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Abstract
Cocaine use disorder is a major health crisis that is associated with increased oxidative stress and neuroinflammation.
While the role of NLRP3 inflammasome in mediating neuroinflammation is well-recognized, whether cocaine induces this
response remains unexplored. Based on the premise that cocaine induces both reactive oxygen species (ROS) as well as
microglial activation, we hypothesized that cocaine-mediated microglial activation involves both ROS and NLRP3 sig-
naling pathways. We examined activation of the NLRP3 pathway in microglia exposed to cocaine, followed by validation
in mice administered either cocaine or saline for 7 days, with or without pretreatment with the NLRP3 inhibitor, MCC950,
and in postmortem cortical brain tissues of chronic cocaine-dependent humans. We found that microglia exposed to
cocaine exhibited significant induction of NLRP3 and mature IL-1β expression. Intriguingly, blockade of ROS
(Tempol) attenuated cocaine-mediated priming of NLRP3 and microglial activation (CD11b). Blockade of NLRP3 by
both pharmacological (MCC950) as well as gene silencing (siNLRP3) approaches underpinned the critical role of NLRP3
in cocaine-mediated activation of inflammasome and microglial activation. Pretreatment of mice with MCC950 followed
by cocaine administration for 7 days mitigated cocaine-mediated upregulation of mature IL-1β and CD11b, in both the
striatum and the cortical regions. Furthermore, cortical brain tissues of chronic cocaine-dependent humans also exhibited
upregulated expression of the NLRP3 pathway mediators compared with non-cocaine dependent controls. Collectively,
these findings suggest that cocaine activates microglia involving the NLRP3 inflammasome pathway, thereby contributing
to neuroinflammation. NLRP3 can thus be considered as a potential therapeutic target for alleviating cocaine-mediated
neuroinflammation.
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a CARD
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Background

Cocaine use disorder (CUD) is estimated to affect up to 22.5
million people worldwide resulting in marked changes in be-
havior and lifestyle emanating from its psychoactive and ad-
dictive effects [1]. In the USA, cocaine use is increasing
among young adults suggesting that cocaine abuse is an
emerging issue among young adults [2]. Accumulating evi-
dence suggests a close link between drug abuse and neuroin-
flammation [3, 4]. In fact, CUD is associated with enhanced
immune activation, inflammation, and neuronal injury which,
in turn, further contributes to behavioral alterations [5–9].
Several mechanism(s) such as cocaine-induced production
of reactive oxygen species (ROS) and inflammasome activa-
tion have been suggested to underlie cocaine-associated be-
havioral deficits [10, 11]. Cocaine is a well-known inducer of
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ROS [6], which has been implicated as an upstream mediator
in the activation of NLR family pyrin domain containing 3
(NLRP3) inflammasome [12, 13].

Several studies have demonstrated the contribution of
ROS in cocaine-mediated physiological alterations and ad-
dictive behavior [6, 14–18]. Increased ROS production is
shown to be associated with oxidized metabolites of co-
caine which, subsequently activate the redox cycling path-
ways and subsequent electron transfer [10, 19]. Increased
ROS has also been well-documented to elicit inflammatory
responses within the CNS via activation of glial cells such
as the microglia—the primary immunocompetent cells of
the brain [15, 20–22]. Under normal homeostasis, microg-
lia play essential roles involving surveillance of the brain
environment, phagocytosis, synaptic pruning, and neuro-
nal plasticity [23–25]. Several psychostimulant drugs, such
as cocaine and methamphetamine, have been shown to ac-
tivate microglia, resulting in the production of pro-
inflammatory cytokines, ultimately contributing to a
neuroinflammatory milieu that underlies neurodegenera-
tion and behavioral changes [26–29]. The interrelationship
of cocaine-induced ROS and inflammasome activation,
however, remains poorly understood. In this study, we ra-
tionalized that inhibition of cocaine-mediated ROS gener-
ation could result in abrogation of cellular activation by
dampening activation of the NLRP3 inflammasome, which
has been linked to ROS [12, 13].

