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Abstract
Association between serum creatinine (sCr) and amyotrophic lateral sclerosis (ALS) has been reported in previous observational
studies, but results are at risk of confounding bias and reverse causation. Therefore, whether such association is casual remains
unclear. Herein, we performed a two-sample Mendelian randomization study to evaluate the causal relationship between sCr and
ALS in both European and East Asian populations. Our analysis was conducted using summary statistics from genome-wide
association studies with 358,072 individuals for sCr and 80,610 individuals for ALS in European population, and 142,097
individuals for sCr and 4,084 individuals for ALS in East Asian population. The inverse-variance weighted method was used
to estimate the casual-effect of sCr on ALS in both populations, and other MR methods were also performed as sensitivity
analyses. We found evidence that genetically predicted sCr was inversely associated with risk of ALS (OR, 0.92; 95% CI, 0.85–
0.99; P = 0.028) in European population. However, there was no strong evidence for a causal relationship between sCr and ALS
in East Asian population (OR, 0.92; 95% CI, 0.84–1.01; P = 0.084). This study provides evidence that sCr protects against ALS
in European population but not in East Asian population.
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Introduction

Amyotrophic lateral sclerosis (ALS) is a neuro-degenerative
disease that is characterized by progressive motor neuron de-
generation, with death from respiratory failure within 2–3
years after disease onset [1]. The standardized incidence of
ALS is 1–2 per 100,000 person-years [2]. The number of
ALS patients will increase by ~ 70% in the following decades,

resulting in enormous social and economic burden across the
globe [3]. Therefore, it is important to identify casual risk
factors of ALS.

To date, no agreed environmental risk factors for ALS have
been identified. Recently, several observational studies have
found that serum creatinine (sCr) is reduced in ALS patients
compared to controls [4–8], suggesting that sCr may protects
against ALS. However, the baseline sCr in these studies were
measured after disease onset, and it is unclear whether the sCr
in ALS patients has been reduced before disease onset.
Therefore, it still remains unclear whether sCr can reduce
the risk of ALS. Given that ALS is rare in the population, it
is very difficult to conduct longitudinal studies for investigat-
ing the effect of sCr on ALS. In addition, most previous stud-
ies are observational, and they are easily biased by confound-
ing factors. Therefore, whether the causal relationship be-
tween sCr and ALS is needed to further investigate.

Mendelian randomization (MR) is a new approach using
genotypes as instrumental variables to estimate the causal ef-
fect of an exposure on an outcome [9, 10]. MR can reduce the
bias from confounding factors and reverse causation that are
often exist in observational studies, because the genotypes
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from parents to offspring are random allocated, and are un-
changed through a lifetime [10]. To our knowledge, MR ap-
proach has not been used to investigate the causal relationship
between sCr and ALS. Therefore, we performed this two-
sample MR study to assess the causal relationship between
sCr and ALS in both European and East Asian populations.

Materials and Methods

Data Sources and Instrument Selection

All relevant ethics approval and informed consent are from
original genome-wide association studies (GWASs) [11–14].

For the European population, a total of 485 independent
SNPs (r2 < 0.1) associated with (P < 5 × 10−8) sCr were
selected from a GWAS of 358,072 European individuals in
UK Biobank [11]. The mean (SD) sCr concentration of
whole UK biobank participants is 72.4 (18.5) umol/L. In the
East Asian population, 64 independent autosomal SNPs (r2 <
0.1) associated with sCr were selected from a GWAS in
142,097 Japanese individuals [12]. The mean (SD) sCr con-
centration of Japanese participants is 0.77 (0.22) mg/dL. The
proportion of variance explained by each SNP was evaluated
using R2 [15], and the F statistic was calculated to assess the
instrument strength. The F statistic above 10 is considered as
an indicator of strong instruments [16].

In the European population, the summary statistics for ALS
were obtained from a GWAS with 80,610 European individ-
uals (20,806 cases and 59,804 controls) [13]. For the East
Asian population, we obtained the summary statistics of
ALS from an East Asian GWAS in 4084 Chinese individuals
(1234 cases and 2850 controls) [14].

Statistical Analysis

All MR analyses were conducted using R version 4.0.2,
“TwoSampleMR” [17], and “MR-PRESSO” packages [18].

The main analyses were performed with the inverse-
variance weighted method, which can provide an unbiased
estimate if the MR assumptions are met and the horizontal
pleiotropy is balanced. Other MR methods were also per-
formed as sensitivity analyses, including the following: (1)
Mendelian randomization robust adjusted profile score (MR-
RAPS) method, which accounts for weak instruments [19], (2)
weighted median method, which can provide a consistent es-
timate when at least 50% of instrumental variables are valid
[20], and (3) MR-Egger method, which can adjust for bias
from directional pleiotropy, at the cost of reduced statistical
power [21], TheMR-Egger is based on the “NOmeasurement
error assumption (NOME),” and this assumption was evalu-
ated by the regression dilution I2GX statistic [22]. If I2GX was
below 90% (indicating the violation of NOME assumption),

MR-Egger with simulation extrapolation correction (SIMEX)
was used [22]. The Mendelian Randomization Pleiotropy
RESidual Sum and Outlier (MR-PRESSO) was also applied
to identify potential pleiotropic outlier (P < 0.1) [18].

