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Abstract
Mood-related disorders have a high prevalence among children and adolescents, posing a public health challenge, given their
adverse impact on these young populations. Treatment with the selective serotonin reuptake inhibitor fluoxetine (FLX) is the first
line of pharmacological intervention in pediatric patients suffering from affect-related illnesses. Although the use of this antide-
pressant has been deemed efficacious in the juvenile population, the enduring neurobiological consequences of adolescent FLX
exposure are not well understood. Therefore, we explored for persistent molecular adaptations, in the adult hippocampus, as a
function of adolescent FLX pretreatment. To do this, we administered FLX (20 mg/kg/day) to male C57BL/6 mice during
adolescence (postnatal day [PD] 35–49). After a 21-day washout period (PD70), whole hippocampal tissue was dissected. We
then used qPCR analysis to assess changes in the expression of genes associated with major intracellular signal transduction
pathways, including the extracellular signal-regulated kinase (ERK), the phosphatidylinositide-3-kinase (PI3K)/AKT pathway,
and the wingless (Wnt)-dishevelled-GSK3β signaling cascade. Our results show that FLX treatment results in long-term dys-
regulation of mRNA levels across numerous genes from the ERK, PI3K/AKT, and Wnt intracellular signaling pathways, along
with increases of the transcription factors CREB, ΔFosB, and Zif268. Lastly, FLX treatment resulted in persistent increases of
transcripts associated with cytoskeletal integrity (β-actin) and caspase activation (DIABLO), while decreasing genes associated
with metabolism (fucose kinase) and overall neuronal activation (c-Fos). Collectively, these data indicate that adolescent FLX
exposure mediates persistent alterations in hippocampal gene expression in adulthood, thus questioning the safety of early-life
exposure to this antidepressant medication.
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Introduction

Depression and anxiety disorders are major health problems
worldwide, given their association with significant disability
and mortality, as well as reduced quality of life [1, 2]. The
occurrence of mood-related illnesses is highly prevalent in
younger populations, with an incidence of depressive disor-
ders increasing from 1% in childhood up to 8% in adoles-
cence, and anxiety disorders affecting up to 20% of the pedi-
atric population [3, 4]. To make matters worse, if left untreat-
ed, these neuropathologies increase the risk of substance
abuse, suicide attempts, impaired social function, and the

development of comorbid neuropsychiatric conditions in
adulthood [5–8].

Despite the high incidence and negative health impact of
mood-related disorders in the pediatric population, pharmaco-
logical treatment options are severely limited [3, 9].
Fluoxetine (FLX), a selective serotonin reuptake inhibitor
(SSRI), is widely prescribed for the management of both de-
pression and anxiety and is approved by the Food and Drug
Administration for use in children and adolescents [10, 11].
However, the prescription of SSRIs, particularly FLX, in
young patients remains controversial, as several studies have
demonstrated limited efficacy, as well as age-related differ-
ences in treatment response [12–14]. Furthermore, because
brain development continues into adolescence [15], exposure
to psychotropic medications during this sensitive period may
have enduring consequences [16–18]. Indeed, accumulating
evidence from animal studies indicate that exposure to FLX
results in adverse neurobehavioral effects that persist into later
adulthood, including memory impairment [19, 20], altered
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drug-seeking behavior [21, 22], and blunted reactivity to in-
escapable stress [23–26].

SSRIs block the uptake activity of the serotonin transport-
er, indirectly increasing global levels of serotonin, an effect
that occurs rather quickly [27, 14]. However, therapeutic re-
sponse to SSRI treatment in patients usually takes weeks,
indicating that intracellular signaling molecules downstream
of serotonergic receptors underlie this delayed effect [28].
Preclinical evidence in adult normal subjects indicate that
brain-derived neurotrophic factor (BDNF), and several of its
intracellular targets such as the mitogen-activated protein ki-
nase (MAPK) extracellular signal-regulated protein kinase
(ERK)-1/2, phosphoinositide-3 kinase (PI3K)-protein kinase
b (AKT) signaling molecules, and members of the wingless
(Wnt) and phospholipase c gamma (PLCγ1) cascades, play a
role in mediating the therapeutic effects of SSRIs [29–32].
Nevertheless, there is a dearth of research addressing the status
of intracellular signaling pathways as a function of early-life
FLX exposure in adulthood. In order to address this knowl-
edge gap, we aimed to examine the potential long-lived mo-
lecular impact of adolescent FLX exposure on hippocampal
gene expression in adulthood, using C57BL/6 male mice as a
model system. To accomplish this, we evaluated the expres-
sion of genes from major intracellular signaling pathways,
namely the ERK1/2, PI3K-AKT, and Wnt cascades, as well
as additional molecular players with diverse cellular functions
within the hippocampus, a brain region that has been impli-
cated in the etiology of affect-related illnesses [33, 34, 26], the
expression of drug-seeking behavior [35, 36], as well as in
mediating the therapeutic actions of SSRIs [37, 38].

