8 were robustly elevated in TG 
mice, indicating increased p-tau proteins in P301S TG mice. 
Importantly, while JZL184 did not induce changes in Tau-5, 
which is the transgene and overexpressed in this line of tau 
TG mice, it significantly reduced p-tauT181 and AT8 in TG 
mice, indicating that inactivation of MAGL decreases p-tau. 
Since tau phosphorylation is largely regulated by glycogen 
synthase kinase-3β (GSK3β) and cyclin-dependent kinase 
5 (Cdk5) [24–27], we detected phosphorylated GSK3β 
(p-GSK3β) and P35/25 that interact with Cdk5. As shown in 
Fig. 4a, p-GSK3β and P25 were significantly elevated in TG 
mice that received the vehicle, but the increase was reduced 

0

1

2

3

4

5

§§§

G
FA

P 
im

m
un

or
ea

ct
iv

ity
CA1

 WT-Veh  WT-JZL
 TG-Veh  TG-JZL

DGCortex

***

***

***

§§§

***
***

§§§

**

LZJ-GTLZJ-TWheV-TW TG-Veh
Cortex

CA1

DG

GFAP/DAPI GFAP/DAPI GFAP/DAPI GFAP/DAPI

GFAP/DAPI GFAP/DAPI GFAP/DAPI GFAP/DAPI

GFAP/DAPI GFAP/DAPI GFAP/DAPI GFAP/DAPI

Fig. 2  Inhibition of 2-AG metabolism attenuates reactivity of 
astrocytes in P301S TG mice. Immunoreactivity of astrocytic 
marker GFAP (green) in the cortex and hippocampus is reduced 
in tau TG mice that received JZL184. Scale bars: 40  μm. Data are 

means ± SEM. **P < 0.01, ***P < 0.001 compared with WT-vehicle 
control; §§§P < 0.001 compared with TG-vehicle (ANOVA with Bon-
ferroni post hoc test, n = 4 mice per group)
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in TG mice treated JZL184, indicating JZL184-reduced 
p-tau is likely through suppression of p-GSK3β and P25.

We also assessed PPARγ, an important nuclear receptors 
displaying anti-inflammatory and neuroprotective effects, 
and phosphorylated NF-kB (p-NF-kB), an important tran-
scription factor regulating expression of genes involved in 
inflammation and neurodegeneration [28–31]. We observed 
that hippocampal expression of PPARγ was significantly 
reduced, while p-NF-kB was increased in 7-month-old 
P301S TG mice. However, JZL184 prevented a decrease in 
expression of PPARγ and an increase in p-NF-kB (Fig. 4a).

It is generally accepted that apoptosis is one of the impor-
tant mechanisms contributing to loss of neurons in AD 
[32–34]. To determine whether apoptosis occurs in 7-month-
old P301S tau TG mice and whether MAGL inactivation 

mitigates tau-induced apoptosis, we detected expression of 
Bcl2, Bax, and caspase-3, which are involved in apoptotic 
cascades [35, 36], in hippocampal tissues from WT and TG 
mice treated with vehicle or JZL184. As shown in Fig. 4b, 
expression of caspase-3 was significantly decreased, while 
cleaved caspase-3 was increased in the hippocampus in TG 
mice treated with vehicle. However, these changes were pre-
vented by inactivation of MAGL with JZL184. We noticed 
that expression of Bcl2 was slightly reduced while Bax was 
elevated in vehicle-treated TG mice. Although these changes 
were reversed in animals treated with JZL184, there were 
no statistically significant differences in expression of Bcl2, 
Bax, or in the ratio of Bcl2/Bax between WT and TG mice 
treated with vehicle or JZL184 (Fig. 4b). These results sug-
gest that apoptosis occurs in tau TG mice and that MAGL 
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Fig. 3  Inhibition of 2-AG metabolism attenuates reactivity of 
microglial cells in P301S TG mice. Immunoreactivity of micro-
glial marker Iba-1 (green) in the cortex and hippocampus is reduced 
in tau TG mice that received JZL184. Scale bars: 40  μm. Data are 

