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Abstract
18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) esti-
mate brain activities from different aspects, including regional glucose uptake (rGU) by 18FDG-PET, regional cerebral blood
flow (rCBF) by arterial spin labeling, and dynamic changes of deoxyhemoglobin by blood oxygenation level-dependent (BOLD)
functional magnetic resonance imaging (fMRI). However, the relationships between them remain incompletely understood. In
the current study, twenty-four subjects (14 males, 10 females) were recruited and investigated the correlation among rGU, rCBF,
and BOLD fMRI-derived metrics reflecting the neural activity, including amplitude of low-frequency fluctuation (ALFF),
regional homogeneity (ReHo), and degree centrality (DC) by hybrid PET/fMRI. Correlation analyses were performed across
subject and across space at both voxel level and region level, considering partial volume effects by adjusting for gray matter
volume. Each pair of metrics showed significant across-space correlations. rGU against ReHo showed the highest mean corre-
lation coefficients. rGU had higher correlations with three resting-state (RS) fMRI metrics than did ASL-rCBF. However, the
across-subject correlations were not significant among functional modalities (rGU, rCBF, and RS-fMRI BOLD data) at either
voxel level or region level even with a liberal threshold, except for significant across-subject correlation between RS-fMRI
metrics (ALFF, ReHo, and DC). These comprehensive findings from hybrid PET/MRmight provide complementary information
to reveal the underlying mechanisms of the brain activity and open new perspective to interpret pathologic conditions.
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Introduction

Hybrid scans of positron emission tomography (PET) and
magnetic resonance imaging (MRI) are becoming increasing-
ly popular for clinical diagnosis. PET and functional MRI
(fMRI) are two of the most frequently used imaging tech-
niques for non-invasively mapping the human brain function.
Both 18F-fluorodeoxyglucose (FDG)-PET and fMRI estimate
brain activities from different aspects, such as energy con-
sumption, low-frequency fluctuation, and regional cerebral
blood flow (rCBF). However, the complex relationships
among energy consumption, rCBF, and other fMRI metrics
remain unknown.

FDG-PET is the most commonly used technique to assess
regional glucose uptake (rGU), which reflects cellular activity
by measuring glucose uptake. One method used in fMRI is
referred to as blood oxygenation level-dependent (BOLD)
imaging, which reflects the oxygen absorption by measuring
the ratio changes of oxygenated to deoxygenated hemoglobin
[1]. Resting-state functional MRI (RS-fMRI; i.e., without
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specific cognitive task during scanning [2]), has been widely
used to investigate functional activities, including amplitude
of low-frequency fluctuation (ALFF) [3], fractional ALFF
(fALFF) [4] of every single voxel, regional homogeneity
(ReHo) for measuring local synchronization of nearest neigh-
boring voxels [5], and degree of centrality (DC) for measuring
global number of functional connections between a given vox-
el with all voxels in the brain [6]. The vast majority of FDG-
PET studies have analyzed only the local activity, and a few
FDG-PET studies have investigated metabolic connectivity
[7, 8]. Although several studies have correlated local glucose
metabolism (e.g., rGU) and RS-fMRI functional connectivity
[9, 10], correlation between FDG-PET and fMRI-derivedmet-
rics (e.g., fALFF, ReHo, and DC) is more straight-forward.
For example, it has been consistently reported that the spatial
patterns of rGU and fMRI-derived metrics were very similar,
but the voxel-level correlation across subjects was very low
[11–13].

Arterial spin labeling (ASL) is a perfusion-based functional
imaging, which reflects tissue perfusion by magnetically la-
beled water protons in the blood as an endogenous contrast
agent. Both BOLD signals and ASL-rCBF are based on he-
modynamic changes. BOLD is sensitive to changes in
deoxyhemoglobin [1], whereas ASL is sensitive to changes
in rCBF [14]. Although the scanning sequences of ASL per-
mit time series analyses as in BOLD signal analysis (e.g.,
ALFF and ReHo) [15], the most popular metric for ASL is
the mean rCBF over a period of time (e.g., 10 min), just as
rGU for PET analysis. A few concurrent PET-ASL studies
have reported that certain brain diseases showed similar yet
distinct abnormal patterns of rGU and ASL [16].