Materials and Methods

Animals

Postnatal day (PD)-28 male C57BL/6 mice were obtained
from Charles River Laboratories (Hollister, CA). Mice were
maintained in an animal facility under controlled humidity and
temperature conditions (21–23 °C). Mice were housed in clear
polypropylene boxes (3–4 per cage) containing wood shaving
bedding, maintained on a 12:12-h cycle (lights on at 700-h)
and were provided with water and food ad libitum.
Experiments were conducted following the National
Institutes of Health Guide for the Care and Use of
Laboratory Animals [39] and with approval of the
Institutional Animal Care and Use Committee at The
University of Texas at El Paso.

Drug Treatment and Experimental Design

Fluoxetine hydrochloride (FLX) was purchased from
Spectrum Chemicals (Gardena, CA), dissolved in distilled

sterile water (vehicle; VEH), and was injected intraperitone-
ally using a volume of 2 ml/kg. A total of 24 male C57BL/6
mice were randomly assigned to receive VEH or FLX treat-
ment (n = 12 per group). Specifically, mice were injected
with VEH or FLX (20 mg/kg/day) for 15 consecutive days
during PD35-49. Animals were then allowed a 21-day pe-
riod without drug administration and were subsequently
euthanized once they reached adulthood on PD70. The se-
lected timeframe of FLX administration (PD35–49) was
chosen because it closely resembles the human adolescent
period [40, 41], while the FLX dose (20 mg/kg/day) was
selected due to its well-established antidepressant-like re-
sponse in animal models for the study of depression [42, 23,
43, 44, 20]. A timeline of the experimental design is pro-
vided in Fig. 1.

Quantitative Real-Time Reverse Transcription
Polymerase Chain Reaction

The whole hippocampus was microdissected on dry ice and
stored at -80 °C until assayed [45]. RNA isolation was car-
ried out with RNEasy Micro kits according to the manufac-
turer’s instructions (Qiagen; Austin, TX). RNA was then
reverse transcribed into cDNA, using the iScript cDNA
synthesis kit (Bio-Rad; Hercules, CA). Quantitative real-
time reverse transcription polymerase chain reaction
(qPCR) was then conducted using a commercially available
kit (RealMasterMix, Eppendorf; Westbury, NY), running
duplicate samples from each animal. Cycle threshold (Ct)
values were determined and changes in gene expression
were analyzed by the ΔΔCt method [46], using glyceral-
dehyde 3-phosphate dehydrogenase (GAPDH) as house-
keeping reference. The primer sequences for the analyzed
genes are displayed in Table 1.

Data Analysis

Experimental animals were randomly assigned to receive
VEH or FLX during adolescence. Data were analyzed using
two-tail Student’s t tests. Data are presented as ± SEM, and
statistical significance was defined as p < 0.05. Graphs were
generated using the GraphPad Prism version 8 software (San
Diego, CA).

Results

Adolescent FLX Exposure Increases Gene Expression
of the MAPK Pathway in the Adult Hippocampus

Figure 2 displays the effects of juvenile FLX exposure (PD35-
49) on the expression of multiple genes within the MAPK
signaling pathway in adulthood (PD70). When compared to
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Table 1 Primer sequences
Gene Forward primer Reverse primer