means ± SEM. **P < 0.01, ***P < 0.001 compared with WT-vehicle 
control; §§§P < 0.001 compared with TG-vehicle (ANOVA with Bon-
ferroni post hoc test, n = 4 mice per group)
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inactivation reduces apoptosis primarily through a caspase-
3-dependent signaling pathway in tau TG mice. This is 
consistent with the observations where caspase-3/cleaved 
caspase-3, but not Bcl2/Bax pathways, contribute to neuro-
pathology in P301S tau TG mice [37].

Inactivation of MAGL Improves Cognitive Function 
in P301S/PS19 TG Mice

Inactivation of MAGL has been shown to improve spatial 
learning and memory in APP transgenic mice [15, 20, 38]. 
However, it is still not clear whether inactivation of MAGL 
prevents cognitive decline in tau transgenic models of AD. 
To determine whether inhibition of 2-AG metabolism 

improves cognitive function, we assessed spatial learning 
and memory retention using the novel object recognition 
(NOR) and the Morris water maze tests, as described pre-
viously [15, 20, 38–41], in P301S tau TG mice treated with 
JZL184 for 8 weeks. As shown in Fig. 5a, memory reten-
tion was significantly impaired in 7-month-old P301S TG 
mice treated with vehicle. However, the impairment was 
prevented in TG mice treated with JZL184. The cognitive 
improvement by inactivation of MAGL in P301S TG mice 
is further confirmed by the Morris water maze test. As 
shown in Fig. 5b-d, JZL184 significantly improves spatial 
learning and memory retention in P301S TG mice, similar 
to APP transgenic mice [15, 20, 38]. These results sug-
gest that inactivation of MAGL is capable of preventing 
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Fig. 4  Inactivation of MAGL alleviates tauopathies in P301S TG 
mice. a Immunoblot analysis of tau-5 (total tau), p-GSK3β, P35/25, 
p-tauT181, p-tau Ser202/Thr205 (AT8), PPARγ, and p-NF-kB in the 
hippocampus in P301S TG mice that received JZL184 for 8 weeks. 
The values of Tau-5, p-GSK3β, P35/25, PPARγ, and p-NF-kB are 
normalized to WT-vehicle, while p-tauT181 and AT8 are normalized 

to TG-vehicle as these phosphorylated tau proteins are not detectable 
in WT mice. Data are means ± SEM (ANOVA with Fisher PLSD test, 
n = 4 ~ 5/group). b Immunoblot analysis of Bcl2, Bax, caspase-3, and 
cleaved caspase-3 in hippocampal tissues from PS19 TG mice that 
received JZL184 for 8 weeks. Data are means ± SEM (ANOVA with 
Fisher PLSD test, n = 3/group)
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cognitive decline in both APP and tau transgenic models 
of AD.

Inhibition of 2‑AG Metabolism Prevents 
Deterioration in Expression of Synaptic Proteins 
in P301S/PS19 TG Mice

It has been well recognized that cognitive deficits in AD 
is primarily due to loss of the synaptic integrity [40, 42]. 
Proper and efficient synaptic transmission and plasticity in 
the brain are largely dependent on expression and function of 
excitatory glutamate receptors. Our previous studies showed 
that inactivation of MAGL in APP TG mice prevents down-
regulation of glutamate receptor subunits in the brain [15, 
38]. To determine whether JZL184 prevents deterioration 
in expression of glutamate receptors in tau TG mice, we 
detected expression of AMPA and NMDA glutamate recep-
tor subunits, including GluA1, GluA2, GluN1, GluN2A, 
and GluN2B, in P301S tau TG mice treated with vehicle or 
JZL184. As shown in Fig. 6, expression of GluA1, GluA2, 
GluN2A, and GluN2B in the hippocampus was significantly 
downregulated in P301S TG mice treated with vehicle. How-
ever, expression of these glutamate receptor subunits in mice 

