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Abstract
Since laser photobiomodulation has been found to enhance brain energy metabolism and cognition, we conducted the first
metabolomics study to systematically analyze the metabolites modified by brain photobiomodulation. Aging is often accompa-
nied by cognitive decline and susceptibility to neurodegeneration, including deficits in brain energy metabolism and increased
susceptibility of nerve cells to oxidative stress. Changes in oxidative stress and energetic homeostasis increase neuronal vulner-
ability, as observed in diseases related to brain aging. We evaluated and compared the cortical and hippocampal metabolic
pathways of young (4 months old) and aged (20 months old) control rats with those of rats exposed to transcranial near-infrared
laser over 58 consecutive days. Statistical analyses of the brain metabolomics data indicated that chronic transcranial
photobiomodulation (1) significantly enhances the metabolic pathways of young rats, particularly for excitatory neurotransmis-
sion and oxidative metabolism, and (2) restores the altered metabolic pathways of aged rats towards levels found in younger rats,
mainly in the cerebral cortex. These novel metabolomics findings may help complement other laser-induced neurocognitive,
neuroprotective, anti-inflammatory, and antioxidant effects described in the literature.
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Introduction

A large number of interventions have been used to modulate
metabolic activities. Among them, low-level laser therapy
(LLLT), also known as photobiomodulation [1], is well sup-
ported in the literature as capable of improving wound healing
and reducing pain and inflammation [2–4]. In addition, mul-
tiple neurobiological effects of photobiomodulation have been

documented, including studies of the retina [5–7], the spinal
cord [8], and the brain [9–13]. For example, in interesting
studies with rodents, Oron et al. [14] found beneficial effects
using a laser treatment 4 h after brain injury. They reported a
restoration of neurological functions such as motor capacity,
balance, and alert state, as well as a reduction in brain tissue
loss. De Taboada et al. [15] noted that laser treatment im-
proved water maze performance in beta amyloid protein
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precursor transgenic mice. They found that enhancement of
memory was accompanied by an increase in ATP levels, an
improvement in mitochondrial function and greater neuronal
activation (c-fos).

Most studies have tested brain photobiomodulation in
models of neural lesions or diseases. However, little is known
about the beneficial potential of photobiomodulation in the
older brain per se [16]. Aging is a progressive multifactorial
process, associated with cognitive function impairment and
increased susceptibility to neurodegenerative diseases [17].
During aging, there is a decline in energy metabolism, as well
as an increased susceptibility of nerve cells to large amounts
of oxidative stress [18, 19]. There is also a decrease in the
metabolic use of glucose by the cerebral cortex during aging,
in humans [20] and rats [21]. During oxidative damage, many
molecules such as lipids, carbohydrates, proteins, and DNA
are oxidatively modified [17, 22], generating a loss of brain
function [23, 24]. These losses related to oxidative stress and
energetic homeostasis increase neuronal vulnerability, as ob-
served in diseases related to brain aging [22, 25]. In humans,
Vargas et al. [26] investigated transcranial laser effects in
older adults, and they found improved cognitive functioning
and electroencephalographic rhythms, along with signal re-
duction in cortical BOLD-fMRI (blood oxygen level
dependent-functional magnetic resonance imaging).

Based on these studies, we hypothesized that transcranial
photobiomodulation may be beneficial for the metabolic pro-
file of both the young and aged brain. To test this hypothesis,
we evaluated whether a chronic transcranial treatment with a
laser diode of 810 nm wavelength and 100 mW power has the
capacity to alter the cortical and hippocampal metabolic pro-
files in young and older rats. Metabolomics allows the sys-
tematic large-scale study of small molecules called metabo-
lites [27]. To do the metabolomics analysis, we used the ana-
lytical technique of nuclear magnetic resonance (NMR) and
the MetaboAnalyst platform [28].

Methods

Animals

Thirty male Wistar rats, young (4 months old) and aged
(20 months old), were used in this study. The colony room
was maintained at 21 ± 2 °C with a 12 h light/dark schedule
(light: 7 am until 7 pm), and food and water were provided ad
libitum throughout the experimental period. All experimental
protocols were approved by the ethics committee of the
University of Mogi das Cruzes (UMC) (# 016/2017), and all
efforts were made to minimize animal suffering in accordance
with the proposals of the International Ethical Guideline for
Biomedical Research [29].