AKT1 5′-ATGAACGACGTAGCCATTGTG-3′ 5′-TTGTAGCCAATAAAGGTGCCAT-3′

BAD 5′-AAGTCCGATCCCGGAATCC-3′ 5′-GCTCACTCGGCTCAAACTCT-3′

BDNF 5′-GAAGAGCTGCTGGATGAGGAC-3′ 5′-TTCAGTTGGCCTTTTGATACC-3′

β-actin 5′-AGTGTGACGTTGACATCCGTA-3′ 5′-GCCAGAGCAGTAATCTCCTTCT-3′

β-catenin 5′-ATGGAGCCGGACAGAAAAGC-3′ 5′-CTTGCCACTAGGGAAGGA-3′

CaMKIIα 5′-GTTCTCCGTTTGCACTAGG-3′ 5′-TTCCCAGTTCCTCAAAGAGC-3′

c-Fos 5′-AACCGCATGGAGTGTGTTGTTCC-3′ 5′-TCAGACCACCTCGACAATGCATGA-3′

CREB 5′-AGTGACTGAGGAGCTTGTACCA-3′ 5′-TGTGGCTGGGCTGAAC-3′

DIABLO 5′-TCCTGTACCTGTGACTTCACC-3′ 5′-TCCTGTACCTGTGACTTCACC-3′

DVL1 5′-GGCGGAGACCAAAATCATC-3′ 5′-GGACTTGAAGAAGAATTTGT
AGGC-3′

DVL2 5′-GGCGGAGACCAAAATCATC-3′ 5′-GGACTTGAAGAAGAATTTGT
AGGC-3′

DVL3 5′-GCGAGACCAAGATCATCTACC-3′ 5′-TCGTCGTCCATAGACTTGAAGA-3′

ERK1 5′-TCCGCCATGAGAATGTTATA
GGC-3′

5′-GGTGGTGTTGATAAGCAGATTGG-3′

ERK2 5′-GGTTGTTCCCAAATGCTGACT-3′ 5′-CAACTTCAATCCTCTTGTGAGGG-3′

ΔFosB 5′-AGGCAGAGCTGGAGTCGGAGAT-3′ 5′-GCCGAGGACTTGAACTTCACTCG-3′

FUK 5′-CTGGAGGTAAGGCAGAGACG-3′ 5′-TGTGCAAGATGAGGATCCAG-3′

GAPDH 5′-AGGTCGGTGTGAACGGATTTG-3′ 5′-GTAGACCATGTAGTTGAGGTCA-3′

GSK3β-1 5′-GACAAGCATTTAAGAACCGAGA-3′ 5′-ACCAGGTAAGGTAGACCTACATC-3′

IRS2 5′-CTGCGTCCTCTCCCAAAGTG-3′ 5′-GGGGTCATGGGCATGTAGC-3′

MEK1 5′-AAGGTGGGGGAACTGAAGGAT-3′ 5′-CGGATTGCGGGTTTGATCTC-3′

MEK2 5′-GTTACCGGCACTCACTATCAAC-3′ 5′-CCTCCAGCCGCTTCCTTTG-3′

PDK 5′-TCCTGGACTTCGGAAGGGATA-3′ 5′-GAAGGGCGGTTCAACAAGTTA-3′

PI3K 5′-ACACCACGGTTTGGACTATGG-3′ 5′-GGCTACAGTAGTGGGCTTGG-3′

PLCγ1 5′-ATCCAGCAGTCCTAGAGCCTG-3′ 5′-GGATGGCGATCTGACAAGC-3′

p90RSK 5′-CCATCACACACCACGTCAAG-3′ 5′-TTGCGTACCAGGAAGACTTTG-3′

SHH 5′-AAAGCTGACCCCTTTAGCCTA-3′ 5′-TTCGGAGTTTCTTGTGATCTTCC-3′

Wnt1 5′-CTCGCCACTCATTGTCTGTG-3′ 5′-TTCCCAGGCTGGCTCTAATA-3′

Wnt5a 5′-CAACTGGCAGGACTTTCTCAA-3′ 5′-CATCTCCGATGCCGGACT-3′

Zif268 5′-TCGGCTCCTTTCCTCACTCA-3′ 5′-CTCATAGGGTTGTTCGCTCGG-3′

AKT1, thymoma viral proto-oncogene 1/protein kinase b; BAD, Bcl2-associated agonist of cell death; BDNF,
brain-derived neurotrophic factor; β-actin, beta-actin; β-catenin, beta-catenin; CaMKIIα, calcium-/calmodulin-
dependent protein kinase 2 alpha; c-Fos, FBJ Murine Osteosarcoma Viral Oncogene Homolog; CREB, cAMP
response element-binding protein;DIABLO, direct IAP binding protein with low pI;DVL1, dishevelled-1;DVL2,
dishevelled-2; DVL3, dishevelled-3; ERK1, extracellular signal-regulated kinase 1; ERK2, extracellular signal-
regulated kinase 2; ΔFosB, DeltaFosB; FUK, fucose kinase; GAPDH, glyceraldehyde 3-phosphate dehydroge-
nase; GSK3β1, glycogen synthase kinase3 beta 1; IRS2, insulin receptor substrate 2; MEK1, mitogen-activated
