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Abstract

Recent genetic studies clearly indicate that variants in several lysosomal genes act as risk factors for idiopathic Parkinson’s
disease (PD). Variants in the co-activator of glucocerebrosidase gene (GBA) and the four active saposins (Sap A-D) which are
encoded by the prosaposin gene (PSAP) are of particular interest; however, their genetic roles in PD are unknown. Whole-exome
sequencing and Sanger sequencing were used to assess the genetic etiology of 400 autosomal dominant inherited PD (ADPD)
and 300 sporadic PD (SPD) patients. Variants from public databases, including Genome Aggregation Database-East Asian
(GnomAD_EAS) and Chinese Millionome Database (CMDB), were used as control groups. Burden analysis based on gene
and domains level were performed to investigate the role of rare PSAP variants in PD. Six rare and likely pathogenic variants,
located in the Sap A-D domains, were identified and accounted for 0.75% (3/400) of ADPD and 1.33% (4/300) of SPD in the
Chinese population. Based on the gene or domain, burden analysis showed that damaging missense variants in SapC had
statistical significance on the risk of developing PD. Interestingly, rs4747203, an intronic variant potentially linked to PSAP
expression, was associated with reduced risk for PD (p = 8.6e—7 in GnomAD EAS and p = 0.002 in Chinese). Clinically, patients
carrying the likely pathogenic variants presented typical PD motor symptoms and responded well to levodopa treatment. Six out
of seven patients carrying the likely pathogenic variants of PSAP presented slow disease progression, and none of the patients
developed cognitive impairment. Our study expands the spectrum of mutations associated with the risk of developing PD and
enhances the understanding of the relationship of the clinical phenotype of PD with PSAP variants.
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Introduction

Parkinson’s disease (PD) is the second most common neuro-
degenerative disease and the most prevalent movement disor-
der. The loss of dopaminergic neurons within the substantia
nigra and consequent formation of intracellular o-synuclein
(oe-syn)-immunopositive inclusions are the hallmarks of PD
[1]. To date, genetic, environmental, and aging factors have
been found to contribute to its etiology; however, the exact
neurodegenerative mechanisms are largely unknown.

Accumulating evidence indicates the important role of lyso-
somal activity in PD susceptibility and pathogenicity [2—4].
The first study to support this reported a higher rate of progres-
sively developing parkinsonian features in relatives of patients
with Gaucher disease, an autosomal recessive lysosomal stor-
age disorder [5, 6]. These observations were further confirmed
by genetic studies which showed that heterozygous mutations
in the glucocerebrosidase gene (GBA), which codes for a lyso-
somal enzyme, are the most prevalent genetic risk factors relat-
ed to PD (5-20 increased risk) [7]. At the genetic and biochem-
ical levels, a clear association was identified between variants
of several lysosomal genes and an increased risk of developing
PD [3]. Coupled with mechanistic studies that linked «-
synuclein (x-syn) toxicity to lysosomal abnormalities, it is be-
lieved that a dysfunction of lysosomes probably plays an im-
portant role in PD [4].

Prosaposin, encoded by the PSAP gene, is a 524-amino
acid protein containing 16 residue signal peptides and four
saposin (Sap) domains. These domains further degrade into
four active saposins, A-D. SapA and SapC bind to lysosomal
hydrolase, and SapC is one of the important co-activators for
GBA [8, 9], which degrades glucocerebrosides to glucose and
ceramide. Importantly, SapC protects glucocerebrosidase
(GCase) from «-syn inhibition and competes with oc-syn bind-
ing [10]. SapB and SapD interact with sphingomyelinase and
function as activators that solubilize sphingomyelin for hydro-
lysis [11]. As reported in a recent study [12], reduced acid-
sphingomyelinase activity caused by variants in SMPD]
(which encodes for acid-sphingomyelinase) may lead to «-
synuclein accumulation and is associated with PD. This sug-
gests that disrupted binding of SapA-D to their related lyso-
somal hydrolases or a decrease in their expressions, which
may underlie reduced hydrolase activity, increases the risk
of developing PD.

Interestingly, genetic studies have identified the potential
pathogenic role of variants of specific PSAP domains in PD.
Studies involving Caucasian patients identified 4 out of a total
of 2,290 patients with PD (0.2%) versus 0 out of 2,838 con-
trols (0%) with rare variants in SapC, which is critical for
glucocerebrosidase activation [3, 13]. Recently, three patho-
genic variants in SapD were found in three unrelated pedi-
grees from the 230 autosomal dominant inheritance PD
(ADPD) patients analyzed [14]. Further studies have also
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reported that variants in SapD impaired autophagic flux, al-
tered its intracellular localization, caused o-syn aggregation in
skin fibroblasts, and induced pluripotent stem cell (IPSC)—
derived dopaminergic neurons from patients [14].