Although some efforts have been made, further gaps
need to be filled. Considering various physiological pro-
cesses may change between these imaging sessions, si-
multaneous multimodal information acquisition is the ma-
jor challenge to investigate the relationship between PET
and fMRI. The advanced hybrid PET/MRI solves this
problem by offering simultaneous glucose metabolism
and RS-fMRI under the same physiological condition,
which further provide optimal spatial and temporal regis-
tration of both modalities [11].To the best of our knowl-
edge, no concurrent multimodal study has simultaneously
collected PET, ASL, and BOLD fMRI data and investi-
gated the complex mutual relationships to elucidate the
underlying neurovascular coupling.

In the current study, we simultaneously collected rGU,
ASL, and BOLD fMRI data from a group of healthy partici-
pants and aimed to investigate across-space correlation as well
as across-subject correlation of the voxel-wise metrics be-
tween each pair of functional modalities. In addition, we com-
pared the relative values between each pair of functional mo-
dalities. We speculated that the three techniques have similar
spatial distribution with regional variability in the healthy

subjects. These results will help us better understand the path-
ophysiology of brain disorders, especially when multiple
functional imaging modalities are recorded.

Materials and Methods

Subjects

Twenty-four subjects (14males, 10 females, age 21 ~ 60years,
average age 44.5 ± 8.2 years, fasting venous glucose 6.0 ±
0.7 mmol/L, body mass index 25.2 ± 2.8 kg/m2, all right-
handed) were recruited among those referred to whole-body
PET/MRI scan for tumor screening in Xuanwu Hospital
Capital Medical University and finally proven to be healthy.
The inclusion criteria included no brain abnormalities apart
from age-related leukoaraiosis, no history of psychiatric or
serious medical disorders, and no contradictions to MRI scan-
ning. Before undergoing the current study, written informed
consent was obtained from all subjects. The study was ap-
proved by the ethics committee of Xuanwu Hospital.

Image Acquisition

One session, including a PET scan, an ASL scan, a BOLD
scan, and a T1 scan, was conducted in an integrated GE
Signa PET/MR scanner designed with a multi-ring LBS
detector block embedded into a 3-T magnetic resonance
scanner with a 19-channel phase-array head coil. Subjects
were required to fast for at least 6 h before scanning.
Subjects who had a fasting venous glucose >140 mg/dL
were excluded. The injection dosage of 18F-FDG for each
subject was 3.7 MBq/kg × body weight. With a bolus in-
jection of FDG tracer, we simultaneously started PET/
fMRI data acquisition. The total time is 1 h. Static PET
images were reconstructed from the list-mode data ac-
quired 40–50 min post-injection. During PET acquisition,
the following MRI sequences were run sequentially:
BOLD, ASL, diffusion weighted images (DWI), diffusion
tensor images (DTI), T1-MPRAGE, T2 FLAIR, and T2-
FSE. All scanning were performed in a dimmed environ-
ment to avoid unnecessary influence. During the scan-
ning, subjects were instructed to keep their eyes open,
avoid focusing their minds on anything, and keep their
heads as still as possible.

FDG-PET Scanning

FDG-PET images were scanned using the following parame-
ters: 10 min list-mode acquisition, 89 slices (gap = 0 mm)
covering the whole brain; field of view (FOV) = 250 ×
250 mm2, matrix = 192 × 192; voxel size = 1.82 × 1.82 ×
2.78 mm3; scatter and attenuation correction, reconstructed
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with a time of flight, ordered subset-expectation maximization
(TOF-OSEM) algorithm (8 iterations, 32 subsets), and post-
filtered with isotropic full-width half-maximum (FWHM)
gaussian kernel of 3 mm.