protein kinase kinase 1;MEK2, mitogen-activated protein kinase kinase 2; PDK, pyruvate dehydrogenase kinase;
PI3K, phosphoinositide-3 kinase; PLCγ1, phospholipase C, gamma 1; p90RSK, MAPK-activated protein kinase
2; SHH, sonic hedgehog; Wnt1, wingless-type MMTV integration site family, member 1; Wnt5a, wingless-type
MMTV integration site family, member 5A; Zif268, zing finger protein 268

Fluoxetine
(0 or 20 mg/kg/day) Rest Period Tissue Collection / qPCR

PD35-49 PD50-69 PD70

Adolescence Adulthood
Fig. 1 Timeline of experimental procedures. Adolescent male C57BL/6
mice (N = 24; 12/group) were exposed to fluoxetine (0 or 20 mg/kg/day)
for 15 consecutive days (postnatal day [PD] 35–49). Twenty-one days

later (rest period), animals were euthanized (PD70) and hippocampal
tissue was collected for qPCR (quantitative real-time reverse transcription
polymerase chain reaction) analysis
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VEH-pretreated controls (n = 12), adult mice pretreated with
FLX during adolescence (n = 12) displayed increases in
MEK1 (t22 = 3.60, p < 0.05; Fig. 2b), MEK2 (t22 = 6.48, p <
0.05; Fig. 2c), ERK1 (p = 0.06; Fig. 2d), ERK2 (t22 = 5.40, p <
0.05; Fig. 2e), and p90RSK (t22 = 6.11, p < 0.05; Fig. 2f).
However, no differences in BDNF (p > 0.05; Fig. 2a) mRNA
were noted between FLX and VEH-pretreated mice.

Adolescent FLX Exposure Increases Gene Expression
of Transcription Factors in the Adult Hippocampus

Figure 3 shows the effects of juvenile FLX treatment (PD35-
49) on adult hippocampal expression (PD70) of transcription
factors, on which several signaling pathways are known to
converge. When compared to VEH-pretreated controls (n =
12), adult mice pretreated with FLX during adolescence (n =
12) displayed significant increases in CREB (t22 = 6.40, p <
0.05; Fig. 3a), Zif268 (t22 = 5.14, p < 0.05; Fig. 3b), and
ΔFosB (t22 = 3.16, p < 0.05; Fig. 3c).

Adolescent FLX Exposure Increases Gene Expression
of the IRS2/PI3K/AKT Pathway in the Adult
Hippocampus

Figure 4 shows the effects of adolescent FLX treatment (PD35-
49) on hippocampal expression of genes from the IRS2/PI3K/
AKT pathway in adult male mice (PD70). We found that when
compared to VEH-pretreated controls (n = 12), adult mice
pretreated with FLX during adolescence (n = 12) displayed
significant increases in IRS2 (t22 = 4.18, p < 0.05; Fig. 4a),
PI3K (t22 = 2.48, p < 0.05; Fig. 4b), PDK (t22 = 3.62, p <
0.05; Fig. 4c), AKT1 (t22 = 4.25, p < 0.05; Fig. 4d), and
GSK3β-1 (t22 = 2.75, p < 0.05; Fig. 4e).

Adolescent FLX Exposure Alters Genes from the Wnt
Signaling Pathway in the Adult Hippocampus