Activation of the NLRP3 inflammasome is a two-step pro-
cess comprising of signals 1 and 2; with the first signal prim-
ing the pathway by enhancing levels of NLRP3, followed by
the second signal that triggers caspase-1 dependent cleavage,
maturation and release of the pro-inflammatory cytokines IL-
1β and IL-18 [30–34]. Although a previous report has shown
an increase in the expression of NLRP3 mRNA in macro-
phages exposed to cocaine and HIV-1 [35], the causal associ-
ation between NLRP3 activation and ROS in microglia and its
contribution to cocaine-induced behavioral changes, however,
remains poorly understood. Herein, we investigated the mo-
lecular mechanism(s) underlying cocaine-mediated NLRP3
inflammasome activation in microglia and the in vivo effects
of NLRP3 blockade in reducing microglial activation and in-
flammation, in mice administered cocaine.

Using both primary microglia and cocaine administration
of mice for 7 days, our findings suggested that cocaine acti-
vates microglia via the NLRP3 inflammasome. Moreover, our
findings also identified ROS-dependent priming of NLRP3 as
a potential mechanism underlying cocaine-induced activation
of microglia and neuroinflammation. Intriguingly, pharmaco-
logical inhibition of NLRP3 was shown to dampen cocaine-
mediatedmicroglial activation in mice. Overall, these findings
thus demonstrate a critical association between ROS, NLRP3
inflammasome, and microglial activation as contributors of
neuroinflammation.

Methods

Reagents

Antibodies and reagents used in this work were purchased
from the indicated sources: NLRP3 (AdipoGen; AG-20B-
0014); ASC (Novus; NB1-78978 for Western blots and
Adipogen; AG-25B-0006 for IHC), caspase-1 p20 (Santa
Cruz; sc-398715), Iba-1 (Novus NB1001028 or Wako; 19-
19741), CD11b (Novus; NB11089474), goat anti-mouse-
HRP (Santa Cruz Biotechnology; sc-2005), and goat anti-
rabbit-HRP (Santa Cruz Biotechnology; sc-2004); IL-1 beta
(Abcam; ab9722); actin (Sigma-Aldrich; A1978). Cryopyrin/
NLRP3 small interfering RNA (siRNA) (sc-45470) was from
Santa Cruz Biotechnology. MCC950/CP-456773 (Sigma;
pz0280) was from Sigma-Aldrich. Cocaine hydrochloride
(C5776) and LPS (L2880) was from Sigma-Aldrich. Sterile
water was used to dissolve cocaine and LPS. ATP (tlrl-atpl)
was from Invivogen. FAM-FLICA caspase assay kit (#97)
was from ImmunoChemistry

Animals

All animal procedures were performed according to the pro-
tocols approved by the Institutional Animal Care and Use
Committee of the University of Nebraska Medical Centre
and the National Institutes of Health. The C57BL/6N mice
were purchased from Charles River Laboratories
(Wilmington,MA, USA) and housed under standard vivarium
conditions. Food and water were available ad libitum [34].
C57BL/6 wild-type mice were divided into groups; receiving
cocaine or saline injections for seven consecutive days in the
presence of absence of MCC950 pretreatment. Mice were
injected with NLRP3 inhibitor MCC950 (50 mg/kg or vehi-
cle, i.p.) daily followed by cocaine administration (20 mg/kg,
i.p.) an hour later. Mice were sacrificed 1 h following the last
injection. Brain tissues were dissected, and homogenates of
the cortex and the striatum were used to assess the protein
levels of NLRP3 and microglial activation markers.