The pleiotropy in MR estimates were assessed using three
approaches: (1) The Corchan’s Q, which can assess the het-
erogeneity across all individual SNPs in IVW estimates. A
significant Corchan’s Q test (P < 0.05) suggests the presence
of horizontal pleiotropy; (2) MR-Egger intercept, which pro-
vides an indicator of directional pleiotropy. A significant MR-
Egger intercept test (P < 0.05) suggests the presence of direc-
tional pleiotropy, and MR-Egger estimates were used to vali-
date the results from IVW estimates; and (3) Leave-one-out
(LOO) analysis, in which IVW estimates were re-calculated
removing each SNP in turn, to evaluate whether a single SNP
drove the association. We evaluated whether each SNP is
associated with potential risk factors for ALS (P < 5 ×
10−8): smoking (The GWAS & Sequencing Consortium of
Alcohol and Nicotine use) [23, 24]; drinking (The GWAS &
Sequencing Consortium of Alcohol and Nicotine use) [23,
25]; and low-density lipoprotein (Global lipids Genetics
Consortium) [26, 27]. These potential pleiotropic SNPs were
removed, and the IVW estimates were re-calculated to rule out
potential pleiotropic effects.

Finally, MR Steiger test was conducted to test whether the
SNPs for sCr explained more variances in sCr than ALS (the
opposite indicate reverse causation) [28]. Power calculations
were performed with the mRnd online tool at https://shiny.
cnsgenomics.com/mRnd/ [29]. Odds ratios (ORs) with 95%
confidence intervals (95% CIs) were scaled per SD unite in-
crease in sCr concentrations. A P value < 0.05 was considered
as statistically significant.

Results

In the European population, a potential SNP outlier
rs34674752 identified by MR-PRESSO was excluded in the
analysis. Therefore, a total of 484 independent SNPs associ-
ated with sCr, which all were available in the ALS dataset,
were included in the analysis. These 484 SNPs explained
8.2% phenotypic var ia t ion of sCr concentrat ion
(Supplementary Table 1). For these SNPs, the median F sta-
tistic is 43 (ranging from 30 to 749) with an overall F statistic
of 66, suggesting that weak instruments was unlikely to bias
the estimates of casual effects. In the East Asian population,
MR-PRESSO did not identify any outliers. A SNP rs533988
for sCr was not available in the ALS dataset, and no proxy
SNP (r2 > 0.8) can be used to replace it. Hence, a total of 63
SNPs were included in the primary analysis. These 63 SNPs
explained 2.4% phenotypic variation of sCr concentration
(Supplementary Table 2). For these SNPs, the median F sta-
tistic is 42 (ranging from 31 to 239) with an overall F statistic
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of 55, indicating that weak instruments was also unlikely to
bias the estimates of casual effects in the East Asian
population.

sCr and ALS in the European Population

In the European population, we found evidence that genetical-
ly predicted 1-SD unit increase in sCr concentration was in-
versely associated with risk of ALS (IVW OR, 0.92; 95% CI,
0.85–0.99; P = 0.028; Figs. 1 and 2). Other MR estimates
yield similar effect estimates (Figs. 1 and 2), although with
wider CI due to lower statistical power. The I2GX for MR-
Egger was 98.4%, indicating that SIMEX correction was not
required to apply. The Corchan’s Q statistic suggested sub-
stantial heterogeneity (Corchan’sQ = 676.19, P = 1.35×10–8),
indicating the presence of horizontal pleiotropy. However, the
MR-Egger intercept test (P = 0.99) indicated no directional
pleiotropy, suggesting that the horizontal pleiotropy was un-
likely to bias the IVW estimate. Furthermore, the LOO anal-
ysis and forest plot indicated that no single SNP drove the
association (Supplementary Figure 1-2). After removing 5
potential pleiotropic SNPs (Supplementary Table 3), the
IVW estimate was not significantly changed (IVW OR,
0.924; 95% CI, 0.857–0.997; P = 0.042). The MR Steiger test
for directionality indicated that using ALS as the outcome was
the correct causal direction for sCr (P < 0.001).

sCr and ALS in the East Asian Population

We further evaluated the casual association between sCr and
ALS in the East Asian population. The casual-effect estimate
of sCr on ALS is not statistically significant in East Asian
population (OR, 0.92; 95% CI, 0.84–1.01; P = 0.084; Figs.
1 and 2), although it was similar with European population in
direction and magnitude, which may be due to limited power.
Similar effects estimates were observed in other MR estimates
(Figs. 1 and 2). The LOO analysis and forest plot indicated
that no single SNP can influence the casual-effect estimate
(Supplementary Figure 3-4). Furthermore, there was no

evidence of substantial heterogeneity (Corchan’s Q = 74.52,
P = 0.132) and directional pleiotropy (MR-Egger intercept, P
= 0.780).