Figure 5 displays the effects of juvenile FLX treatment
(PD35-49) on hippocampal expression of genes within the
Wnt signaling pathway in adulthood (PD70). When compared
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Fig. 2 Effects of adolescent
fluoxetine (FLX) exposure on the
expression of hippocampal genes
from the intracellular MAPK sig-
naling pathway in adulthood.
FLX exposure resulted in in-
creased hippocampal expression
of MEK1 (b), MEK2 (c), ERK1
(d), ERK2 (e), and p90RSK (f),
but did not alter BDNF (a)
mRNA levels, in adult mice. Data
are presented as mean ± SEM. *p
< 0.05, ψp = 0.06 when compared
with control (VEH)
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a b cFig. 3 Effects of adolescent
fluoxetine (FLX) exposure on the
expression of hippocampal tran-
scription factors in adulthood.
FLX pretreatment induced signif-
icant increases in hippocampal
expression of CREB (a), Zif268
(b), and ΔFosB (c). Data are pre-
sented as mean ± SEM. *p < 0.05
when compared to control (VEH)
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Fig. 5 Effects of adolescent
fluoxetine (FLX) treatment on the
expression of hippocampal genes
from the Wnt pathway in adult-
hood. Adolescent FLX pretreat-
ment downregulated Wnt1 (a),
while increasing DVL2 (d), β-
catenin (f), PLCγ1 (g), and
CaMKIIα (h). No changes in
Wnt5a (b), DVL1 (c), or DVL3
(e) were noted between the
groups. Data are presented as
mean ± SEM. *p < 0.05, when
compared with control (VEH)
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Fig. 4 Effects of adolescent
fluoxetine (FLX) treatment on the
expression of hippocampal genes
from the IRS2/PI3K/AKT path-
way in adulthood. Adolescent
FLX pretreatment mediated sig-
nificant increases in hippocampal
mRNA levels of IRS2 (a), PI3K
(b), PDK (c), AKT1 (d), and
GSK3β-1 (e). Data are presented
as mean ± SEM. *p < 0.05 when
compared to control (VEH)
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to VEH-pretreated controls (n = 12), adult mice pretreated
with FLX during adolescence (n = 12) displayed significant
decreases in Wnt1 (t22 = 3.63, p < 0.05; Fig. 5a), without
changes in Wnt5a (p > 0.05; Fig. 5b). Conversely, adolescent
FLX pretreatment increased mRNA levels of DVL2 (t22 =
5.56, p < 0.05; Fig. 5d), but not DVL1 (p > 0.05; Fig. 5c) or
DVL3 (p > 0.05; Fig. 5e). Likewise, adolescent FLX history
increased the expression of β-catenin (t22 = 6.73, p < 0.05;
Fig. 5f), PLCγ1 (t22 = 4.71, p < 0.05; Fig. 5g), and CaMKIIα
(t22 = 2.33, p < 0.05; Fig. 5h) in the hippocampus of adult
mice.

Adolescent FLX Exposure Alters the Expression of
Hippocampal Genes with Diverse Cellular Functions in
Adulthood

Figure 6 displays the effects of adolescent FLX treatment
(PD35-49) on the expression of hippocampal genes with var-
ious intracellular functions in adulthood (PD70). Here, when
compared to VEH-pretreated controls (n = 12), adult animals
pretreated with FLX during adolescence (n = 12) displayed
increased gene expression of DIABLO (t22 = 2.35, p < 0.05;
Fig. 6a) andβ-actin (t22 = 4.69, p < 0.05; Fig. 6b). Conversely,
adolescent FLX history significantly decreased expression of
fucose kinase (FUK, t22 = 2.35, p < 0.05; Fig. 6c) and the
immediate early-gene c-Fos (t22 = 3.38, p < 0.05; Fig. 6d),
without affecting mRNA levels of either BAD (p > 0.05;
Fig. 6e) or sonic hedgehog (SHH, p > 0.05; Fig. 6f).

Discussion

Accumulating preclinical evidence suggests that juvenile
exposure to FLX leads to complex behavioral side ef-
fects in adulthood, wherein rodents display attenuated
responses to inescapable stress [24–26] along with en-
hanced drug-seeking behavior [21], among other pheno-
types [17]. Collectively, these enduring FLX-induced
alterations suggest that ontogenic exposure to SSRIs
may render the organism in need of subsequent antide-
pressant re-exposure in later life to normalize behavior
[25, 23]. Thus, the goal of the present study was to
explore the persistent molecular alterations that may re-
sult as a function of adolescent SSRI exposure in the
adult hippocampus, given that this brain region modu-
lates responses to stress and reward-seeking behavior
[47, 38]. Specifically, we evaluated whether FLX ad-
ministration during adolescence exerts long-term chang-
es in adult hippocampal expression of genes belonging
to several major intracellular signaling pathways in-
volved in neuronal growth and survival, including the
ERK1/2, IRS2/PI3K/AKT, and Wnt cascades, as well as
genes with varied cellular functions, including modula-
tion of calcium signaling (Ca++/calmodulin-dependent
protein kinase II [CamKIIα]), mitochondrial homeostasis
(direct IAP binding protein with low pI [DIABLO] and
Bcl2-associated agonist of cell death [BAD]), metabo-
lism (fucose kinase [FUK]), neuronal survival (sonic
hedgehog [SHH]), and cytoskeletal assembly (β-actin).