Laser Therapy Protocol

The rats were randomly distributed into four groups: young
laser (YL; n = 7), young control (YC; n = 8), aged laser (AL;
n = 8), and aged control (AC; n = 7). One week before the
treatment protocol, the animals were adapted daily to the man-
ual handling used for immobilization, which was quick and
painless to prevent any discomfort of the animals during the
protocol. After this, animals from laser groups (YL and AL)
were manually immobilized (without anesthesia) and received
the treatment with a laser diode of 810 nm wavelength and
100 mW power for 30 s at each point of application (DMC
Equipment, São Carlos, Brazil). We used 5 irradiation points
in the skullcap (point 1 = AP + 4.20 mm and ML 0.00 mm;
point 2 = AP − 3.00 mm and ML − 6.60 mm; 3 = AP −
3.00 mm and ML + 6.60 mm; point 4 = AP 0.00 mm and
ML 0.00 mm; point 5 = AP − 5.52 mm and ML 0.00 mm)
(Fig. 1). Thus, the target brain regions were sensory-motor
and limbic areas: secondary motor cortex (M2), anterior cin-
gulate cortex (Cga), primary somatosensory cortex-upper
limb (S1ULp), secondary somatosensory cortex (S2), posteri-
or cingulate cortex (Cgp), retrosplenial dysgranular cortex
(RSD), and retrosplenial granular cortex (RSCg) [30]. The
total daily laser treatment was 15 J of energy, 150 s of irradi-
ation, and fluence of 535.7 J/cm2. It is worth mentioning that
no difference in scalp temperature measured in the animals
was observed with a non-contact thermometer during the
treatment protocol. Animals were exposed to the transcranial
low-level laser therapy for 58 consecutive days. Animals from
control groups (YC and AC) received the same procedure as
the laser groups, but as placebo treatment (laser off). The
chosen laser parameters listed below were based on our pre-
vious publications, which indicated that these parameters had
anti-inflammatory properties in different animal models
[31–34]. The studies by Morries et al. [35] and Henderson
and Morries [36] discuss that in rats, less than 0.5% of energy
penetrates the skull and reaches the brain. This means that
3.5 W/cm2 on the scalp would represent around 17 mW/cm2

in the rat brain. Taken together, the evidence and prior expe-
rience give us confidence that the irradiance of our equipment
was not harmful to the rat brain. Regarding the number of days
of treatment, our rationale was to investigate the therapeutic
capacity of chronic treatment with laser.

List of laser parameters:

Center wavelength (nm): 810
Operating mode: CW
Average radiant power (W): 0.1
Aperture diameter (cm): 0.6
Irradiance at aperture (W/cm2): 3.57
Beam divergence: near zero
Beam shape: circular
Beam spot size (cm2): 0.028
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Exposure duration/point (s): 30
Radiant exposure (J/cm2) per point per session: 107.14
Number of points irradiated: five
Delivery mode: contact mode
Number and frequency of sessions: one session/day for
58 consecutive days.
Total radiant energy (J) per head: 15

Metabolomics Profile

Twenty-four hours after the last laser therapy session, an-
imals were euthanized by decapitation. Immediately after
decapitation, the cerebral cortex and hippocampal forma-
tion (Ammon’s horn and dentate gyrus) of the YL (n = 7),
YC (n = 8), AL (n = 8), and AC (n = 7) groups were dis-
sected by means of consistent anatomical landmarks and
maintained at − 80 °C for analysis of the metabolomics
profile. Brain tissue was pulverized using ceramic mortar
and pistil under liquid nitrogen. For the extraction proce-
dure, approximately 30 mg of the pulverized material was
weighed, and 334 μL of methanol and 166 μL of chloro-
form (2:1, v/v) were added. The solution was mixed in a
vortex for 10 s and sonicated for 5 min. Then, a sample
was kept for ~ 15 min in ice bath. Thereafter, 250 μL of
chloroform and 250 μL of Milli-Q water (1:1, v/v) were
added, followed by mixing in a vortex for 10 s and cen-
trifugation at 14,000 rpm at 4 °C for 20 min, for subse-
quent supernatant fraction collection. The procedure was
repeated with the precipitated fraction of the supernatant.

After this procedure, the supernatant fractions were mixed
(~ 0.8 mL), dried using speed vac (MIVAC DUO) and
kept at − 80 °C. For NMR acquisitions, a sample was
solubilized in 540 μL of deuterium oxide (D2O, 99.9%;
Cambridge Isotope Laboratories Inc., MA, USA), 60 μL
phosphate buffer (0.1 M, pH 7.4), and 0.5 mM TMSP-d4
(3- (trimethylsilyl -2,2 ', 3,3'-tetradeuteropropionic acid,
Sigma-Aldrich) to produce a final 0.6 mL solution and
then transferred to a 5 mm NMR tube (Norell Standard
Series 5 mm, Sigma-Aldrich) for immediate data
acquisition.

NMR Acquisition Spectra

The 1H NMR spectra of the samples were acquired using an
Agilent Inova 600 spectrometer (Agilent Technologies Inc.™,
Santa Clara, USA) from the Brazilian Biosciences National
Laboratory (Brazilian Center for Research in Energy and
Materials (CNPEM)) equipped with a triple resonance cryo-
probe and operating at a 1H resonance frequency of
599.887 MHz and constant temperature of 298 K (25 °C). A
total of 256 or 512 free induction decays, depending on the
concentration of metabolites, were collected with 32 k data
points at a spectral width of 16 ppm and acquisition time of
4 s. A relaxation delay of 1.5 s was incorporated between the
scans, during which a continuous pre-saturation radiofrequen-
cy (RF) field of water was applied.