treated with JZL184 was returned to the levels in WT mice, 
suggesting that inhibition of 2-AG metabolism is also capa-
ble of preventing deterioration in expression of glutamate 
receptor subunits. To further assess whether inactivation of 
MAGL prevents changes in expression of synaptic proteins 
in P301S TG mice, we also detected synaptophysin (Syn) 
and PSD-95, pre- and post-synaptic markers. We observed 
that hippocampal expression of Syn and PSD-95 was signifi-
cantly reduced in 7-month-old P301S TG mice. However, 
treatment with JZL184 attenuated downregulation of Syn. 
Although expression of PSD-95 in JZL184-treated animals 
was slightly increased, but no statistical significance. Our 
results provide evidence that restraint of 2-AG metabolism 
by inactivation of MAGL averts downregulation of synaptic 
proteins in tau TG mice.

Discussion

It has been proposed that MAGL inhibition, which augments 
2-AG signaling and reduces eicosanoid levels [8, 9], is a 
promising therapy for AD [15]. However, MAGL proposed 
as a therapeutic target is largely based on the studies using 

Fig. 5  Inhibition of MAGL 
improves cognitive function 
in P301S TG mice. a The 
novel object recognition test 
in 7-month-old Pv TG mice 
that received JZL184 for 
8 weeks. Data are means ± SEM 
(ANOVA with Bonferroni post 
hoc test, n = 11 ~ 18/group). b 
The Morris water maze test 
was performed in 7-month-old 
P301S TG mice that received 
JZL184 for 8 weeks. Data are 
means ± SEM (***P < 0.001, 
ANOVA with repeated meas-
ures, n = 11 ~ 17/group). c 
Number of platform crossing 
during the probe test. The probe 
trial was conducted 24 h after 
7 days of acquisition train-
ing. Data are means ± SEM 
(ANOVA with Bonferroni post 
hoc test, n = 11 ~ 17/group). d 
The percentage of time spent 
in search of the target quadrant 
during the probe trial. Data 
are means ± SEM (ANOVA 
with Bonferroni post hoc test, 
n = 11 ~ 17/group)

a b

c d
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the APP transgenic models of AD [15, 18–20, 38]. Since 
intracellular neurofibrillary tangles resulting from accumula-
tion of hyperphosphorylated tau proteins is one of the impor-
tant neuropathological hallmarks of AD, it is still not clear 
whether inhibition of 2-AG metabolism alleviates tauopa-
thies. To ascertain generalizability of the results from APP 
TG mice, we used P301S/PS19 tau TG mice, a tau mouse 
model of AD [23]. We demonstrate in the present study that 
JZL184, a highly selective and potent MAGL inhibitor [9, 
43, 44], significantly reduces neuroinflammation, phospho-
rylated tau, and cleaved caspase-3, prevents deteriorations 
in expression of synaptic proteins, and improves cognitive 
function in P301S TG mice. Our results provide further evi-
dence that inactivation of MAGL is capable of alleviating 
both Aβ neuropathology and tauopathies, supporting the 
notion that MAGL is a promising therapeutic target for AD.

It is generally accepted that the etiology of AD is multi-
factorial and complex. Apparently, AD involves multiple eti-
opathogenic mechanisms or signaling pathways. This means 
that the ideal AD therapy should be able to modify the dis-
ease through multiple mechanisms. Several lines of evidence 
suggest that 2-AG is an important endogenous signaling 
molecule maintaining brain homeostasis by modulating 
synaptic transmission and plasticity, resolving neuroinflam-
mation, and protecting neurons from harmful insults [2–6, 
14, 17, 45–48]. Intriguingly, the immediate metabolite of 
2-AG is arachidonic acid (AA), a precursor of prostaglandins 
and leukotrienes, which are proinflammatory and neurotoxic 
[12, 13]. Apparently, inactivation of MAGL results in aug-
mentation of anti-inflammatory and neuroprotective 2-AG 
signaling, while lowering proinflammatory and neurotoxic 
eicosanoid levels [6, 7, 16]. This means that inactivation 