BOLD Scanning

BOLD data were obtained by gradient-echo echo-planar im-
aging (EPI) sequence with parameters of TR = 2000ms, TE =
30 ms, FOV = 224 × 224 mm2, matrix = 64 × 64, pixel size =
3.5 × 3.5 mm2, 33 interleaved slices with thickness = 3.6 mm,
0.8 mm gap between slices, and 240 timepoints. The total scan
time was 8 min.

ASL Scanning

A pseudo-continuous ASL (pCASL) perfusion imaging
sequence was utilized with the following parameters:
single-shot gradient-echo EPI in combination with parallel
imaging (SENSE factor 2.0), TR = 4852 ms, TE =
10.7 ms, matrix = 64 × 64, FOV = 240 × 240 mm2, voxel
size = 1.88 × 1.88 × 4 mm3, 32 slices, slice thickness/gap =
4/0 mm, post-spin labeling delay = 2025 ms, and scan-
ning time = 4 min and 24 s. Thirty-two pairs of control/
labeled images were acquired and averaged. An EPI M0
image was obtained separately with the same geometry
and the same imaging parameters as the pCASL without
labeling, for measurement of the magnetization of arterial
blood and for co-registration purposes.

3D-T1 Scanning

T1-weighted, three-dimensional (3D) images were acquired
with the following parameters: TR = 1900 ms, TE = 3.24 ms,
FOV = 256 × 256 mm2, matrix = 256 × 256, 192 sagittal
slices, slice thickness = 1 mm with no gap, and scanning
time = 5 min and 21 s.

The clinical routine scanning sequences, including T1, T2,
FLAIR, and DWI, were also scanned. No visible structural
abnormalities were found.

Image Processing

DPABI [17], SPM12 (https://www.fil.ion.ucl.ac.uk/spm),
Analysis of Functional NeuroImages (AFNI [18]), and
MATLAB 2014b (Mathworks Inc.) were used for data
processing. Considering all data acquired during the same
session in the hybrid scanner, the individual imaging data
are co-registered. Multimodal imaging normalization are
described in our previous studies [19]. Briefly, PET, BOLD,
and ASL data were first co-registered to a 3D, high-resolution
T1 image. The co-registered T1 images were then segmented
by means of a new circular segment and normalization step

implemented in SPM12. The transformation parameters de-
rived from MRI spatial normalization were then applied to
the co-registered PET, BOLD, and CBF images for spatial
normalization to standard template of the Montreal
Neurological Institute (MNI). Imaging processing is detailed
as follows.

ASL-rCBF

The ASL images were transferred to AW 4.7 workstation
(Signa, GE) for further CBF calculation. CBF imaging
processing was performed by SPM12, including (1) co-
registering 3D-T1 image to co-registered M0 image using
a process of 12 parameter affine transformations and
rigid-body transformation, (3) spatial normalization to
MNI standard space using transformation parameters de-
rived from MRI spatial normalization, (4) resampling to
3-mm isotropic voxels, and (5) spatial smoothing
(FWHM = 6 mm).

FDG-PET

SPM12 was used to process FDG-PET images, including
(1) co-registering 3D-T1 image to FDG-PET image using
a process of 12 parameter affine transformations and
rigid-body transformation, (2) spatial normalization to
the MNI standard space by the transformation parameters
derived from MRI spatial normalization, (3) resampling to
3-mm isotropic voxels, and (4) spatial smoothing
(FWHM = 6 mm).

BOLD fMRI

DPABI was used to process BOLD fMRI images. The pre-
processing included (1) discarding the first 10 time points for
the instability of the initial MRI signal and subject’s adapta-
tion to inherent scanner noise, (2) slice timing, (3) head mo-
tion correction (one subject was excluded from the present
study due to head motion more than 2.5 mm of maximum
displacement in the x, y, or z translation or 2.5° of angular
motion during the entire fMRI scan), (4) co-registering indi-
vidual T1 image of the remaining 23 subjects to the individual
averaged fMRI image, (5) spatial normalization, (6) resam-
pling to 3-mm isotropic voxels, (7) removing the linear trend
within the time series, and (8) regressing out Friston-24 head
motion parameters.