NMR spectroscopy is a useful technique for identifying
and determining the structure of biomolecules such as proteins
and nucleic acids. This technique is dependent on

Fig. 1 Five irradiation points over the scalp (target coordinates: point 1 =
AP + 4.20 mm, ML 0.00 mm; point 2 = AP − 3.00 mm, ML − 6.60 mm;
point 3 = AP − 3.00 mm, ML + 6.60 mm; point 4 =AP 0.00 mm, ML
0.00 mm; point 5 = AP − 5.52 mm, ML 0.00 mm). Abbreviations:

secondary motor cortex (M2), anterior cingulate cortex (Cga), primary
somatosensory cortex-upper limb (S1ULp), secondary somatosensory
cortex (S2), posterior cingulate cortex (Cgp), retrosplenial dysgranular
cortex (RSD), and retrosplenial granular cortex (RSCg)
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concentration (usually mg of compounds) and molecular
weight. Using the most common 1H NMR spectroscopy, it
is possible to identify most chemicals that contain hydrogens
in their structure. In the NMR spectra, the area under each
hydrogen sign represents the concentration and number of
hydrogen atoms of a given compound, and the chemical shifts
(ppm) are the resonance frequency of each atom, depending
on the chemical environment in which they are found. On the
same conditions (such as pH and temperature), the NMR spec-
tra are very reproducible, so we can use the information on
chemical shifts, multiplicity, J coupling, etc., to identify a
compound if the spectrum is equal to a spectrum of reference.

Identification and Quantification of Metabolites

Data preprocessing, spectral phase, and baseline corrections,
as well as the identification and quantification of metabolites
present in samples, were performed using Chenomx NMR
Suite 8.1 software (Chenomx Inc.™, Edmonton, Canada).
The Chenomx NMR Analysis Software is designed to use
the Spectral Reference Library to select the appropriate signals
within the experimental spectrum. The software automatically
configures the Reference Library to reproduce the sample. In
summary, we detected 48 metabolites in the cortex (Table 1)
and 48 metabolites in the hippocampus (Table 2) with suffi-
cient signal-to-noise ratios.

Statistical Analyses

For exploratory analysis, we used principal component anal-
ysis (PCA), a non-supervised exploratory statistical tool that
detects the variables responsible for the greater variance be-
tween the data. In this analysis, the samples are grouped ac-
cording to their similarity, without prior information on the
groups studied. In the PCA, two types of plots are generated,
the score plot and the loading plot, which necessarily need to
be analyzed together. The score plot provides the coordinates
of the samples, while the loading plot shows the contribution
of the variables in the construction of the main components.

After this, the Z-score was used to remove outlier values.
The statistical procedures for hypothesis testing were conduct-
ed with the four groups simultaneously by two-way ANOVA
followed by post hoc tests with the Bonferroni correction. The
analyses were performed using the Statistical Package for the
Social Sciences (SPSS Inc., IBM, version 221.0, Chicago,
USA). A statistical difference was considered significant with
a value of p < 0.05.

For metabolic pathway analysis, we used metabolite set
enrichment analysis (MSEA) to identify metabolic pathways
possibly altered by differences in metabolite concentrations
found between groups. The analyses were performed using
the MetaboAnalyst platform [28].

Results

Cortical Metabolomics Profile

We used the exploratory PCA test to analyze the charac-
teristics of the groups, and the ANOVA hypothesis testing
was performed to detect the differences between the
groups. The statistical results of the two-way ANOVA
of the cortical data are presented in Supplementary
Table 1.

When the corrected post hoc analysis of Bonferroni
was performed, no significant difference in the metabo-
lites adenine, creatine phosphate, and tryptophan
(p > 0.05) was observed between the AC and YC groups.
However, in the other metabolites investigated, the AC
group exhibited a higher concentration in relation to the
YC group (p < 0.05) (Table 1).

In young rats, the laser treatment significantly increased the
concentration of 4-aminobutyrate, AMP, acetate, alanine,
ascorbate, aspartate, betaine, choline, creatine, creatine phos-
phate, creatinine, formate, fumarate, GTP, glutamate, gluta-
mine, glutathione, glycerol, glycine, lactate, lysine, N-acetyl-
L-aspartate, O-phosphoethanolamine, oxypurinol, phenylala-
nine, taurine, threonine, tyrosine, uridine, myo-inositol, sn-
glycero-3-phosphocholine, and 3-methylhistidine (YC vs
YL; p < 0.05) (Table 1).

In addition, the laser reversed the high concentration of
these metabolites observed in aged rats (AC vs AL;
p < 0.05). Only the metabolites adenine and tryptophan were
not significantly reduced by photobiomodulation (p > 0.05)
(Table 1). Taken together, these data showed that the
photobiomodulation was able to alter the cortical metabolic
profile of young and aged rats.

A similarity was observed between the YC, YL, and AL
groups when using PCA. A complete distinction of the data
was noted betweenAC and other groups (Fig. 2a). In addition,
the variables responsible for the difference in the score plot
were found in the loading plot (Fig. 2b). Together, the two
principal components selected by the analysis accounted for
87.7% of the data variance.

Cortical Metabolic Pathways Altered by Aging in Control Rats

After observing the differences between the groups, it was
possible to analyze and interpret the impacted metabolic
pathways through the metabolite set enrichment analysis
(MSEA). This analysis was performed with metabolites
that exhibited significant changes among studied groups.