of MAGL will turn on anti-inflammatory and neuropro-
tective signaling pathways and concurrently off signaling 
pathways that are detrimental to homeostatic maintenance 
of brain function [16, 17]. Indeed, previous studies provide 
evidence showing that pharmacological or genetic inacti-
vation of MAGL enhances long-term potentiation (LTP), 
learning, and memory [15, 49, 50]. Importantly, inactiva-
tion of MAGL produces profound anti-inflammatory and 
neuroprotective effects and improves synaptic and cognitive 
functions in animal models of AD and MPTP model of Par-
kinson’s disease, and close head injury [9, 15, 18, 19, 41]. 
Thus, MAGL has been proposed as a therapeutic target for 
neurodegenerative diseases [15, 38, 41, 51–54].

The neuroprotective effects of MAGL inhibition observed 
in the present study likely benefit from multiple signaling 
pathways based on the anti-inflammatory and neuropro-
tective properties of its substrate 2-AG and the proinflam-
matory and neurotoxic properties of the 2-AG metabolites 
(Fig. 7). It has been demonstrated earlier that inactivation of 
MAGL suppresses LPS-induced inflammation and reduces 
MPTP-induced neuronal loss [9]. These neuroprotective 
effects by disruption of MAGL are not mediated via 2-AG 
signaling that binds to CB1R or CB2R, but through pros-
taglandin signaling derived from AA, the 2-AG immedi-
ate metabolite catalyzed by MAGL. Consistent with these 
observations, MAGL inhibition–produced suppression of 
gliosis, cytokine production, and Aβ formation in APP TG 
mice is also independent of CB1R or CB2R [15, 18, 38]. 
In contrast, 2-AG has been shown to protect neurons from 
traumatic brain injury via a CB1R-dpendeent mechanism 
[5, 55]. Especially, 2-AG or inhibition of MAGL attenu-
ates Aβ, proinflammatory and excitotoxic insult–induced 

Fig. 6  Inactivation of MAGL prevents deterioration in expres-
sion of synaptic proteins in P301S TG mice. Immunoblot analy-
sis of hippocampal expression of AMPA (GluA1 and GluA2) and 
NMDA (GluN1, GluN2A, and GluN2B) receptor subunits, PSD-95, 
synaptophysin (Syn), and PPARγ in 7-month-old P301S TG mice 

treated with vehicle or JZL184. Data are means ± SEM. *P < 0.05; 
**P < 0.01 compared with the WT-vehicle, §P < 0.05, §§P < 0.01 com-
pared with the TG-vehicle (ANOVA with Fisher’s PLSD test, n = 4 
mice per group)

4128 Molecular Neurobiology  (2021) 58:4122–4133



neuroinflammation, neurodegeneration, and apoptosis via a 
CB1R-mediated suppression of caspase-3 cleavage, MAPK, 
ERK1/2, NF-kB, and COX-2 in vitro [2, 4]. Thus, MAGL 
inactivation-produced beneficial effects are closely asso-
ciated with augmentation of 2-AG signaling and concur-
rent reduction of its metabolites through CB1R- or CB2R-
dependent and independent mechanisms.

Peroxisome proliferator–activated receptor-γ (PPARγ), 
a member of nuclear receptors, displays anti-inflammatory 
and neuroprotective effects through interacting with NF-kB, 
resulting in reduction of expression of genes involved in 
inflammation and neurodegeneration [28–31]. Our previ-
ous studies show that 2-AG- or MAGL inhibition–induced 
suppression of COX-2 and p-NF-kB is mediated via CB1R-
dpendent promotion of PPARγ expression in  vitro [3], 

suggesting that interactions occur between PPARγ and 
NF-kB in 2-AG-produced anti-inflammatory and neuropro-
tective effects against harmful insults [6]. Our latest stud-
ies provide further evidence that 2-AG is an endogenous 
PPARγ, which mediates 2-AG- or MAGL inactivation-pro-
duced resolution of neuroinflammation and protection of 
neurons by inhibition of NF-kB signaling in APP TG mice 
[20]. In the present study, we observed that MAGL inactiva-
tion elevates PPARγ and decreases p-NF-kB in tau TG mice, 
suggesting that PPARγ signaling plays an important role in 
MAGL inactivation-produced mitigation of neuroinflamma-
tion, apoptosis, and tauopathies (Fig. 7).