VEH FLX
0.0

0.5

1.0

1.5

2.0

Fo
ld

 C
ha

ng
e

(N
or

m
al

iz
ed

 to
 G

AP
D

H
)

DIABLO

*

VEH FLX
0.0

0.5

1.0

1.5

2.0

Fo
ld

 C
ha

ng
e

(N
or

m
al

iz
ed

 to
 G

AP
D

H
)

FUK

*

VEH FLX
0.0

0.5

1.0

1.5

2.0

Fo
ld

 C
ha

ng
e

(N
or

m
al

iz
ed

 to
 G

AP
D

H
)

BAD

VEH FLX
0.0

0.5

1.0

1.5

2.0

Fo
ld

 C
ha

ng
e

(N
or

m
al

iz
ed

 to
 G

AP
D

H
)

SHH

a b c

d

VEH FLX
0.0

2.0

4.0

6.0

Fo
ld

 C
ha

ng
e

(N
or

m
al

iz
ed

 to
 G

AP
D

H
)

-actin

*

e

VEH FLX
0.0

0.5

1.0

1.5

2.0

Fo
ld

 C
ha

ng
e

(N
or

m
al

iz
ed

 to
 G

AP
D

H
)

c-Fos

*

f

Fig. 6 Effects of adolescent
fluoxetine (FLX) treatment on the
expression of hippocampal genes
with diverse cellular functions in
adulthood. Adolescent FLX
treatment increased DIABLO (a)
and β-actin (b), while decreasing
FUK (c) and c-Fos (d) expression,
without altering BAD (e) or Sonic
hedgehog (SHH) (f). Data are
presented as mean ± SEM. *p <
0.05, when compared with con-
trol (VEH)
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Adolescent FLX Exposure Increases MAPK-Related
Gene Expression in the Adult Hippocampus

BDNF is a central component of several intracellular signaling
cascades, given its ability to initiate signal transduction of
different pathways, including those mediated by MAPK,
AKT, and Wnt-disheveled (DVL)-phospholipase C gamma
(PLCγ1) signaling [31]. Previous studies have established
BDNF as a key molecule in mood-related pathologies, and
thus, signaling pathways modulated by this neurotrophic fac-
tor can be influenced by the actions of antidepressant drugs,
including SSRIs [48, 49]. Acute FLX has been shown to alter
both gene expression and the phosphorylation of BDNF pro-
tein across different brain regions (including the ventral teg-
mental area (VTA), hippocampus, and prefrontal cortex [16,
50, 51]), and early-life FLX exposure induces long-term in-
creases in the expression of hippocampal BDNF transcripts
and its main receptor TrkB [25]. Thus, we evaluated BDNF
mRNA levels within the adult hippocampus as a function of
adolescent FLX exposure. Surprisingly, we did not find
changes in hippocampal BDNF mRNA in this investigation
(Fig. 2a)—likely due to the differences in the age window of
FLX pre-exposure (prepubertal [PD4-21] vs. adolescence
[PD35-49]) as well as the promoter specificity of BDNF
assessed between the studies. Yet, we found an overall upreg-
ulation in mRNA levels of the downstream MAPK signaling
pathway (MEK1/2-ERK1/2-p90RSK) 21-days post-FLX ex-
posure (Fig. 2b–f). This is an intriguing finding that now brid-
ges hippocampal neurobiological alterations with the persis-
tent FLX-dependent behavioral effects previously reported
[52]. For example, adult male mice pre-exposed with FLX
during adolescence display enhanced preference for reward-
ing substances like sucrose [23] and cocaine [21], mimicking
the functional role of hippocampal ERK signaling that is ob-
served in adult animals displaying drug-seeking behavior
[53]. Further supporting the relationship between ERK and
facilitated reward, we found persistent FLX-induced eleva-
tions of CREB,ΔFosB, and Zif268 (Fig. 3a–c), transcription
factors that have been associated with cocaine-seeking behav-
ior [54, 53, 55]. Interestingly, while psychological and/or
physical stress precipitates drug preference [18, 56, 57], in a
paradoxical manner, juvenile FLX history leads to persistent
decreases in responsivity to inescapable stress challenges—
since FLX pretreated rodents do not exhibit the characteristic
social avoidance induced by repeated social defeat stress [24]
or enhanced immobility on the forced swim test [25, 23].
Thus, the enduring FLX-induced increases of hippocampal
MAPK signaling (Fig. 2), and its downstream transcription
factors (Fig. 3), capture both the facilitated drug-seeking phe-
notype and the resilient-like properties that these molecules
induce in adult animals under normosensitive conditions
[58, 38]. Yet, here, we report for the first time that juvenile
SSRI pre-exposure leads to hippocampal MAPK upregulation