When we analyzed the cortical metabolic pathways al-
tered by aging (AC vs YC), we observed a significant
increase in the pathways of aspartate metabolism
(p < 0.0001), glutamate metabolism (p = 0.001), ammonia
recycling (p = 0.001), urea cycle (p = 0.003), purine
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metabolism (p = 0.003), alanine metabolism (p = 0.008),
phenylalanine and tyrosine metabolism (p = 0.013), argi-
nine and proline metabolism (p = 0.017), glutathione me-
tabolism (p = 0.017), phosphatidylcholine biosynthesis
(p = 0.023), glycine and serine metabolism (p = 0.026),
and phenylacetate metabolism (p = 0.045).

Cortical Metabolic Pathways Altered by Photobiomodulation
in Young Rats

The cor t i ca l me tabo l i c pa thways inc reased by
photobiomodulation in young rats (YC vs YL) were aspartate
metabolism (p < 0.0001), glutamate metabolism (p = 0.003),

Table 1 Concentration of cortical metabolites (μM) in YC (n = 8), YL (n = 7), AC (n = 7), and AL (n = 8) groups

Metabolite (μM) YC YL AC AL

4-Aminobutyrate 710.9 ± 83.7 1503.0 ± 155.9a 5128.2 ± 293.1b 2136.8 ± 113.3c

4-Pyridoxate 27.2 ± 5.0 31.2 ± 4.1 225.5 ± 19.7b 95.4 ± 14.7c

AMP 83.4 ± 12.8 217.3 ± 16.8a 469.4 ± 52.5b 190.9 ± 24.1c

ATP 14.5 ± 2.4 32.7 ± 9.4 162.3 ± 22.9b 54.4 ± 11.8c

Acetate 178.1 ± 29.8 466.4 ± 83.0a 800.1 ± 40.8b 403.8 ± 32.5c

Adenine 37.4 ± 6.2 35.4 ± 10.4 53.8 ± 10.7 47.2 ± 17.4
Adenosine 141.4 ± 13.7 244.7 ± 32.1 1022.1 ± 78.1b 386.8 ± 28.6c

Alanine 275.0 ± 37.4 553.9 ± 51.2a 1641.5 ± 106.9b 706.7 ± 23.1c

Ascorbate 501.5 ± 132.0 1316.9 ± 194.7a 3313.8 ± 322.8b 1775.4 ± 90.3c

Asparagine 33.7 ± 3.3 61.5 ± 10.4 282.9 ± 27.3b 95.4 ± 4.8c

Aspartate 1023.5 ± 135.7 2156.4 ± 202.1a 6353.3 ± 484.7b 2829.9 ± 110.4c

Betaine 15.2 ± 1.3 33.9 ± 3.3a 85.3 ± 6.2b 39.3 ± 3.7c

Choline 158.1 ± 17.9 301.8 ± 36.3a 887.7 ± 76.6b 372.6 ± 35.0c

Creatine 3088.0 ± 445.8 6407.2 ± 645.4a 20,419.0 ± 1114.3b 8907.9 ± 382.0c

Creatine phosphate 58.9 ± 11.4 34.1 ± 5.4a 61.3 ± 5.5 39.1 ± 3.9c

Creatinine 33.5 ± 4.7 55.1 ± 4.0a 73.4 ± 5.3b 28.9 ± 2.1c

Ethanol 386.1 ± 28.7 344.0 ± 29.8 1522.5 ± 138.8b 456.0 ± 38.6c

Formate 51.4 ± 7.4 119.3 ± 13.7a 229.9 ± 14.5b 82.3 ± 2.7c

Fumarate 33.1 ± 4.5 56.6 ± 3.3a 233.8 ± 11.7b 97.0 ± 5.8c

GTP 28.5 ± 4.6 61.7 ± 9.5a 193.0 ± 16.5b 106.8 ± 6.7c

Glutamate 3794.0 ± 511.9 7891.2 ± 836.1a 21,993.3 ± 1322.0b 9555.1 ± 426.8c

Glutamine 1540.3 ± 239.4 3289.6 ± 390.7a 10,367.7 ± 479.7b 4833.5 ± 396.1c

Glutathione 108.8 ± 23.5 397.1 ± 80.5a 1204.0 ± 52.4b 481.8 ± 42.4c

Glycerol 239.6 ± 32.9 358.4 ± 27.3a 1015.4 ± 47.8b 477.3 ± 34.3c

Glycine 295.1 ± 41.6 605.4 ± 52.2a 1923.9 ± 77.8b 824.7 ± 46.9c

Histidine 17.5 ± 2.9 31.0 ± 4.1 96.3 ± 8.2b 43.3 ± 3.2c

Hypoxanthine 86.2 ± 11.6 144.3 ± 14.6 621.1 ± 14.8b 264.2 ± 37.6c

Inosine 116.1 ± 14.6 183.2 ± 16.4 1053.4 ± 84.4b 412.9 ± 85.4c

Isoleucine 23.5 ± 3.3 29.4 ± 4.0 93.9 ± 7.1b 42.2 ± 3.9c

Lactate 3619.8 ± 532.6 7268.6 ± 704.2a 25,842.5 ± 646.1b 11,726.5 ± 519.6c

Leucine 42.2 ± 2.4 64.6 ± 7.7 203.5 ± 15.0b 90.3 ± 8.9c

Lysine 56.3 ± 5.1 112.1 ± 10.0a 274.1 ± 21.3b 138.2 ± 13.5c

N-Acetyl-L-aspartate 2890.2 ± 430.1 6211.4 ± 606.8a 18,426.4 ± 1127.2b 8273.9 ± 345.4c