Human Tissues

Frozen frontal cortex tissues from cocaine abusers or non-
cocaine abusing controls or were obtained from the
Douglas-Bell Canada Brain Bank (DBCBB; Douglas Mental
Health University Institute, Montreal, Quebec, Canada). The
DBCBB samples were collected postmortem following con-
sent according to tissue banking practices regulated under
IUSMD-04-21 Banque de cerveaux suicides du Québec.
Patient characteristics are shown in Table S1. Protein was
isolated and the expression of NLRP3 pathway was analyzed
by Western blotting.
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Isolation of Primary Mice Microglial Cells

Primary microglial cells were isolated from C57BL/6N new-
bornmice pup brains as previously described [22, 34, 36]. The
purity of isolated microglia was confirmed by immunohisto-
chemical staining with antibodies specific for Iba-1 and was
routinely found to be > 95% pure [34, 36].

BV-2 Cells

Mouse BV-2 microglial cell line was generously provided by
Dr. Sanjay Maggirwar (George Washington University,
Department of Microbiology, Immunology, and Tropical
Medicine, USA). These cells were grown and routinely main-
tained at 37 °C, and 5% CO2 in DMEM supplemented with
10% heat-inactivated Fetal Calf Serum (# S11150H, Atlanta
Biologicals, GA, USA), 100 IU/ml penicillin, and 100 μg/ml
streptomycin as previously described [36].

Western Blotting

Mouse brain tissue homogenates or microglia exposed to co-
caine were lysed with RIPA buffer supplemented with a pro-
tease inhibitor cocktail (#78430, ThermoFisher Scientific,
MA) followed by ultrasonication for 15 s at 80% amplitude.
Western blotting was performed as previously described [22,
34, 36, 37]. Densitometric analyses was performed using NIH
ImageJ software (ImageJ v1.44, NIH) as previously described
[37]. Protein amounts for bands of interest were normalized to
β-actin.

Small Interfering RNA Transfection

siRNA transfections were performed using Lipofectamine
2000 (11668027, Life Technologies, CA) according to the
manufacturer’s instructions. Briefly, cells were transfected
with targeted siRNA or scrambled siRNA (20 pM)mixedwith
6 μl of Lipofectamine 2000 diluted in 150 μl Opti-MEM
Reduced Serum Medium (#31985062, Life Technologies,
CA). The resulting siRNA-lipid complexes were added onto
cells, incubated for 6 h, and the medium was refreshed and
maintained up to 24 h. Cells were subsequently treated with
cocaine (10 μM) or left untreated and harvested after an addi-
tional 24 h as previously described [22, 34, 36]. Knockdown
efficiencies were determined by Western blotting.

FAM-FLICA Caspase-1 Assay

Microglia were seeded into 24-well plates overnight, followed
by exposure to medium with cocaine, LPS, or left untreated
for 24 h. Cells were treated with ATP (1 mM) for 1 h followed
by FAM-FLICA assay (#97) according to the manufacturer’s
instructions.

IL-1β Cytokine Assay

Microglia were seeded onto 96-well plates (8000 cells/well)
overnight, and subsequently exposed to medium with cocaine
or left untreated. Supernatant fluids were collected at 24 h
post-cocaine treatment, followed by quantification of IL-1β
by ELISA (MLB00C, R&D,Minneapolis, USA) according to
the manufacturer’s instructions.