However, some limitations of these studies should be con-
sidered. For example, Robak et al. [3] analyzed the role of rare
variants in whole PSAP but did not perform a gene-based
burden analysis for the significant enrichment of rare variants
of PSAP on PD risk. Ouled Amar Bencheikh et al. [13] limited
their focus to the role of SapC, and Yutaka et al. [14] investi-
gated rare variants in SapD, but no exonic variants in SapD
were identified in a total of 1145 subjects with sporadic PD
(SPD). In addition, the clinical spectrum of patients with rare
variants of PSAP has not been described in detail in previous
studies [3, 13, 14]. These findings cast an uncertainty on the
role of PSAP in PD; therefore, it is necessary to investigate the
role of PSAP in PD comprehensively. In the current study, we
explored the rare variant frequencies of PSAP, the collective
burden caused by these rare variants on PD risk, and the clin-
ical spectrum of patients with rare PSAP variants.

Materials and Methods
Subjects

A total of 400 patients with ADPD and 300 patients with SPD
were admitted to the Department of Neurology of the West
China Hospital from December 2010 to June 2018 and were
recruited for this study. They were diagnosed based on the
United Kingdom PD Society Brain Bank Clinical Diagnostic
Criteria [15] or the 2015 Movement Disorder Society clinical
diagnostic criteria for PD, by experienced neurologists [16].
Patients with at least two consecutive generations of PD in
their families were classified as ADPD patients [17].
Demographic data (including age, sex, education level, past
history) and clinical data (including age of onset, disease dura-
tion, initial medication) of all the participants were collected.
Unified Parkinson’s Disease Rating Scale part III and Hoehn
and Yahr stage criteria were used to evaluate motor symptom
severity. Cognitive function was also evaluated using the
Montreal Cognitive Assessment and frontal assessment battery.
The study was approved by the ethics committee of West China
Hospital, Sichuan University, and all participants of the study
completed an informed consent form prior to participation.

DNA Preparation and Genetic Analysis

Genomic DNA was collected from peripheral blood leuko-
cytes via the standard phenol-chloroform extraction proce-
dure. Genetic analyses, including whole-exome sequencing
(WES), multiplex ligation-dependent probe amplification, da-
ta analysis, and variant annotation, are detailed in our previous
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publication [18, 19]. The pairwise linkage disequilibrium pa-
rameter (D') and R? values were analyzed using the SHEsis
software [20].

Briefly, WES was conducted on the Illumina NovaSeq
6000 system following the manufacturer’s instructions.
Clean data was mapped to the reference genome (GRCh37/
hg19) to obtain the bam file using the BWA Picard protocol.
Genotype calling was performed using the HaplotypeCaller
software of the Genome Analysis Toolkit (GATK). The aver-
age depth of coverage for PSAP was > 100x%.

The samples with a high proportion of chimeric reads
(> 5%), high contamination (< 5%), poor call rates (<
90%), mean depth (< 10x), or mean genotype quality
(< 65) were excluded from further analysis. For variant
quality control, we restricted the data to GENCODE cod-
ing regions, where Illumina exomes surpassed the 10x
mean coverage. The “PASS” variants, using the variant qual-
ity score recalibration (VQSR) filter of GATK, were included
in further analysis. In addition, individual genotypes must meet
the following criteria: (1) genotype depth of more than 10; (2)
the allele balance (alternative allele cover/total allele cover) of
heterozygous sites is between 0.2 and 0.8 and that of homozy-
gous sites is > 0.8; and (3) genotype quality (GQ) is > 20.

Allele frequencies were estimated using the public data-
bases: 1000 Genome Project (1000G), the Exome
Aggregation Consortium-East Asian (EXAC _EAS), and the
Genome Aggregation Database-East Asian (GnomAD EAS).
We classified variants as rare or common using the following
criteria: (1) rare variants have a minor allele frequency (MAF)
of < 0.001 in 1000G, ExAC_EAS (East Asian), and
GnomAD EAS and (2) common variants have an MAF of >
0.01 in 1000G, EXxAC_EAS, or GnomAD_EAS.