Niacinamide 84.4 ± 11.0 140.2 ± 21.3 475.2 ± 33.4b 210.8 ± 12.2c

O-Phosphocholine 87.2 ± 13.9 160.0 ± 13.3 543.2 ± 43.3b 210.9 ± 8.3c

O-Phosphoethanolamine 527.5 ± 65.1 1095.6 ± 114.3a 3247.3 ± 198.3b 1274.5 ± 40.6c

Oxypurinol 912.2 ± 118.2 2074.5 ± 138.4a 5036.6 ± 529.3b 2225.0 ± 293.1c

Phenylalanine 16.7 ± 1.2 34.9 ± 3.3a 102.4 ± 7.1b 45.3 ± 3.6c

Succinate 56.1 ± 7.8 119.7 ± 27.7 287.6 ± 42.9b 120.0 ± 21.6c

Taurine 1833.2 ± 267.0 3819.3 ± 452.8a 10,880.9 ± 502.6b 4580.1 ± 181.6c

Threonine 178.8 ± 23.0 334.2 ± 36.4a 1140.5 ± 64.0b 448.6 ± 44.1c

Tryptophan 15.6 ± 1.4 20.2 ± 2.5 29.7 ± 8.1 15,5 ± 3,2
Tyrosine 24.7 ± 2.6 51.1 ± 7.0a 148.5 ± 3.3b 66.2 ± 8.3c

Uridine 25.0 ± 3.7 53.1 ± 8.7a 177.8 ± 15.8b 73.5 ± 4.0c

Valine 40.8 ± 4.8 60.7 ± 3.6 207.0 ± 12.4b 91.8 ± 5.0c

Myo-Inositol 1725.4 ± 239.3 3572.7 ± 371.2a 12,378.6 ± 609.1b 5059.9 ± 110.2c

sn-Glycero-3-phosphocholine 162.0 ± 22.1 353.3 ± 63.9a 1087.0 ± 63.6b 437.4 ± 64.2c

3-Methylhistidine 25.8 ± 2.7 49.8 ± 7.4a 147.9 ± 5.4b 59.4 ± 4.2c

a Difference between YL vs YC groups
bDifference between AC vs YC groups
c Difference between AL vs AC groups; (p < 0.05; two-way ANOVA, followed by the Bonferroni post hoc analysis)
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urea cycle (p = 0.005), arginine and proline metabolism (p =
0.020), phenylalanine and tyrosine metabolism (p = 0.022),
alanine metabolism (p = 0.022), glycine and serine metabo-
lism (p = 0.022), ammonia recycling (p = 0.029), and glutathi-
one metabolism (p = 0.035) (Fig. 3).

Cortical Metabolic Pathways Altered by Photobiomodulation
in Aged Rats

The cor t i ca l metabo l i c pa thways decreased by
photobiomodulation in aged rats (AC vs AL) were aspartate
metabolism (p < 0.0001), glutamate metabolism (p= 0.001), am-
monia recycling (p = 0.001), urea cycle (p = 0.004), purine me-
tabolism (p = 0.005), arginine and proline metabolism (p =
0.006), alanine metabolism (p = 0.009), phenylalanine and tyro-
sinemetabolism (p = 0.014), glutathionemetabolism (p = 0.020),
phosphatidylcholine biosynthesis (p = 0.027), and glycine and
serine metabolism (p = 0.035) (Fig. 4).

Hippocampal Metabolomics Profile

The statistical results of the two-way ANOVA of the hippo-
campal data are presented in Supplementary Table 2. When
the corrected post hoc analysis of Bonferroni was performed,
the AC group showed a lower concentration of acetate when
compared to the YC group (p = 0.044). In addition,
photobiomodulation increased the concentration of acetate
(p = 0.038) and guanosine triphosphate (GTP) (p = 0.002) of
aged rats (Table 2). We could not perform further analyses of
the hippocampal metabolic pathways because we observed
differences in only two of the metabolites, acetate and GTP.

The hippocampus PCA is shown in Fig. 5. A similarity
between the control (YC and AC) and laser (YL and AL)
groups was observed (Fig. 5a). In addition, we found in the
loading plot the variables responsible for the difference in the
score plot (Fig. 5b). Together, the two principal components
selected by the analysis accounted for 78% of the data
variance.

Discussion

The purpose of this study was to investigate the effects of
transcranial photobiomodulation on the cortical and hip-
pocampal metabolic profiles of rats with 4 or 20 months
of age exposed to a chronic treatment with a laser of
810 nm wavelength and 100 mW power. The power
density/irradiance used was high due to the very small
spot size of the laser equipment aperture (0.028 cm2),
which give us 3.57 W/cm2. However, the irradiation time
consisted of 30 s/point in 5 different points. This means
that the total time of irradiation of 150 s was divided into
five points, as shown in Fig. 1. Due to our previous

experience with this equipment and such doses, we should
say that this dose does not induce any kind of hazard to
the biological tissues. The chosen laser parameters were
already used in more than 50 publications from our group,
studying the anti-inflammatory properties and mecha-
nisms of laser therapy in different animal models (e.g.,
[31–34]).