Immunohistochemistry

Double immunofluorescence staining for NLRP3 and Iba1 or
ASC was performed in the whole brain sections from mice
injected with either cocaine (20 mg/kg body weight, i.p.) or
saline for 7 consecutive days or on microglia cultured as pre-
viously described [22]. Briefly, for brain slides, formalin-
fixed, paraffin-embedded brain slides were baked overnight
at 55 °C. The sections were deparaffinized using xylene and
rehydrated by incubating the slide in graded series (100, 95,
and 70%; each 5 min) of alcohol. Next, the slides were sub-
jected to antigen retrieval by boiling them in Tris/EDTA buff-
er (pH 9) for about 20 min. Microglia cells on coverslips were
fixed with 4% formaldehyde in PBS for 10 min at room tem-
perature, washed three times with PBS, permeabilized with
0.3% Triton X-100 in PBS with 10% goat serum for 1 h as
previously described [22]. The tissues were then blocked with
10% goat serum (#S-1000-20, Vector Laboratories, CA,
USA) in PBS for 2 h followed by overnight co-incubation
with primary antibodies (NLRP3, ASC or Iba-1) at 4 °C.
Next day, the slides were washed with PBS for three times,
followed by incubation with corresponding secondary Alexa
Fluor 488 goat anti-mouse IgG (#A-11008, Invitrogen, CA) or
Alexa Fluor 594 goat anti-rabbit (#A-11032, Invitrogen, CA)
for 2 h. Finally, the slides were washed with PBS for three
times and mounting with ProLong Gold Antifade Reagent
with DAPI. Fluorescent images were taken on a Zeiss
Observer using a Z1 inverted microscope (Carl Zeiss,
Thornwood, NY, USA). The acquired images were analyzed
for the fluorescence intensity and co-localization using the
Axio Vs 40 Version 4.8.0.0 software (Carl Zeiss
MicroImaging GmbH). To calculate microglial process
length, images were converted to a binary format and skele-
tonized for analysis using ImageJ software. All experiments
were repeated at least three times.

Statistical Analysis

Graphs and statistical analyses were performed using
GraphPad software V5.0 (GraphPad Prism Software).
Student’s t test was used to compare results between test and
controls. One-way ANOVA was used for multiple compari-
sons. P values less than 0.05 were considered statistically
significant.
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Results

Cocaine Exposure Upregulated the Expression of
NLRP3 in Microglia

We first sought to examine whether exposure of microglia
to cocaine could activate these cells involving the NLRP3
inflammasome. Mouse primary microglia (mPM) or BV-2
microglial cells were exposed to various concentrations of
cocaine (0, 1, 10, 50, 100 μM) for 24 h and analyzed for
the expression of NLRP3. As shown in Fig. 1a and b,
cocaine dose-dependently increased the expression of
NLRP3, with significant increases at 10–100 μM in both
mPM and BV-2 cells. As anticipated, exposure of cells to
bacterial lipopolysaccharide (LPS) (50 ng/ml), also caused
a significant increase in NLRP3 expression compared with
control cells (Fig. 1a and b). Based on these findings, we
chose the lowest dose of cocaine (10 μM) that upregulated
expression of NLRP3 in BV-2 cells, for all the ensuing
experiments.

The next step then was to assess the time-course of
cocaine-mediated upregulation of NLRP3. As shown in
Fig. 1c, we found significant upregulation of NLRP3 pro-
tein at 6 h post-cocaine exposure (10 μM) that was
sustained up to 48 h (p < 0.05) in BV-2 cells. These find-
ings were also confirmed in mPMs exposed to cocaine
which revealed a sustained increase in the expression of
NLRP3 up to 48 h (Fig. 1d). To further validate cocaine-
induced upregulation of NLRP3, immunofluorescence im-
aging of mPMs exposed to cocaine was performed. As
shown in Fig. 1e, cocaine increased the expression of both
NLRP3 and Iba-1 compared with contro l ce l l s .
Quantification of NLRP3 fluorescence intensity is shown
in Fig. 1f. Collectively, these data demonstrated that co-
caine upregulated the expression of microglial NLRP3.

Effect of Cocaine on NLRP3 Inflammasome Formation
and Activation of Caspase-1 and IL-1β in Microglial
Cells

Next, we examined whether cocaine exposure could increase
generation of the NLRP3 inflammasome complex by immu-
nostaining microglia for both NLRP3 and the adaptor mole-
cule, apoptosis-associated speck-like protein containing a
CARD (ASC) by immunofluorescence. As shown in Fig. 2a,
ASC speck formation was observed in the cocaine-exposed or
LPS-positive control cells compared with untreated control
cells. We next sought to assess whether exposure of microglia
to cocaine could activate pro-caspase-1 which undergoes pro-
teolytic maturation leading to detection of active caspase-1
using the FAM-FLICA assay. The FLICA probe is a non-
cytotoxic fluorescent-labeled inhibitor of caspase-1 that cova-
lently bind to active caspase-1 enzyme. Mouse primary