After preprocessing, three metrics (fALFF, ReHo, and DC)
were calculated as follows:

The fALFF quantifies the amplitude of low-frequency
oscillations of each single voxel. It is the fraction of the
amplitude within the low-frequency range (0.01–0.1 Hz)
to that of the entire detectable frequency range [4].
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ReHo estimates the degree of local synchronization
among the fMRI time series of neighboring voxels. The
ReHo calculation is performed as in [5]. It is the
Kendall’s coefficient of concordance (KCC) of the time
series of every set of 27 neighboring voxels. The KCC
value was given to the central voxel.
DC represents the functional strength of a given vox-
el within all voxels in the brain. The DC calculation
is performed as in [20, 21]. Specifically, a threshold
of r > 0.25 was used, and the number of positive
correlations was counted and then assigned to each
voxel.
All metrics were calculated within a frequency band of
0.01–0.1 Hz. Of note, spatial smoothing (FWHM =
6mm) was performed before fALFF calculation, but after
ReHo and DC calculations [17].

Intersection Mask

An intersection mask was made to constrain further analyses.
As shown in Fig. 1, it was made from two masks, one named
GM05mask and one named FOVmask. The GM05maskwas
obtained by thresholding (>0.5) the averaged gray matter
probability images of all subjects and then resampling to 3-
mm isotropic voxels. Each subject’s gray matter probability
image was obtained from the spatial normalization procedure
of the 3D-T1 image. The FOVmask was made with a consid-
eration that the original FOV for ASL and BOLD scanning
did not cover the entire brain for a few subjects. After spatial
normalization, all images (ASL-rCBF, rGU, mean BOLD)
were transformed to binary images. It should be noted that
the mean BOLD image was the averaged image over the
230 images. The intersection part of the binary images of all

Fig. 1 Generation of the
intersection mask. GM05 mask
was obtained by thresholding (>
0.5) the averaged gray matter
probability images of all subjects.
FOV mask was the brain region
covered by the field of view of all
ASL and mean BOLD images
with the whole brain mask
provided by DPABI. Intersection
mask was the intersection of
GM05 mask and FOV mask. The
Z coordinates were from −45 to
+65 with a step of 10 mm
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ASL and mean BOLD images with the whole brain mask
provided by DPABI was named as the FOV mask. Further,
the intersection part of the GM05 mask and FOV mask was
named as the intersection mask [22].

Z-Standardization

Each individual image of ASL-rCBF, rGU, fALFF, ReHo,
and DC was standardized into a Z-map as follows,

Z ¼ V−M
SD

;

where V is the value of a given metric at a given voxel, andM
and SD are the mean and standard deviation, respectively, of a
given metric of each subject within the intersection mask.

Statistical Analyses

All statistical analyses were performed in the intersection
mask.

One-Sample t Tests of Each Spatial Pattern and Paired
t Tests on Each Pair of Metrics

To assess whether a voxel’s value was significantly higher
than the mean value (mean z value = 0), one-sample t tests
were performed at each voxel for each of the five Z-maps
(ASL-rCBF, rGU, fALFF, ReHo, and DC), p < 0.001, uncor-
rected. Then, paired t tests of each pair of ASL-rCBF, rGU,
fALFF, ReHo, and DC were performed to detect the differ-
ence between two metrics, p < 0.05, FDR correction.

Correlation Analyses

We performed two kinds of correlation analyses: across-space
correlation and across-subject correlation.