For rare variants annotated as “missense,” protein-
truncating variants (PTVs, including “frameshift variant,”
“splice_acceptor_variant,” “splice_donor_ variant,” and
“stop_gained”) were further classified as “deleterious” or
“non-deleterious” based on the following criteria: (1) all
PTVs were regarded as deleterious and (2) missense variants
were only considered deleterious when they were predicted to
be damaging by at least three of the 5 following in silico tools:
SIFT, PolyPhen, Condel label, Combined Annotation
Dependent Depletion (CADD), and Genomic Evolutionary
Rate Profiling (GERP++). Finally, rare variants were further
classified as pathogenic, likely pathogenic, variant of uncer-
tain significance (VUS), or likely benign or benign, according
to the recommendations of the American College of Medical
Genetics (ACMG) [21]. Co-segregation analysis of candidate
variants was performed on all available family members.

Burden Analysis

To further investigate whether rare variants in the PSAP gene
contribute collectively to PD risk, five different approaches

implemented in R packages AssotesteR, including
Sequence Kernel Association Test (SKAT), sum of
squared score U statistic (SSU), sum test (SUM), cumu-
lative minor allele test (CMAT) and Bayesian score test
(BST), were used [22]. The rare variants were obtained
from PD patient group, and rare variants from the East
Asian cohort in GnomAD (GnomAD_ EAS) v2.1 and
Chinese data in the Chinese Millionome Database
(CMDB) served as the control groups. The damaging mis-
sense variants were predicted as “deleterious” by Condel
[23]. Benign missense variants were predicted as “neu-
tral.” The burden of rare variants in PSAP and SapC and
SapD were analyzed. Statistical significance was defined
as p < 0.05. The Bonferroni method was used to counter-
act issues with multiple comparisons, as necessary.

Results
Demographic Characteristics

The demographic and clinical characteristics of the patients in
the study are presented in Supplementary Table 1. Among the
participating patients, 20 families had PD symptoms for 3
consecutive generations, while the remaining families had 2
consecutive generations affected by PD.

Rare Variants Identified in PD

A total of 10 candidate rare variants in PSAP, which have
not been previously reported in PD (except p.R186H), [3]
were identified in 13 patients, including 8 with unrelated
patients with ADPD and 5 with SPD. Among them, three of
these variants (p.P189S, p.K303 K304insM, and p.Q358L)
were identified in two patients with PD (Table 1).
Furthermore, all 13 patients did not carry any pathogenic/
likely pathogenic variants in other previously known PD
causative genes based on our comprehensive genetic
analysis.

Seven variants were located in SapA-D, including p.M76
in SapA; p.A221T in SapB; p.Q358L, p.G365S, and
p.-V381M in SapC; and p.S441N and p.H486R in SapD
(Fig. 1a). Based on the multiple sequence alignment analysis,
most of them were shown to be evolutionarily conserved ami-
no acid positions in PSAP (Fig. 1b). According to the ACMG,
six variants were classified as likely pathogenic variants, two
variants as unknown significance, and two variants as benign.
The p.V381M variant was found to be a novel variant
(Table 1). The frequencies of patients with rare likely patho-
genic variants in PSAP were 0.75% (3/400) in ADPD and
1.33% (4/300) in SPD.
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Burden Analysis

Gene burden testing was performed to investigate whether the
rare PSAP variants contribute to the risk of developing PD
(Table 2; Supplementary Table 2). Using the Chinese cohort
from CMDB and the East Asian cohort from GnomAD as
controls, damaging missense variants were not found to be
more common in PD patients.

Previous studies have indicated that rare variants in the
special domains of PSAP, SapC [3, 13], and SapD [14]
were linked to PD; therefore, we further explored their role
in the risk of PD in a Chinese cohort. Compared with
GnomAD_ EAS, damaging missense variants in SapC
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showed statistical significance (p = 0.002 in all the five
different approaches of burden analysis) (Table 2).

Common Variants in PSAP Contribute to the Risk of
PD

Two intronic variants, rs4747203 and rs885828, near the ex-
onic sequence of SapD, have been reported to be associated
with an increased risk for SPD [14]. To confirm this, in the
Chinese mainland population, genotypes of seven intronic
polymorphisms located on the adjacent exon-intron bound-
aries (rs4747203, rs885828, rs4747202, rs11000016,
rs3747860, rs55829339, and rs2070188) were obtained from
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Table 3 Allele frequencies analysis of candidate risk variants of the PSAP between PD patients and controls
Position® Refer. A Alt. A PD patients Controls P’ o’ P° e