Photobiomodulation Increases the Brain Metabolic
Pathways of Young Rats

In the young rats, transcranial photobiomodulation in-
creased the metabolic pathways of alanine, aspartate, ar-
ginine, glutamate, glutathione, glycine, phenylalanine,
proline, serine, and tyrosine in the cerebral cortex. These
laser-induced metabolic effects are promising because
these molecules play an important role in neuronal activ-
ity [37–40]. Aspartate and glutamate, for instance, are the
main excitatory neurotransmitters of the mammalian
brain, playing important roles in neuronal development,
synaptic plasticity, and in learning and memory [39, 40].
Proline, in turn, is capable of activating NMDA receptors
[41–44], modulating the neurotransmission of glutamate.
In young humans, transcranial photobiomodulation can
modulate cortical excitability [45] and cortical electrical
rhythms [13]. Glutathione plays a pivotal role in the cel-
lular antioxidant system [46], besides regulating other cel-
lular events, such as gene expression, DNA synthesis,
cellular proliferation, and apoptosis [47]. Moreover, an
increase in the phenylalanine pathway may contribute to
dopamine neurotransmission in the prefrontal cortex,
which improves cognitive functions [48], while its deple-
tion results in dopamine reduction and cognitive impair-
ment [27, 48, 49]. In young humans, transcranial
photobiomodulation enhances cognitive functions [50].
Thus, the cortical metabolic profile induced by transcra-
nial photobiomodulation could be beneficial to the young
brain.

A primary mechanism of action of transcranial
photobiomodulation is the induction of cytochrome-c-ox-
idase, the main intracellular photon acceptor in the red-to-
near-infrared wavelengths, which has been demonstrated
to facilitate cortical oxidative metabolism in rats [51] and
humans [12]. Photobiomodulation of cytochrome-c-
oxidase activity is consistent with the observed cortical
metabolic profiles found in this study. For example, in-
duction of the transcription of cytochrome-c-oxidase sub-
units is associated to glutamatergic receptor activation be-
cause there is a coupling of cytochrome-c-oxidase genes
with excitatory neurotransmission genes at the transcrip-
tional level [52]. All ten nuclear genes and the three mi-
tochondrial transcription factors of cytochrome-c-oxidase
are transcribed in the same “transcription factory” as the
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genes for excitatory neurotransmitters [52]. Therefore, the
metabolomics results are consistent with a mechanism of
brain photobiomodulation of cytochrome-c-oxidase
coupled to the transcriptional regulation of nuclear respi-
ratory factor genes, which in turn are coupled with tran-
scription of excitatory neurotransmitter receptors, such as
NMDA receptor subunit genes for glutamatergic excitato-
ry neurotransmission [50].

Photobiomodulation Restores the Brain Metabolic
Pathways of Aged Rats Towards the Levels of
Younger Rats

On the other hand, in aged rats, we found an opposite effect
induced by photobiomodulation.We noted reductions of brain
metabolites when comparing AC and AL groups. For exam-
ple, photobiomodulation decreased cortical levels of

Table 2 Concentration of hippocampal metabolites (μM) in YC (n = 7), YL (n = 7), AC (n = 6), and AL (n = 8) groups

Metabolite (μM) YC YL AC AL

4-Aminobutyrate 2280.6 ± 315.8 1400.4 ± 262.8 2179.3 ± 328.0 1570.4 ± 281.6
4-Pyridoxate 48.6 ± 7.2 19.6 ± 3.5 73.8 ± 8.1 22.4 ± 13.5
AMP 19.0 ± 5.4 104.5 ± 22.6 29.1 ± 8.2 109.0 ± 21.3
ATP 6.3 ± 1.6 18.6 ± 3.4 9.0 ± 0.7 20.7 ± 3.6
Acetate 262.1 ± 75.2 121.2 ± 39.8 85.2 ± 9.9b 263.6 ± 52.4c

Adenine 6.1 ± 0.5 5.5 ± 1.4 5.2 ± 0.9 3.6 ± 0.2
Adenosine 10.9 ± 1.5 328.4 ± 62.9 14.2 ± 2.8 439.2 ± 93.1
Alanine 574.3 ± 74.7 596.8 ± 121.3 588.2 ± 74.3 602.6 ± 113.1
Ascorbate 425.9 ± 134.6 1200.1 ± 338.5 701.9 ± 143.6 1227.2 ± 324.3
Asparagine 69.9 ± 14.9 54.1 ± 14.4 68.8 ± 10.4 83.5 ± 29.4
Aspartate 1506.3 ± 185.7 1073.7 ± 212.1 1586.5 ± 197.9 1209.6 ± 256.2
Betaine 32.4 ± 4.5 31.1 ± 4.7 26.5 ± 3.1 32.8 ± 5.0
Butyrate 49.1 ± 6.3 45.4 ± 10.0 22.2 ± 6.1 18.1 ± 5.0
Choline 357.6 ± 48.6 192.3 ± 32.8 358.0 ± 52.7 210.9 ± 32.2
Creatine 4603.3 ± 594.3 5326.5 ± 1026,.1 5299.3 ± 667.1 5690.0 ± 1090.6
Creatine phosphate 35.7 ± 3.9 31.1 ± 4.9 23.5 ± 2.4 32.6 ± 6.1
Creatinine 71.5 ± 6.5 61.4 ± 11.6 20.8 ± 3.1 37.5 ± 12.3
Ethanol 424.6 ± 17.0 349.9 ± 41.7 718.8 ± 73.7 771.9 ± 51.0
Formate 108.4 ± 16.6 73.8 ± 17.2 84.7 ± 8.5 54.1 ± 6.3
Fumarate 44.8 ± 6.1 44.7 ± 8.5 52.4 ± 5.7 57.3 ± 9.8
GTP 18.6 ± 3.9 15.2 ± 4.3 26.9 ± 7.4 77.1 ± 15.8c