Across-space correlation measures the similarity of the
spatial patterns in two images in a subject-by-subject manner.
To reduce potential partial volume effects (PVE), partial cor-
relation analysis was performed in the individual GM08 mask
with gray matter fraction as nuisance covariate. Specifically,
the individual GM08 mask was made by thresholding (> 0.8)
the gray matter probability image of each subject. We per-
formed two types of across-space correlations. One was voxel
level, in which the sample size of n is the total number of
voxels in each individual GM08 mask (n = 19,722 ± 866
voxels, varied across participants). The other across-space
correlation was region level, in which the sample size of n is
the total number of brain regions (n = 90). These 90 brain
regions were from the automated anatomical labeling (AAL)
template [22]. The mean values of eachmetric and graymatter
fraction were extracted within each region. Partial correlation

analysis was performed with gray matter fraction of each re-
gion as nuisance covariate. To test whether the across-space
correlation was significant, the correlation coefficient r value
was transformed into the z value, and one-sample t tests were
performed on the z values against zero. Statistical significance
level was set at p < 0.001.

It should be noted that the across-space correlation can be
performed not only for each pair of images between a single
participant (e.g., rGU against ReHo of the same participant A1

orA1, i = 23), but also for the rGU of participant A1 against the
ReHo of participant A2 (and vice versa). There were thousands
of potential pairwise correlations between different partici-
pants (23 participants and 5 image metrics). We thus per-
formed correlations for rGU against ReHo because it was
reported that rGU showed higher across-space correlation
with ReHo than other RS-fMRI metrics [12, 13]. Only the
correlations between rGU of participant Ai against the ReHo
of participant Ai + 1(i = 1…22) and between rGU of participant
A23 against the ReHo of participant A1 were performed.

Across-Subject Correlation For each imaging modality and
metric, volumes were concatenated across all subjects to re-
flect the degree to which the different modalities show the
linear correlation among subjects. The sample size of n is
the total number of subjects in the current study (originally,
but one was excluded due to excessive headmotion; therefore,
n = 23).We performed two types of across-subject correlation.
The first was voxel level, in which the partial correlation was
performed within the GM05mask with gray matter fraction of
each voxel as nuisance covariate. Another was region level,
and the correlation was performed within the GM05 mask
with gray matter fraction of each region as nuisance covariate.
In the region-level correlation analysis, the mean value of each
metric was calculated in each of the 90 AAL regions.
Statistical significance level was set at p < 0.01.

Results

Spatial Patterns

As shown in Fig. 2, all metrics (ASL-rCBF, rGU, fALFF,
ReHo, and DC) showed overall similar spatial patterns: higher
activities in the medial prefrontal cortex, superior temporal
gyrus, middle temporal gyrus, posterior cingulate cortex,
precuneus, and calcarine fissure.

Paired t tests showed significant differences between
pairwise metrics (Fig. 3). Only rGU exhibited higher activity
in the basal ganglia (e.g., putamen). In the bilateral hippocam-
pus, the signals for rCBF were higher than those of rGU,
fALFF, and ReHo. The insula exhibited higher activity for
ASL-rCBF and rGU than for other RS-fMRI metrics.
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Across-Space Correlation

For both voxel-level and region-level across-space corre-
lation analyses, rGU against ReHo had the highest mean
correlation coefficients (Fig. 4). rGU had higher correla-
tions with the three RS-fMRI metrics than did ASL-rCBF.
Even the correlation coefficients between pairs of differ-
ent participants were only slightly smaller than that for the
same participants (Fig. 4, last column).

Across-Subject Correlation

For the voxel-level across-subject correlation analyses,
only a very small portion of the voxels survived the
FDR correction for correlation between rGU, ASL-
rCBF, and RS-fMRI metrics (Fig. 5), even by a liberal
threshold (p < 0.05) without correction (Fig. S1). Table 1
shows voxels with significant correlation between
pairwise metrics. Most of the voxels showed significant

pairwise across-subject correlations between three RS-
fMRI metrics in the brain. The region-level across-subject
correlation analyses showed similar results as voxel-level
analyses; i.e., no region survived multiple comparison
corrections (0.05/900 = 0.00005556) for ASL-rCBF or
rGU with other metrics. However, as expected, many re-
gions showed significant region-level across-subject cor-
relation among the three RS-fMRI metrics (Fig. 6).