microglia were seeded in 24-well plates and exposed to co-
caine for 24 h followed by subjecting cells to the FAM-
FLICA assay according to manufacturer’s instructions. As
shown in Fig. 2b, exposure of microglia to cocaine (10 μM)
or LPS (50 ng/ml) resulted in increased FLICA fluorescence
signal. FLICA intensity was higher in cells exposed to cocaine
or LPS in the presence of ATP. The effect of LPS in increasing
FLICA intensity was at least twice as much as that of cocaine
suggesting that cocaine-induced caspase-1 activation is milder
than that induced by LPS at the concentrations assayed.
Quantification of FLICA fluorescence intensity is shown in
Fig. 2c. To validate caspase-1 cleavage, we analyzed expres-
sion of both total and cleaved caspase-1 p20 by Western blot.
As shown in Fig. 2d and quantified in Fig. 2e, exposure of
cells to cocaine increased the expression of cleaved caspase-1.

To further validate cocaine-mediated activation of NLRP3
inflammasome, we determined the expression levels of IL-1β
in microglia exposed to cocaine over a 48-h time-course. As
shown in Fig. 3a and b, mPMs exposed to cocaine demon-
strated a time-dependent increase of the mature IL-1β, (p17)
at 6–48 h. We also sought to examine cocaine-mediated re-
lease of IL-1β into the supernatant fluids. As shown in Fig. 3c,
there was a significantly (p < 0.05) increased release of IL-1β
24 h in mPMs exposed to cocaine compared with cells not
exposed to cocaine.

Genetic Silencing of NLRP3 Attenuated Cocaine-
Mediated Activation of NLRP3 Inflammasome and
Cellular Activation in Microglia

Next, we used a gene silencing approach to validate the role of
NLRP3 in cocaine-induced activation of the NLRP3
inflammasome. Herein, mPMs were transfected with either
scrambled or NLRP3 siRNA (24 h) followed by exposure of
transfected cells to cocaine for an additional 24 h. As shown in
Fig. 4a, in cells transfected with NLPR3 siRNA, cocaine
failed to upregulate the expression of NLRP3 compared with
cells transfected with the scrambled siRNA. Similarly, there
was abrogation of cocaine-mediated maturation of IL-1β as
evidenced by reduced expression of mature IL-1β in cells
silenced for NLRP3 (Fig. 4b). In addition, cells silenced for
NLRP3 failed to demonstrate cocaine-mediated activation of
cellular activation markers Iba-1 and CD11b (Fig. 4c and d).
These findings thus underscore the role of NLRP3 in cocaine-
mediated activation of both microglial inflammasome as well
as cellular activation.

Cocaine Upregulated NLRP3 Inflammasome Pathway
via the Sigma Receptor in Microglia

Having demonstrated that cocaine activated microglia via the
NLRP3 pathway, we next explored the role of cognate co-
caine receptor—sigma-1 receptor (σ-1R), in this process.
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The σ-1R is shown to be expressed in most cells of the CNS
and has been shown to be activated following binding of