Senile plaques and neurofibrillary tangles are the two 
neuropathological hallmarks of AD. Senile plaques are 
extracellular accumulation and deposition of Aβ, while neu-
rofibrillary tangles are intracellular deposition of hyperphos-
phorylated tau proteins. The behavioral symptoms of AD 
are largely associated with the accumulation of plaques and 
tangles [21]. Several lines of evidence show that tau stability 
is largely associated with molecular chaperons, including 
heat shock protein 90 (Hsp90) and heat shock protein 70 
(Hsp70), two major molecular chaperones that are involved 
in tau misfolding, self-aggregation, and clearance [35, 36, 
56, 57]. It has been shown that inhibition of Hsp90 or Hsp70 
reduces tauopathies [58, 59]. Although we did not assess 
Hsp90 and Hsp70 in the present study, it is possible that 
Hsp90 or Hsp70 might be involved in the MAGL inactiva-
tion-alleviated tauopathies, which warrants further research.

While both Aβ and p-tau contribute to neuropathology, 
synaptic, and cognitive declines in AD, accumulated evi-
dence suggests that tau proteins are essential or required for 
Aβ-induced neurotoxicity, neurodegeneration, and synaptic 
dysfunction [22, 60, 61]. This means that hyperphosphoryl-
ated tau plays an important role in driving cognitive decline 
in AD. In addition, clinical trials of Aβ-targeting therapies 
are largely failed. This suggests that efficacious AD ther-
apies may need to alleviate both Aβ and tau pathologies. 
The results from the previous studies where inactivation of 
MAGL alleviates neuropathology and improves synaptic and 
cognitive function in APP TG mice [15, 18–20, 38] together 
with the findings from the present study in tau TG mice 
suggest that inhibition of 2-AG metabolism is capable of 
curbing both Aβ and tau neuropathologies and preventing 
cognitive decline and that MAGL is a promising therapeutic 
target.

Materials and Methods

Animals

P301S tau transgenic mice (B6;C3-Tg(Prnp-MAPT*P301S)
PS19Vle/J, stock number: 008169) were obtained from the 

Fig. 7  Signaling pathways mediating the beneficial effects produced 
by inhibition of 2-AG metabolism. Inactivation of monoacylglycerol 
lipase (MAGL) by JZL184 augments 2-AG signaling and decreases 
2-AG immediate metabolite arachidonic acid (AA) and AA-derived 
prostaglandins (PGs) through cyclooxygenase 1 and 2 (COX-1/2) and 
leukotrienes (LT4s) through 5-lipoxygenase (LOX). 2-AG possesses 
anti-inflammatory and neuroprotective properties, while prostaglan-
dins and leukotrienes are proinflammatory and neurotoxic. Enhanced 
2-AG by inactivation of MAGL stimulates expression and activity 
PPARγ through CB1/2-dependent and independent pathways, result-
ing in inhibition of NF-κB. Reduced NF-kB transcriptional activity 
and the amount of prostaglandins and leukotrienes decrease proin-
flammatory cytokines and chemokines and neuroinflammation as well 
as apoptosis, which in turn suppress tau phosphorylation and tauopa-
thies. These events may benefit to maintaining brain homeostasis and 
the integrity of synapses, and thus improving synaptic and cognitive 
functions
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Jackson Lab [23]. Both male and female P301S mice and 
age-matched non-transgenic wild-type (WT) littermates at 
7 months of age were used in the present study. 4-Nitro-
phenyl-4-[bis (1,3-benzodioxol-5-yl)(hydroxy)methyl]
piperidine-1-carboxylate (JZL184, provided by the NIH 
Mental Health Institute Chemical Synthesis and Drug Sup-
ply Program), a potent and selective inhibitor of MAGL, 
was dissolved in the vehicle containing Tween-80 (10%), 
DMSO (10%), and saline (80%). Animals were treated with 
either vehicle or JZL184 (10 mg/kg, i.p.) three times per 
week starting at 5 months of age for 8 weeks, as described 
previously [15, 20]. All the observations and assessments in 
mice were made at 7 months of age.