Glutamate 3957.6 ± 533.2 5732.1 ± 1126.3 4768.4 ± 588.3 5806.8 ± 1170.6
Glutamine 2256.9 ± 271.5 2557.6 ± 462.0 2747.4 ± 354.6 3309.9 ± 871.6
Glutathione 49.1 ± 8.6 242.6 ± 74.0 72.8 ± 11.1 383.1 ± 95.7
Glycerol 366.3 ± 37.8 279.8 ± 55.8 349.2 ± 40.2 311.4 ± 57.7
Glycine 856.8 ± 114.7 579.8 ± 110.0 894.0 ± 123.1 661.3 ± 131.7
Histidine 27.5 ± 5.7 22.3 ± 4.7 29.9 ± 4.9 34.5 ± 9.5
Hypoxanthine 521.0 ± 61.3 114.5 ± 17.0 450.5 ± 73.0 128.8 ± 25.6
Inosine 393.7 ± 58.2 136.6 ± 19.5 513.9 ± 68.1 167.6 ± 34.2
Isoleucine 34.6 ± 4.2 27.5 ± 5.8 37.0 ± 3.7 29.1 ± 6.1
Lactate 6225.0 ± 1059.1 6281.9 ± 1477.5 8096.0 ± 1162.9 8964.1 ± 1779.5
Leucine 87.0 ± 10.2 56.0 ± 9.5 73.2 ± 11.6 75.2 ± 15.1
Lysine 146.9 ± 20.7 75.3 ± 13.5 110.9 ± 17.8 110.8 ± 29.1
N-Acetyl-L-aspartate 3484.4 ± 469.1 3988.8 ± 763.8 4027.0 ± 486.4 4527.8 ± 843.4
Niacinamide 98.3 ± 14.9 88.6 ± 25.1 90.7 ± 21.0 129.4 ± 34.0
O-Phosphocholine 239.2 ± 32.5 212.3 ± 41.2 221.8 ± 29.2 206.2 ± 38.3
O-Phosphoethanolamine 803.5 ± 101.0 753.5 ± 152.1 786.1 ± 99.9 989.6 ± 194.4
Oxypurinol 249.4 ± 77.7 1066.2 ± 227.3 488.3 ± 95.5 1108.8 ± 236.5
Phenylalanine 34.4 ± 4.7 25.5 ± 5.4 38.5 ± 3.6 30.3 ± 9.5
Succinate 46.2 ± 2,1 58.1 ± 10.7 45.8 ± 4.2 49.9 ± 7.3
Taurine 2837.1 ± 396.9 3374.8 ± 675.1 3147.5 ± 377.1 3619.7 ± 728.9
Threonine 264.6 ± 40.2 239.4 ± 58.5 291.4 ± 46.2 286.0 ± 62.9
Tyrosine 48.8 ± 6.5 38.7 ± 8.6 47.3 ± 8.5 49.7 ± 13.2
Uridine 49.4 ± 7.2 50.1 ± 12.3 48.7 ± 11.2 50.3 ± 12.7
Valine 73.5 ± 9.5 64.4 ± 13.2 62.6 ± 9.2 62.6 ± 12.6
Myo-Inositol 3604.2 ± 500.5 3660.0 ± 696.7 4312.7 ± 551.3 4252.8 ± 835.1
sn-Glycero-3-phosphocholine 81.1 ± 11.3 361.0 ± 82.6 106.8 ± 14.6 350.5 ± 68.9
3-Metylhistidine 32.7 ± 4.6 32.3 ± 4.7 36.6 ± 5.6 43.5 ± 7.6

b Difference between AC vs YC groups
c Difference between AL vs AC groups (p < 0.05; two-way ANOVA, followed by the Bonferroni post hoc analysis)
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phenylalanine, purines, phosphatidylcholine, and tyrosine in
aged rats. Perhaps this photobiomodulation-induced effect on

the aged brain might not be negative, because exacerbated
levels of these molecules are linked to phenylketonuria,

Fig. 2 Effect of photobiomodulation on cortical PCA from YC (in red; n = 8), YL (in green; n = 7), AC (in blue; n = 7) and AL (in turquoise; n = 8)
groups. Score plot (a) and loading plot (b) of the PCA by online metabolomics platform MetaboAnalyst

Fig. 3 Cortical metabolic
pathways altered by
photobiomodulation in young rats
(YC vs YL), generated by the
online metabolic platform
MetaboAnalyst
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tyrosinemia type II, and other diseases [53–56]. Furthermore,
in the brains of older patients with Alzheimer’s disease, the
metabolism of purines is deregulated, triggering oxidative

stress [57, 58]. Deregulated metabolism of purines alters sig-
naling and results in neuronal degeneration [59]. Moreover, it
is known that high metabolites involved in the purine

Fig. 4 Cortical metabolic
pathways altered by
photobiomodulation in aged rats
(AC vs AL), generated by the
online metabolic platform
MetaboAnalyst

Fig. 5 Effect of photobiomodulation on hippocampal PCA fromYC (in red; n = 7), YL (in green; n = 7), AC (in blue; n = 6), andAL (in turquoise; n = 8)
groups. Score plot (a) and loading plot (B) of the PCA by online metabolomics platform MetaboAnalyst
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metabolic pathway such as AMP contributes to an increase in
ammonia production [60] and disruption of the urea cycle
(metabolic pathways that were increased in aged animals),
triggering neurological disorders [61].