cocaine [38–40]. Its role in the priming of NLRP,3 however,
remains to be investigated. To address this, we assessed the
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Fig. 1 Cocaine upregulates the
expression of NLRP3 in
microglia cells in a dose- and
time-dependent manner. BV-2
cells and mouse primary
microglia (mPMs) were seeded
into 6-well plates and exposed to
the indicated doses of cocaine for
24 h. Cocaine (10 μM)
concentration increased the
expression of NLRP3 in both cell
types (a, b). BV-2 cells and
mPMs were seeded into 6-well
plates and exposed to cocaine (10
μM) for the indicated time
periods. Exposure of these cells to
cocaine increase the expression of
NLRP3 time dependently in both
cell types (c, d). mPMs were
seeded into 24-well plates and
exposed to cocaine for 24 h. The
expression of NLRP3 and Iba-1
was analyzed at 24 h post-
exposure (e). Quantification of
NLRP3 fluorescence intensity (f).
All experiments were done at
least three independent times, and
representative figures are shown.
LPS and actin served as positive
or loading controls respectively.
Quantification of western blots is
shown under each blot. Scale bar
= 10 µm. Data are shown as mean
± SEM and *p < 0.05 vs. control
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expression of σ-1R inmPMs exposed to cocaine. As shown in
Fig. 5a, the expression of σ-1R remained constant to the last
time point analyzed (48 h). Next, mPMs were pretreated with
the σ-1R inhibitor—BD1047 (10 μM), followed by exposure
of cells to cocaine for 24 h and analyzed for the expression of
NLRP3 and the activation marker CD11b, by Western blot-
ting. As presented in Fig. 5b, cocaine exposure alone in-
creased the expression of NLRP3 compared with untreated
control cells. Pretreatment of mPMs with BD1047, on the
other hand, resulted in significant abrogation of cocaine-
mediated upregulation of NLRP3 compared with cells ex-
posed to cocaine alone. In keeping with these findings, there
was also inhibition of CD11b expression (Fig. 5c) in cells
exposed to the pharmacological inhibitor of σ-1R, followed
by exposure to cocaine. Overall, these results underscore the
involvement of σ-1R in cocaine-mediated upregulation of
NLRP3 inflammasome and subsequent activation of
microglia.

Cocaine-Induced ROS Is Involved in the Upregulation
of NLRP3 Inflammasome Pathway and Activation of
Microglia

Previous reports have demonstrated cocaine-mediated induc-
tion of ROS in microglia [22]. Herein, we sought to explore
whether inhibiting ROS could lead to inhibition of both
NLRP3 priming andmicroglial activation. To test this hypoth-
esis, mPMs were pre-treated with tempol—a brain penetrant
ROS inhibitor (1 h), followed by exposure of cells to cocaine
(10 μM, 24 h) and assessed for the expression of NLRP3 and
CD11b. As shown in Fig. 5d, and as expected, exposure of
mPMs to cocaine resulted in an increase in the expression of
NLRP3 compared with the control cells. Interestingly, pre-
treatment of mPMs with tempol attenuated cocaine-mediated
upregulation of NLRP3 compared with cells exposed to co-
caine alone. As expected, pretreatment of mPMs with tempol
alone did not upregulate the expression of NLRP3. In keeping
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Fig. 2 Cocaine induced NLRP3 inflammasome formation and activation
caspase-1 in microglia. Mouse primary microglia (mPMs) were seeded
into 24-well plates and exposed to cocaine for 24 h. The expression and
presence of ASC specks was analyzed at 24 h post-exposure (a). Cells
were seeded in 24-well black plates with glass bottom and exposed to
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followed by washing and fluorescence imaging (b). Densitometric
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and cleaved caspase-1, p20. Cleaved caspase-1 p20 is shown at both
low- and high exposure (d). The high exposure images of caspase-1
p20 were quantified (e). All experiments were done at least three
independent times. Data are shown as mean ± SEM and *p < 0.05 vs.
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with the findings on NLRP3 expression, tempol pretreatment
also abrogated cocaine-mediated upregulation of the
microglial activation marker, CD11b (Fig. 5e), thereby
underscoring the role of ROS in cocaine-mediated activation
of microglia. Together, these data suggest that ROS lies up-
stream of cocaine-mediated induction of the NLRP3
inflammasome and cellular activation, thereby underscoring
the potential role of ROS inhibitor(s) in ameliorating cocaine-
mediated activation of the NLRP3 inflammasome.