Familial Sporadic GnomAD- CMDB

EAS

Alt. fre (no.) Alt. fre (no.) Alt. fre (no.) Alt. fre (no.)
Intron 10
1s3747860 chr10:73579405 C T 0.21(169)  0.19(113)  0.24 (4728) 0.20 (2231)  0.091 0.508 0.006 0.432
Intron 11
14747203  chr10:73578882 T C 0.57 (459)  0.52(314)  0.62(12379) 0.59 (6614)  0.006 0.468 8.6e—7* 0.002*
Intron 13
rs4747202  chr10:73577267 G A 0.37(292)  0.34(205)  0.38(7646) 0.36(3973) 0.288 0.782 0.037 0.358
Intron 1
rs2070188 chr10:73610982 G A 0.22(173)  021(125)  0.25@3177) 0.20(823)  0.042 0372 0.027 0.732

CMDB Chinese Millionome Database, p* comparison between familial PD with controls from GnomAD-EAS, p® comparison between familial PD with
controls from CMDB, p° comparison between ssporadic PD with controls from GnomAD-EAS, p® comparison between sporadic PD with controls from

CMDB

$ Genome Reference Consortium human genome build 37 (GRCh37); *OR: 0.67, 95% CI: 0.57-0.78; #OR: 0.77, 95% CI: 0.66-0.91

Asian patients compared with European patients, owing to
different genetic backgrounds. Recently, three probands car-
rying three pathogenic variants exclusively in the SapD do-
main of PSAP were identified in 230 patients with ADPD
(1.3%, 3/230) but not in an additional SPD cohort of 1145
Japanese and Taiwanese patients [14]. This exciting discovery
led us to explore its role in PD among the Chinese population
who show substantial genetic overlap with Japanese subjects.
Contradictorily however, the one pathogenic variant
(p-S441N) that may affect the secondary structure of SapD
(Fig. 1f) was found in an early onset SPD patient whose par-
ents were 63 and 65 years old and did not show any evidence
of parkinsonism, and pathogenic variants were not found in
patients with ADPD. A previous study [14] suggested that
pathogenic variants in SapD are rare (0.5% [3/630] in
ADPD and 0.07% [1/1445] in SPD) in Asians, and variants
in this domain may have incomplete penetrant phenotype.
However, compared with a previous study [14], our burden
analysis results indicated a lack of evidence for the genetic
association of SapD with PD in the Chinese population.
Robak et al. and Ouled Amar Bencheikh et al. analyzed
PSAP in a total of 2290 PD patients and 2332 controls and
found that variants (p.G365C or p.T363M), within the SapC
binding and activation site of GBA, were nominally enriched
in PD [3, 13]. In our study, three putative pathogenic variants
(p-Q358L, p.G3658S, and p.V381M) that may affect the sec-
ondary structure of SapC (Fig. le) were identified in four
patients, and no rare SapC variant was reported in the
Chinese controls from CMDB. The patients with the same
variants were confirmed to have PD in two ADPD pedigrees
(p-Q358L and p.V381M) using co-segregation analysis of
available family members (Fig. 1h and i). In addition, using

an East Asian population, damaging missense variants in
SapC might be enriched in PD based on variant burden anal-
ysis, suggesting that SapC is a potential candidate domain that
contributes to PD pathogenesis. However, this needs to be
confirmed in more studies including large samples.
Interestingly, no PD variants have been reported in SapA or
SapB, which overlap with SapC and SapD in structure and
function [11]. In our study, a likely pathogenic variant
(p-M76T in SapA) was found in a familial patient whose
mother developed PD at the age of 65 (Fig. l1c and g). Co-
segregation analysis revealed that his mother carried the same
variant, while his healthy older brother did not (Fig. 1g).
Another likely pathogenic variant (p.A221T in SapB) was
found in an SPD patient with an onset age of 44.6 years.
Segregation analysis of this variant within the family was
incompletely penetrant, and no other rare variant in SapB
was reported in PD, suggesting that the role of SapB is limited.
In this study, we comprehensively analyzed the role of rare
variants in the entire PSAP sequence in PD. Of note, the re-
sidual variation intolerance score of PSAP is —1, which means
that this gene is intolerant to variations [24]. In addition, the
probability of loss of function intolerance of PSAP is 0.99,
based on the GnomAD database, indicating that this gene is
intolerant to loss-of-function mutations. Functional studies
identified impaired autophagic flux, accumulation of x-syn
in patient-derived skin fibroblasts or IPSC-derived neurons,
and abnormal pathology and behavior in mice with the PSAP
p-C509S variant [14]. Therefore, although there was no sig-
nificant difference in the distribution of rare PSAP variants
between PD patients and controls after multiple corrections,
pathogenic variants in PSAP remain an important potential
cause of PD. As mentioned above, incomplete penetrance
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Table 4  Clinical features of patients carrying rare likely pathogenic variants of PSAP gene in the cohort
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Dyskinesia MOCA FBA Depression Anxiety Hyposmia RBD Family