in adulthood, a critical finding that provides a potential mo-
lecular mechanism for the behavioral alterations observed as a
function of adolescent FLX history. Interestingly, previous
work shows decreases in ERK signaling within the VTA of
the midbrain in adult male rodents pre-exposed to FLX
during adolescence [24]. Along with this earlier study, we
now show that juvenile antidepressant exposure changes
MAPK signaling differentially across different brain re-
gions in adulthood; with adolescent FLX exposure
resulting in long-term decreases of ERK in the VTA, while
increasing it in the hippocampus (Fig. 2)—an important
finding that uncovers long-term molecular circuit-based al-
terations between reward-related regions (i.e., VTA) and
the hippocampal formation.

Adolescent FLX Exposure Alters AKT- andWnt-Related
Hippocampal Gene Expression in Adulthood

Because insulin receptor substrate (IRS)-2 modulates synaptic
plasticity within the hippocampus [59], as well as responses to
antidepressant medications and drugs of abuse [60–62], we
further evaluated the enduring impact of adolescent FLX on
IRS2 and its downstream signaling components, including
PI3K, PDK, AKT, and glycogen synthase 3 beta-1 (GSK3β-
1). Here, adolescent FLX history increased the mRNA
levels of these genes in the adult hippocampus (Fig. 4).
This prolonged FLX-induced upregulation of the AKT
signaling cascade is consistent with previous work dem-
onstrating that adult male rodents pre-exposed to FLX
during adolescence display long-lasting prophylactic phe-
notypes [23]. In other words, the persistent increases in
AKT signaling, as a function of FLX history, mediate
resilient-like behavioral responses on preclinical tests of
despair, as well as in postmortem tissue of depressed
patients that were taking antidepressants at the time of
death [63]. Likewise, we evaluated molecular markers
related to the Wnt pathway, given that deregulation of
this signaling cascade has been proposed to underlie as-
pects of major depression and antidepressant efficacy
[64], as well as responses to cocaine [65]. Here, adoles-
cent FLX pre-exposure decreased Wnt1, but not Wnt5a
(Fig. 5A-B) hippocampal mRNA levels in adulthood.
Conversely, we found that adolescent FLX pretreatment
resulted in a persistent upregulation of several down-
stream components of the Wnt canonical (β-catenin;
Fig. 5f) and noncanonical (PLCγ1 and CaMKIIα; Fig.
5g–h) pathways. Specifically, FLX exposure resulted in
a lasting increase of DVL2 (but not DVL1 or DVL3; Fig.
5c–e), β-catenin (Fig. 5f), PLCγ1 (Fig. 5g), and
CaMKIIα (Fig. 5h). Of note, PLCγ1 and CaMKIIα are
both signaling markers that crosstalk with the protein
kinase C (PKC) cascade, and thus, it is likely that FLX
history de-regulates additional signaling pathways
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involved in plasticity, cell migration, and neurogenesis
[66].