All the experiments were performed in compliance with 
the US Department of Health and Human Services Guide for 
the Care and Use of Laboratory Animals. The care and use 
of the animals reported in this study were approved by the 
Institutional Animal Care and Use Committee of University 
of Texas Health San Antonio. The experiments, whenever 
possible, were performed in a blinded fashion.

ELISA

Levels of IL-1β and TNFα in hippocampal tissues of P301S 
TG mice that received vehicle control or JZL184 were 
detected using a colorimetric IL1β and TNFα ELISA kits 
(IL-1β: Cat# RAB0275, Sigma-Aldrich, and TNFα: Cat# 
MBS825075, MyBioSource) according to the instructions 
provided by the manufacturers.

Immunoblot

Western blot assay was conducted to determine expression 
of GluA1, GluA2, GluN1, GluN2A, and GluN2B; tau-5; 
AT8; p-tauT181; p-GSK3β; p35/25; caspase-3; cleaved cas-
pase-3; Bcl2; Bax; PPARγ; PSD95; and synaptophysin (Syn) 
in the hippocampus from animals that received vehicle or 
JZL184. Hippocampal tissue was extracted and immediately 
homogenized in RIPA lysis buffer and protease inhibitors, 
and incubated on ice for 30 min, then centrifuged for 10 min 
at 10,000 rpm at 4 °C. Supernatants were fractionated on 
4–15% SDS-PAGE gels and transferred onto PVDF mem-
branes (Bio-Rad). The membrane was incubated with anti-
GluA1 (1:1000, Abcam, Cat# AB31232), GluA2 (1:1000, 
Abcam, Cat# AB133477), GluN1 (1:1000, Abcam, Cat# 
AB109182), GluN2A (1:1000, LSBio, Cat# LS-B7707), 
GluN2B (1:1000, Abcam, Cat# AB65783), tau-5 (1:1000, 
Thermo Fisher, Cat# AHB0042), AT8 (1:200, Thermo 
Fisher, Cat# MN1020), p-tauT181 (1:1000, Cell Signaling 
Technology, Cat# 12,885), p-GSK3β (1:1000, Cell Signal-
ing Technology, Cat# 9323), p35/25 (1:1000, Cell Signaling 
Technology, Cat# 2680), caspase-3 (1:1000, Cell Signaling 
Technology, Cat# 9665), cleaved caspase-3 (1:1000, Cell 

Signaling Technology, Cat# 9661), Bcl2 (1:1000, Cell Sign-
aling Technology, Cat# 2876), Bax (1:1000, Cell Signal-
ing Technology, Cat# 2772), PPARγ (1:1000, Abcam, Cat# 
AB27649), Syn (1:500, Abcam, Cat# AB8049), and PSD95 
(1:1000, Abcam, Cat# AB2723) at 4 °C overnight. The blots 
were washed and incubated with a secondary antibody (goat 
anti-rabbit 1:2000, Cell Signaling Technology, Cat# 7074) 
at room temperature for 1 h. Proteins were visualized by 
enhanced chemiluminescence (Amersham Biosciences, 
UK). The densities of specific bands were quantified by den-
sitometry using FUJIFILM Multi Gauge software (version 
3.0). Band densities were quantified and converted to the 
total amount of protein loaded in each well as determined 
by mouse anti β-actin (1:2000, Santa Cruz Biotechnology, 
Cat# SC-47778) as described previously [15, 20, 39, 40].