In Vivo Administration of Cocaine Upregulated the
Expression of NLRP3 Inflammasome Mediators and
Microglial Activation

Having demonstrated the effects of cocaine on the NLRP3
inflammasome and microglial activation in vitro, we next
sought to validate these findings in vivo in mice administered
cocaine for 7 days. Mice were randomly assigned into two

groups (n = 4/group) and administered either saline or cocaine
(20 mg/kg, i.p.) once a day for 7 consecutive days. One hour
following the last cocaine injection, mice were sacrificed,
brains removed, and striatal tissue homogenates assessed for
expression of NLRP3 as well as markers of microglial activa-
tion. Our findings demonstrated that cocaine administration
resulted in significant upregulation of NLRP3 in the striatal
brain tissues compared with the striatum from saline-injected
controls (Fig. 6a). Additionally, to further validate these find-
ings, we also assessed the expression of mediators such as
caspase-1, ASC, and IL-1β in the striatum of cocaine-
administered mice. As shown in Fig. 6b–d, expression of
pro- and cleaved forms of caspase-1, ASC, and mature IL-
1β was significantly upregulated in cocaine-administered
mice compared with the saline-injected controls. To further
ascertain the role of microglia in this process, we also moni-
tored the expression of microglial activation markers CD11b
and Iba-1 in the brains of these mice. As expected, and similar
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to our in vitro studies, cocaine administration upregulated the
expression of CD11b and Iba-1 proteins (Fig. 6 e and f) com-
pared with the saline administered controls.

To further validate cocaine-mediated activation of the
microglial NLRP3 inflammasome, we also performed immu-
nofluorescence staining for NLRP3 and Iba-1 or ASC in
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striatal brain sections obtained from mice administered either
cocaine or saline for 7 consecutive days. Our results demon-
strated increased expression of NLRP3 in Iba-1-positive
microglial cells in the striatum of cocaine administered mice
versus control animals (Fig. 6g). As shown in Fig. 6h, the
fluorescence intensity of NLRP3 in cocaine-administered
mice was upregulated (1.82-fold, p < 0.05) compared with
control mice. Furthermore, microglial process length was sig-
nificantly reduced in cocaine-administered mice compared to
control mice (Fig. 6i). As shown in supplementary Fig. 1,
formation of ASC specks was increased in Iba-1-positive cells
in cocaine-administered mice compared with control animals.
Increased expression of ASC is also seen in non-Iba-1-
positive cells. Together, these data suggest that cocaine expo-
sure modulates the NLRP3 inflammasome in vivo in the
brains of mice.

Pharmacological Inhibition of NLRP3 Attenuated
Cocaine-Induced Upregulation of Inflammasome
Markers and Microglial Activation

Next, we investigated in vivo the effects of pharmacological
inhibition of NLRP3 by the small molecule inhibitor,
MCC950. C57BL/C mice were randomly divided into four
groups; receiving cocaine or saline injections for seven con-
secutive days in the presence or absence of MCC950 pretreat-
ment. Mice were injected with NLRP3 inhibitor MCC950 (50
mg/kg or vehicle, i.p.) followed by cocaine administration (20
mg/kg, i.p.) an hour later, daily. On the seventh day, mice
were euthanized and brains removed for expression of pro-
teins by Western blotting. As shown in Fig. 7a and b and as
expected, cocaine increased the expression of mature IL-1β in
both the striatum and cortex compared with control animals.
Importantly, pre-treatment with MCC950 suppressed the ex-
pression of mature IL-1β in both the brain regions (Fig. 7a and
b), thereby suggesting MCC950 mediated inhibition of
cocaine-induced NLRP3 inflammasome activation. We also
monitored the expression of the microglial activation marker
CD11b in the striatum and cortex regions of these mice and
found that MCC950 also suppressed cocaine-induced expres-
sion of CD11b (Fig. 7c, d).

Chronic Cocaine Dependence Upregulated the
Expression of NLRP3 Pathway Mediators and
Microglial Activation in Human Brains of Cocaine
Addicts

We next sought to validate the effects of cocaine on the
NLRP3 inflammasome in archival human brain sections with
or without cocaine abuse. To address this, we assessed the
expression of NLRP3 pathway mediators in frontal cortices
of postmortem brain tissues from cocaine abusers and non-
cocaine using controls. We found increased expression of

NLRP3, ASC, caspase-1, and IL-1β in the brains of cocaine
abusers compared with cocaine naïve controls (Fig. 8a–d). As
shown in Fig. 8 e and f, expression of the microglial markers
Iba-1 and CD11b was also increased in the brains of cocaine
addicts compared with cocaine naive controls. Together, these
results suggest the involvement of NLRP3 inflammasome and
microglial activation in cocaine-induced inflammation in
humans with chronic cocaine use.