Adolescent FLX Exposure Alters Hippocampal
Transcripts Associated with Neuronal
Function/Structure in Adulthood

One of the interesting things about FLX is that it increases
plasticity/neurogenesis markers within the hippocampus,
along with decreases in immobility on the forced swim test,
3 weeks post antidepressant exposure [26]—thus, matching
the persistent resilient-like profile previously reported in
adult male mice and rats with juvenile FLX history [25,
23, 24]. Because the integrity of the hippocampus plays a
central role in affect-related disorders [33], we further eval-
uated whether SSRI history would result in long-term
changes of hippocampal genes associated with neuronal
growth (SHH [67]), apoptosis (DIABLO, BAD [68]), cyto-
skeletal assembly (β-actin [69]), metabolism (FUK [70,

71]), and overall neuronal activation (c-Fos [72]). While
no differences in SHH or BAD were noted between the
groups, we found a persistent increase in DIABLO and β-
actin, along with decreases in FUK and c-Fos mRNA ex-
pression (Fig. 6). These lasting FLX-induced transcription-
al changes mimic those induced by stress/injury insults,
wherein rodents display increases in β-actin [73] and the
release of proapoptotic mitochondrial intermembrane space
proteins, like DIABLO [74]. Moreover, stress/injury insults
impair memory performance, and since FUK activity [71]
and c-Fos expression [75] are positively correlated with
hippocampus-dependent memory performance, the long-
term FLX-induced downregulation of FUK and c-Fos, re-
spectively, potentially contributes to the spatial memory
impairment observed in adult male mice with a history of
FLX exposure during adolescence [20]. Collectively, these
findings suggest that aberrant transcription of DIABLO,
FUK, c-Fos, β-actin, and multiple intracellular pathways
(i.e., ERK, AKT, Wnt) caused by adolescent FLX exposure

Fig. 7 Schematic representation of the long-lived impact of adolescent
fluoxetine exposure on hippocampal mRNA expression in adulthood.
Exposure to fluoxetine during adolescence (postnatal days 35–49) altered
genes associated with major intracellular signaling cascades (AKT/ERK/
Wnt), transcription factors (ΔFosB, Zif268, CREB), apoptosis

(DIABLO), metabolism (FUK), and neuronal structure (β-actin) and ac-
tivation (c-Fos) in adulthood (postnatal day 70). Positive sign, significant-
ly higher when compared to controls; negative sign, significantly lower
when compared to controls
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may lead to altered neuronal plasticity/survival, and overall
activation of the adult hippocampus [76, 77], resulting in an
imbalance of information processing within brain circuits
that modulate responses to rewards, memory performance,
and stress (Fig. 7). Although correlational, these data may
provide a molecular signature underlying the complex be-
havioral profile exhibited by adult rodents previously ex-
posed to FLX during adolescence [23, 52, 21].

Limitations

A limitation of the present work is the exclusion of female
rodents in our experimental design, consequently reducing the
interpretability of our data to the clinical setting—wherein
women, when compared tomen, represent most of the patients
prescribed with FLX for the management of numerous
illnesses including depression, eating disorders, anxiety,
pain, and pre-menstrual dysphoric disorder [78]. As such,
future investigations using female rodents will be needed
to assess whether similar or different patterns of hippo-
campal gene alterations, when compared to the present
results in males, are expressed in adulthood as a function
of FLX pretreatment. Particularly, because juvenile FLX
history results in differential behavioral responses in
adulthood to reward-related stimuli between the sexes—
wherein males display enhanced preference for drug re-
wards like cocaine [21] while females display a decrease
in preference for the stimulant [22]. Another caveat is
that the animals utilized in this investigation were not
exposed to stress, a known risk factor for the develop-
ment of affective disorders. As such, future work is need-
ed where adolescent mice undergo similar FLX treatment
along with stress models for the study of mood-related
illnesses [79–81]. Lastly, given that we only evaluated
mRNA expression in this study, additional experiments
are needed to specifically assess whether the gene expres-
sion findings translate to respective changes in hippocam-
pal protein levels.

Conclusion

We report that juvenile FLX exposure results in persistent
gene expression changes across several intracellular signaling
cascades (ERK, AKT, Wnt) that are implicated in growth,
plasticity, and the survival of neurons in the adult hippocam-
pus of male C57BL/6 mice (Fig. 7). These long-term FLX-
induced transcript changes provide a molecular link to the
complex behavioral phenotypes that result from early-life
SSRI exposure, such as enhanced drug-seeking behavior
[21] along with blunted responses to inescapable stress [24]
and memory deficits [20]. Importantly, this work provides
novel insight about the persistent hippocampal molecular con-
sequences of adolescent exposure to the antidepressant FLX

on adult behavior—thus, questioning the safety of SSRI ex-
posure during the early stages of development.
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