Discussion

To the best of our knowledge, this is the first research
investigating the relationships among three functional
brain imaging modalities, rGU, ASL-CBF, and BOLD
fMRI, by simultaneous PET/MR. Our results demonstrat-
ed that, in general, each pair of functional metrics showed
significant across-space correlation; however, few regions
showed significant across-subject correlations for any pair

Fig. 2 One-sample t tests on ASL-rCBF, rGU, fALFF, ReHo, and DC
(p < 0.001, uncorrected). The Z coordinates were from −45 to +65 with a
step of 10 mm. ASL, arterial spin labeling; rCBF, regional cerebral blood

flow; rGU, regional glucose metabolism; fALFF, fractional amplitude of
low-frequency fluctuations; ReHo, regional homogeneity; DC, degree of
centrality
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of functional imaging metrics. rGU against ReHo showed
the highest mean correlation coefficients. rGU had higher
correlations with three RS-fMRI metrics than did ASL-
rCBF.

Spatial Patterns Analyses

On visual inspection, the overall spatial distributions are sim-
ilar among ASL-rCBF, rGU, and BOLD metrics, which is
consistent with the findings reported in the literature [11,
23]. Paired t tests between pairwise metrics revealed signifi-
cant differences in the brain regions such as the putamen,

insula, and bilateral hippocampus. We found that the rGU
was significantly higher than all other metrics in the putamen.
The insula showed higher signals for ASL-rCBF and rGU
than for other RS-fMRI metrics. Cha et al. [23] reported that
rGU exhibits higher activity in the basal ganglia (e.g., puta-
men) than CBF. Significant differences among CBF, rGU,
and RS-fMRI metrics should be interpreted within the context
of the specific physiological processes of each modality. The
majority of ASL signal should be from the extracellular space.
In contrast, PET captures signal driven by a dynamic balance
between different cells [24]. RS-fMRImetrics stem from com-
plex relationships among hemodynamic parameters, including

Fig. 3 Paired t tests of each pair of ASL-rCBF, rGU, fALFF, ReHo, and
DC (p < 0.05, FDR corrected). The Z coordinates were from −45 to +65
with a step of 10 mm. ASL, arterial spin labeling; rCBF, regional cerebral

blood flow; rGU, regional glucose metabolism; PET, positron emission
tomography; fALFF, fractional amplitude of low-frequency fluctuations;
ReHo, regional homogeneity; DC, degree of centrality
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CBF, CBV, and CMRO2 [12]. In addition, RS-fMRI metrics
are focused on only a single frequency band of 0.01–0.08 Hz
[19]. These factors may be associated with the observed re-
gional differences among CBF, rGU, and RS-fMRI metrics.

Similarity by Across-Space Correlation Analyses

Although the three imaging techniques reflect brain func-
tion from different aspects, they are interdependent.
Resting-state glucose and oxygen metabolism are closely
linked and physiologically related to neural activity.
Moreover, both processes are in turn strongly related to
resting CBF that delivers O2 and glucose to the tissue.
Many groups have done some works about the relationship
between these techniques and found that a few functional
neuroimaging metrics, including glucose metabolism,
rCBF, and voxel-wise metrics of RS-fMRI (e.g., ReHo,
fALFF, and DC), showed similar distribution patterns
across the brain. For example, these metrics exhibit higher
activity in the brain regions of the default mode network
[4, 11–13, 25, 26]. Such conclusions are supported by each
metric’s mean map averaged across all subjects [11], one-
sample t test results (Fig. 2, [12]), and voxel-level or
region-level across-space correlation analysis (Fig. 4, [11,
12, 27]). Previous PET-fMRI studies have reported that
spatial correlations were more prominent among RS-
fMRI metrics [11, 12], which is in line with our results.