Discussion

In this study, we investigated the causal relationship between
sCr and ALS in both European and East Asian populations
using a two-sample MR approach. Our findings showed that
genetically predicted sCr was inversely associated with the
risk of ALS in European population but not in East Asian
population.

Previous observational studies have shown that sCr are
decreased in ALS patients compared to controls in European
population [4, 5]. Our MR study found similar inversely as-
sociation between sCr and ALS in European population.
These findings suggest that sCr can protect against the risk
of ALS in European population. In East Asian population,
some observational studies also have reported ALS cases have
lower sCr compare to the controls [7, 8]. However, we did not
find a statistically significant association between sCr and
ALS (OR, 0.92; 95% CI, 0.84–1.01; P = 0.084), although it
was similar with European population in direction and mag-
nitude, suggesting that it is may be due to limited power.
Given that the type 1 error is 5%, the sample size is 4084,
the proportion of variance explained by SNPs is 2.4%, and the
true casual OR of sCr on ALS is 0.90 (or equivalently 1.1), the
statistical power of the two-sample MR to detect such causal
effect is only 8% in the East Asian population. Therefore,
whether a causal relationship between sCr and ALS in East
Asian population is still needed to further investigate in larger
sample.

The exact underlying mechanism linking sCr with ALS
still remains unclear. Two potential mechanisms involve oxi-
dative stress and mitochondrial dysfunction. Oxidative stress
and mitochondrial dysfunction have been proved to contribute
to the pathogenesis of ALS [30–35]. sCr, the end product of
creatine and creatine phosphate, can reflect the change of
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Fig. 1 Mendelian randomization
estimates of serum creatinine with
ALS in both European and East
Asian populations
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creatine pool, which plays a key role in mitochondrial func-
tion and has neuro-protective function in vivo and in vitro
[36]. Several in vivo [37, 38] and in vitro [39–41] studies have
demonstrated that creatine has antioxidant capacity. Further
studies are needed to elucidate the exact mechanism linking
sCr with ALS.

Our study has some strengths. First, MR study is less
prone to reverse causation and confounding, providing
relatively robust estimate of casual relationship between
sCr and ALS. Second, we used large-scale GWASs in the
European population. Our study has several limitations.
First, a major limitation of MR study is pleiotropy, which
may bias the IVW estimates. Hence, several approaches
were performed to assess the pleiotropy. For example,
MR-RAPS, weighted median, and MR-Egger estimates
that are robust to pleiotropy were calculated to compare
with IVW estimate. In addition, we performed the LOO
analyses to evaluate whether a single SNP drove the re-
sult. All these analyses have similar results, indicating
that pleiotropy is unlikely to bias the IVW estimate.
Second, another limitation is that we cannot assess the
correlation between sCr and other parameters of ALS
(e.g., clinical phenotype, genetic background, cognitive
impairment, survival, sit of onset, and age), because these
parameters are not available. More studies are needed to
investigate this correlation. Third, the two-sample MR
assumes a linear association between exposure and out-
come. Hence, we did not assess a potential nonlinear as-
sociation between sCr and ALS. Fourth, the statistical
power was low in the analyses of ALS in East Asian
population (8%). Hence, we cannot rule out the causal

relationship between sCr and ALS in East Asian popula-
tion. Finally, we cannot assess sex-specific effects of sCr
on ALS, because no sex-specific GWASs are available.

A previous population-based study has demonstrated
that sCr may serve as a prognostic biomarker for ALS
[42]. This study assessed the correlation of sCr evaluated
at diagnosis with ALS outcome, and found that patients
with lower sCr are significantly associated with worse
clinical function at diagnosis of ALS and shorter survival
[42]. In line with this study, our study found that patients
with higher sCr was associated with lower risk of ALS
in European population. These findings suggested that
sCr is possibly involved in the pathogenesis of ALS
and may play a protective role in the development of
ALS. Therefore, sCr may serve as a reliable and easily
accessible blood markers of the risk and outcome for
ALS. Large multi-center prospective studies are still
needed to investigate the association of sCr with the risk
and outcome of ALS. Besides, further functional studies
are warranted to investigate the mechanisms linking the
association of sCr with ALS.

In conclusions, using a two-sample MR approach, our
study provides evidence to support that sCr protects against
the risk of ALS in European but not in East Asian population.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s12035-021-02309-w.
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Fig. 2 a Scatter plots of the effect sizes for each SNP on serum creatinine and ALS in European population. b Scatter plots of the effect sizes for each
SNP on serum creatinine and ALS in East Asian population
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