Immunohistochemistry

Immunohistochemical analyses were performed to deter-
mine astrocytic and microglial markers (GFAP and Iba1) 
in coronal brain sections, as described previously [15, 20, 
41]. Animals were anesthetized with ketamine/xylazine 
(200/10 mg/kg) and subsequently transcardially perfused 
with PBS followed by 4% paraformaldehyde in phosphate 
buffer. The brains were quickly removed from the skulls 
and fixed in 4% paraformaldehyde overnight, and then 
transferred into the PBS containing 30% sucrose until sink-
ing to the bottom of the small glass jars. Cryostat section-
ing was made on a freezing Vibratome at 40 μm and series 
sections (every 10th section from each animals) were col-
lected in 0.1 M phosphate buffer. Free-floating sections 
were immunostained using specific antibodies for GFAP 
(1:500, Sigma-Aldrich, Cat# G3893) an Iba1 (1:500, Sigma-
Aldrich, Cat# MABN92) followed by incubation with the 
corresponding fluorescent-labeled secondary antibody. 
4′-6-Diamidino-2-phenylindole (DAPI), a fluorescent stain 
that binds strongly to DNA, was used it to detect cell nuclei 
in the sections. The sections were then mounted on slides for 
immunofluorescence detection using a Zeiss deconvolution 
microscope. The immunoreactivity (in arbitrary densitomet-
ric units) of GFAP and Iba1 in the cortex and hippocampus 
in each image was analyzed and quantified using SlideBook 
6.0, as described previously [15, 20, 38, 41].

Novel Object Recognition

The novel object recognition (NOR) test was performed as 
described previously [40, 62]. Briefly, animals were first 
allowed to acclimate to the testing environment (habitua-
tion). The test included two stages: training and testing. In 
the first stage of the test, the animal was confronted with 
two identical objects, placed in an open field, and in the 
second stage, the animal was exposed to two dissimilar 
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objects placed in the same open field: one familiar object, 
used in the first phase, and the other novel object. Explora-
tion of an object was defined as time spent with the head 
oriented towards and within 2 cm of the object. The time 
spent exploring each of the objects in stage 2 was detected 
by a video camera using an EthoVision video tracking sys-
tem (Noldus). The recognition index (RI) was calculated 
based on the following equation: RI = TN/TN + TF), where 
TN is the exploration time devoted to the novel object and TF 
is the exploration time for the familiar object, as described 
previously [63, 64].

Morris Water Maze

The classic Morris water maze (MWM) test was used to 
determine spatial learning and memory, as described previ-
ously [15, 20, 38–41]. Animals were initially randomized 
grouped to receive different treatments. The test was per-
formed 24 h after last cessation of JZL184 injections. A 
circular water tank (diameter 120 cm) was filled with water, 
and the water was made opaque with non-toxic white paint. 
A round platform (diameter 15 cm) was hidden 1 cm beneath 
the surface of the water at the center of a given quadrant of 
the water tank. PS19 TG mice and their age-matched lit-
termates received learning acquisition training for 7 days 
(7 sessions), and each session consisted of 4 trials. For each 
trial, the mouse was released from the wall of the tank and 
allowed to search, find, and stand on the platform for 10 s 
within the 60-s trial period. For each training session, the 
starting quadrant and sequence of the four quadrants from 
where the mouse was released into the water tank were ran-
domly chosen so that it was different among the separate 
sessions for each animal and was different for individual ani-
mals. The mice in the water pool were recorded by a video 
camera using an EthoVision video tracking system (Noldus). 
A probe test to assess memory retention was conducted 24 h 
after the completion of the training acquisition. During the 
probe test, the platform was removed from the pool, and the 
task performances were recorded for 60 s.

Data Analysis

Data are presented as mean ± S.E.M. Unless stated other-
wise, one- or two-way-analysis of variance (ANOVA) fol-
lowed by post hoc tests were used for statistical comparison 
when appropriate. Differences were considered significant 
when P < 0.05.
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