Fig. 4 Results of across-space
correlations. The mean correla-
tion coefficients and standard de-
viation of across-space voxel-lev-
el (n = 19,722 ± 866 voxels, var-
ied across participants) and
region-level (n = 90) pairwise
correlation

Table 1 The number of voxels showing significant correlation
(p < 0.05, FDR corrected) between each pair of functional metrics in a
voxel-level, across-subject correlation analysis

Metrics Number of voxels

ASL-rCBF against rGU 608

ASL-rCBF against fALFF 0

ASL-rCBF against ReHo 0

ASL-rCBF against DC 0

rGU against fALFF 25

rGU against ReHo 268

rGU against DC 0

fALFF against ReHo 24,971

fALFF against DC 12,659

ReHo against DC 25,255
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Fig. 5 Across-subject voxel-level correlation analysis of each pair of
ASL-rCBF, rGU, fALFF, ReHo, and DC (p < 0.01, FDR corrected).
The Z coordinates were from −45 to +65 with a step of 10 mm. ASL,

arterial spin labeling; rCBF, regional cerebral blood flow; rGU, regional
glucose metabolism; fALFF, fractional amplitude of low-frequency fluc-
tuations; ReHo, regional homogeneity; DC, degree of centrality

Fig. 6 Across-subject region-level correlation analysis of each pair of
ASL-rCBF, rGU, fALFF, ReHo, and DC (p < 0.05). Abbreviations listed
in column are the AAL regions in alphabetical order. ASL, arterial spin

labeling; rCBF, regional cerebral blood flow; rGU, regional glucose me-
tabolism; fALFF, fractional amplitude of low-frequency fluctuations;
ReHo, regional homogeneity; DC, degree of centrality
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We found that rGU against ReHo showed the highest mean
correlation coefficients. The results are consistent with those
reported by Bernier [13], who correlated voxel-wise and
regional-wise ReHo, ALFF, and regional global connectivity
with cerebral metabolic rate of glucose, finding stronger
across-space correlation between glucose metabolism and
ReHo than between glucose metabolism and other RS-fMRI
metrics. It should be noted that such across-space correlation
could be performed between a pair of images (e.g., rGU and
ReHo) from not only the same participant, but also two dif-
ferent participants (e.g., rGU of participant 1 with ReHo of
participant 2). We thus performed the across-space correlation
between rGU of one participant with the ReHo of another
participant. The mean correlation coefficients were slightly
smaller than those of within-participant comparisons for both
voxel and region levels. This suggests that the spatial distri-
bution of different functional modalities was similar either
within or across participants.

Similarity and Dissimilarity by Across-Subject
Correlation Analyses

Despite the high across-space correlation among functional
imaging modalities, the across-subject correlation analyses
showed that only the three RS-fMRI metrics showed signifi-
cant correlation with each other in some brain areas. Neither
rGU nor ASL-rCBF showed significant correlation with any
other functional imaging modality. Previous studies have re-
ported that a few regions were exhibited significant across-
subject correlation [11, 13, 28], which was consistent with
our results. We adopted a liberal threshold (p < 0.05) for ad-
ditional analyses. As shown in Fig. 6, there were significant
correlations among the modalities for a few regions. Such
discrepancy among modalities was also shown by the results
of paired t tests, as we report widespread differences for each
pair of comparison.

One reason for the dissimilar results from across-subject
correlations may be the different physiological mechanisms.
rGU reflects the integrated value or mean value of the glucose
metabolism over tens of minutes, ASL-rCBF reflects themean
value of cerebral blood flow, and RS-fMRI reflects the dy-
namic changes in deoxyhemoglobin. At first, for a given time
series, the dynamic change is much different from the mean
value from a computational view. As an example, the RS-
fMRI metric ALFF is mathematically similar to the standard
deviation. We simulated 100 time series and calculated the
ALFF and mean value. We then calculated the Pearson linear
correlation coefficient between them, and it was not signifi-
cant (r = 0.05, p = 0.613).