Photobiomodulation also reduced the phosphatidylcholine
biosynthesis pathway in cerebral cortex from aged rats.
During aging, phosphatidylcholine biosynthesis influences
the activity of enzymes that contribute to amyloid deposition
[62], synaptic dysfunction, cell death, and cognitive impair-
ment [63]. Supporting other potential positive effects of
photobiomodulation during aging, photobiomodulation re-
duced the metabolic pathways of aspartate, glutamate, argi-
nine, proline, alanine, glycine, serine, and glutathione. These
data are promising, since high levels of these molecules have
been related to excitotoxicity and Alzheimer’s disease. For
example, excess aspartate and glutamate causes ionic imbal-
ance, by an excessive input of sodium and calcium ions,
resulting in neuronal death [64–67]. High levels of proline
promote inhibition of Na+, K+-ATPase activity from rat hip-
pocampus [68]. Increased concentration of alanine, glycine,
and serine in specific regions of the brain has been associated
with beta amyloid deposition and neurofibrillary tangles [69].

In our study, photobiomodulation reduced elevated levels
of the cortical metabolic pathway of glutathione in aged rats.
This was surprising because we expected a photobiomodulation-
induced increase in the cortical metabolic pathway of glutathione
in aged rats, as demonstrated in studies of caloric restriction [70,
71]. Possibly these results are related to increased levels of

glutamate and glycine, metabolites responsible for glutathione
synthesis [72].

Our results showed that photobiomodulation altered the
cortical metabolic pathways of healthy young and aged rats,
whereas they showed little effects on hippocampal metabo-
lites (e.g., laser only increased the concentration of acetate and
GTP of aged rats). However, a laser-induced increase of GTP
in the aged hippocampus is important because GTP is one of
the building blocks needed for RNA synthesis and serves as a
source of energy during protein synthesis [73]. Furthermore,
beneficial photobiomodulation effects have been described in
the hippocampus of rodent models with excessive beta amy-
loid or brain injury. For example, photobiomodulation was
able to reduce the amount of beta amyloid plaques, improve
mitochondrial function, and restore inflammatory levels in the
hippocampus of transgenic mice overexpressing beta amyloid
[15] and after injection of beta amyloid directly into the hip-
pocampus of rats [74]. In addition, Xuan et al. [75, 76] noted
that photobiomodulation reduces inflammatory levels and
promotes hippocampal neurogenesis after traumatic brain in-
jury in mice. Despite these findings in lesion models, our data
showing predominantly cortical as compared to hippocampal
effects are consistent with the results of Xu et al. [77]. They
noted that when they used photobiomodulation to treat mice in
a depressionmodel, these mice exhibited a greater synthesis of
cortical ATP. However, this effect was not observed in the
hippocampus of these animals. Better consistency of the brain
regions that could be altered by photobiomodulation in

Fig. 6 Various effects of
photobiomodulation on the brain
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rodents requires a standard irradiation protocol given under
similar conditions, since the literature shows very different
protocols and conditions.

Limitations

This is the first study to investigate photobiomodulation ef-
fects onmetabolomics in vivo, so other questions remain to be
investigated. For example, this paper did not evaluate func-
tional parameters, such as cognitive functions, since our only
purpose was to investigate whether this laser treatment alters
the cortical and hippocampal metabolic profiles in young and
aged rats. Functional tests are still lacking in the literature, and
it is our next target to analyze functional tasks in future cog-
nitive studies. The use of one dose is also a limitation of this
study.We used only one dose due to the difficulty in obtaining
aged rats. This dose was used based on our previous studies
showing anti-inflammatory effects. A homogeneous trend of
metabolite change leaves the possibility of systematic analyt-
ical bias. We recognize that this bias exists, but it is inherent in
the NMR technique.

Conclusions

Taken together, our novel metabolomics data indicate that
transcranial photobiomodulation (1) increases the brain meta-
bolic pathways of young rats, particularly for cortical excit-
atory neurotransmission and oxidative metabolism, and (2)
restores the brain metabolic pathways of aged rats towards
the levels of younger rats. The present metabolic profiles im-
plicating cortical excitatory neurotransmission and oxidative
metabolism related to cytochrome-c-oxidase [12, 51, 52] can
serve to complement other photobiomodulation-induced neu-
roprotective, neuromodulatory, anti-inflammatory, and anti-
oxidant effects described in the literature [14, 15, 50, 74, 77,
78]. Figure 6 provides a “big picture” schematic summarizing
these overall benefits of transcranial photobiomodulation.
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