Motor

L-DOPA

UPDRS- UPDRS-III/ H&Y H&Y/

Initial

Duration

Patients Mutation Sex OA

history

duration responsiveness fluctuation

symptoms 111 duration

(years) (years)

AD

17
17
17
17
16
16
17

27
27

Good

0.53
0.43
0.47
0.14
0.37
0.59
0.87

8.47
5.0

3.95
2.26
4.24
9.94

16

1.9 Rigidity
4.6 Tremor

M 47.3

M76T
A221T F

1
5
8
9

Good

23

44.6

AD

27
27

Good

17

41

4.3 Tremor
18.1 Rigidity
6.8 Rigidity
3.4 Tremor
2.3 PIGD

34.7

Q358L M

NA

Good

2.5

43.7
4

6
3

Q358L M

28

Good

2.5

29

4.1
6.8
9.2

G365S F

10
11

12

AD

26
28

Good

V3isIM M

Good

2

12.27

28

S44IN  F

OA onset age, M male, F female, H&Y Hoehn-Yahr score, MOCA Montreal Cognitive Assessment score, FBA frontal assessment battery score, RBD Sleep Behavior Disorder, AD autosomal dominant

inheritance, NA unavailable

might explain why some subjects with rare variants of PSAP
do not develop PD.

Saposins are important co-activator proteins of specific ly-
sosomal hydrolase(s) [11], some of which might be involved
in essential cellular pathways to degrade «-syn, such as SapC
[10]. Therefore, beyond alterations in the sequence encoding
the protein, it would also be interesting to assess expression
levels. In our study, the variant in intron 11 of the “C” allele in
rs4747203 was associated with decreased risk of developing
PD. Notably, the minor allele of the variant in Chinese sub-
jects is “T,” but in European ancestry, it is “C.” In other words,
our results showed that the minor allele “T” increased the risk
of PD. However, a Japanese study [14] found that the minor
allele “T” decreased the risk of developing PD based on the
East Asian dataset in GnomAD. This discrepancy might be
due to different genetic backgrounds, sample sizes, and
matched controls. We used data from East Asian controls
from GnomAD as well as a large set of Chinese controls from
the CMDB. Two studies in the ExXSNP database [25] identi-
fied an eQTL association between rs4747203 and PSAP, in-
dicating that this polymorphism is associated with PSAP ex-
pression. The “T” allele might decrease PSAP mRNA or pro-
tein levels and result in haploinsufficiency for activating lyso-
somal hydrolases, thus contributing to PD pathogenesis.
However, more studies with larger sample sizes are needed
to confirm this association, and further functional assessments
of the relationship between 1s4747203 and PSAP expression
are expected.

Although the sample size of patients was limited, prelimi-
nary genotype-phenotype features were established for patients
with rare variants of PSAP. Generally, patients with PSAP var-
iants have a later age of onset and typical PD symptoms and
respond well to levodopa, a relatively slow disease progression,
and no obvious cognitive impairment.

Although burden analysis in our study argued against a
significant overrepresentation of rare variants in PSAP in
patients with PD, the results should warrant cautious in-
terpretation. In our burden analysis, the Condel was used
to help classify benign or damaging missense variants in
PD and the controls from the database; however, the path-
ogenicity of a predicted deleterious variant should be fur-
ther experimentally confirmed. Analyses using data from
public databases rather than ethnically age- and sex-
matched controls may also contribute to negative find-
ings. In addition, incomplete penetrance and late-onset
diseases make it difficult to detect associations between
rare variants and the disease in case-control studies.
Finally, the methods of variant detection and age of onset
varied among the different studies, and public databases
also caused deviation.

Overall, we identified 6 rare likely pathogenic variants in
PSAP, which accounted for 0.75% of the Chinese ADPD and
1.33% of the Chinese SPD. Except SpaC, burden analyses for
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rare variants indicated a lack of convincing evidence for
genetic associations of SapD and PSAP with PD in the
Chinese population. Association analyses for common risk
variants identified that rs4747203, in the PSAP gene, was
associated with a reduced risk of developing PD. However,
further studies investigating different populations and func-
tional analyses of rs4747203 in PSAP are required to con-
firm these findings.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s12035-020-02218-4.
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