Dissimilarity between mean value and dynamic change
may have physiological and pathophysiological relevance.
The static and dynamic characteristics of rCBF have been
used to investigate the brain activity changes during eyes-

open states compared to eyes-closed states using pulsed
ASL techniques [29]. The study reported that BOLD-ALFF
produced similar results to rCBF-ALFF. However, different
computations in the same modality (e.g., rCBF-ALFF and
rCBF-mean) demonstrated very different patterns of brain ac-
tivity changes between eyes-open and eyes-closed states. The
discrepancy between mean value and dynamic change may
help to understand the pathophysiology of epilepsy. For ex-
ample, a meta-analysis of rGU confirmed significant
hypometabolism in the medial temporal lobe in patients with
mesial temporal lobe epilepsy (MTLE) vs. healthy subjects
[30], while at least two studies have reported increased
BOLD-ALFF in patients with MTLE [31, 32]. The decreased
glucose metabolism might be due to a decrease in neurons
[33], while the increased ALFF might result from increased
spikes of epileptic neurons [32]. These discrepancies have not
been reported in simultaneous PET-fMRI studies.

Dissimilarity Between rGU and ASL-rCBF by Across-
Subject Correlation Analyses

The aforementioned interpretation of discrepancy between
mean value (e.g., rGU and ASL-rCBF) and dynamic change
(e.g., RS-fMRI BOLD metrics) may not be applicable for the
correlation between rGU and ASL-rCBF in the current study
because rGU and ASL-rCBF both measure the mean value
over a period of time. A previous study collected rGU and
ASL-rCBF separately in a group of participants and per-
formed region-level across-subject correlation [23]. The au-
thors divided the whole brain into 11 larger regions and found
significant correlations between rGU and ASL-rCBF in 4 re-
gions (frontal, temporal, putamen, and caudate, with r values
0.52–0.76). In our study, significant correlation between rGU
and ASL-rCBF was found in a few regions by a liberal thresh-
old (p < 0.05), without correlation. But there were no regions
that survived multiple comparison corrections. Although both
rGU and ASL-rCBF measure the mean value over time, we
cannot conclude with confidence that rGU has high correla-
tion with ASL-rCBF across subjects. Unlike the interpretation
of dissimilarity betweenmean value of rGU or ASL-rCBF and
the dynamic changes of BOLD RS-fMRI metrics, the reasons
for the dissimilarity between the mean value of rGU and mean
value of ASL-rCBF may be complicated. ASL-rCBF and
FDG-PET rGU have different physiological mechanisms
and may be affected by different factors. For example, ASL-
rCBF is affected by transit time and post-labeling time, while
rGU and RS-fMRI metrics are not affected by these factors
[23].

A few limitations in the current study should be addressed.
First, the sample size is not large, and this may explain why no
significant results were found in the across-subject analysis.
Second, although we used a gray matter mask and partial
correlation analysis to reduce PVE, the RS-fMRI metrics of
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ReHo and DC must be calculated before masking and hence
can be affected by PVC. Third, part of the cerebellum was not
covered in some participants. Therefore, the current study is
not a true “whole” brain analysis.

Conclusions

We simultaneously recorded rGU, rCBF, and RS-fMRI
BOLD data and found significant across-space correlations
at both voxel level and region level for all pairs of metrics
(rGU, rCBF, ALFF, ReHo, and DC), but no significant
across-subject correlations were found between modalities
(rGU, rCBF, and BOLD fMRI) except for within RS-fMRI
(ALFF, ReHo, and DC). The dissimilarities among functional
imaging modalities may reveal different aspects of pathophys-
iology in brain disorders. These comprehensive findings from
hybrid PET/MRmight provide complementary information to
reveal the underlying mechanisms of the brain activity and
basis for further exploring the relationship in pathologic
conditions.
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