Discussion

CUD remains a significant public health concern globally that
affects up to 22 million people worldwide and is closely as-
sociated with severe dysregulation of the immune system in
both periphery and the CNS [1, 2, 7–9]. Previous studies have
demonstrated the involvement of reactive oxygen species, ac-
tivation of NF-kB, and induction of proinflammatory cyto-
kines such as IL-1β and TNFα, in functional neurocognitive
decline associated with cocaine [6–8, 11, 15, 41, 42].
Interestingly, while activation of the NLRP3 inflammasome
has been implicated in cocaine-induced activation of periph-
eral macrophages [35], the causal association between NLRP3
activation, ROS, and cocaine-induced behavioral changes re-
mains poorly understood. The current study provides insights
into the mechanism(s) of cocaine-induced priming and activa-
tion of the NLRP3 inflammasome. Our findings suggest that
cocaine administration activates the NLRP3 inflammasome
resulting in increased levels of proinflammatory IL-1β.

NLRP3 is highly expressed in microglia and is activated by
various external and internal stimuli including urea crystals,
asbestos, and viral and bacterial proteins [30–32, 43].
Activation of the NLRP3 inflammasome leads to increased
levels of IL-1β, which, in turn, modulates neuronal excitabil-
ity of the neighboring cells [44–46]. NLRP3 inflammasome
has been demonstrated to play critical roles in microglial over-
activation, which is an underlying mechanism critical for pro-
moting the pathogenesis of multiple neurodegenerative dis-
eases including Parkinson’s diseases (PD), Alzheimer’s dis-
ease, and multiple sclerosis [47–52]. Additionally, chronic
unpredictable mild stress has also been reported to accelerate
LPS-induced NLRP3 inflammasome activation in the PD
model of rats, resulting in the death of dopaminergic neurons
in this rat model, thereby signifying the importance of
microglial activation in NLRP3 signaling [53]. Cocaine is
well-known to activate glial cells in both in vitro and in vivo
model systems [22, 36, 54]. Whether NLRP3 is also involved
in cocaine-mediated activation of microglia and subsequent
behavioral changes has not been explored. In this study, we
demonstrated that exposure of mPMs to cocaine resulted in
the upregulation of NLRP3, followed by recruitment of ASC
and release of IL-1β from microglial cells. Our findings sug-
gested that a physiologically relevant dose of cocaine (10 μM)
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resulted in activation of the NLRP3 inflammasome as demon-
strated by increased expression of mature IL-1β in microglia.
It has been shown that the plasma levels of cocaine in humans
who administered cocaine intranasally range between 0.4 and
1.6 μM [55], while the plasma cocaine levels in tolerant
abusers was found to be 13 μM [56]. Further, the levels of
cocaine in postmortem brains of chronic cocaine users with
acute intoxications has been found to be greater than 100 μM
[57]. Cocaine concentrations used in this study are in keeping
with the physiological levels observed in humans abusing
cocaine. Our in vivo validation study also demonstrated that
the expression of multiple NLRP3 pathway mediators
(NLRP3, ASC, caspase-1, and IL-1β) as well as microglial
activation (Iba-1 and CD11b) was upregulated in the striatum
of mice administered cocaine repeatedly (20 mg/kg i.p., daily
for 7 days) as well as in humans with reported chronic cocaine
abuse compared to the levels in the control brains, thereby
underscoring the involvement of NLRP3 in cocaine-induced
microglial activation and neuroinflammation. Furthermore,
our results demonstrating increased expression of Iba-1 in
microglia exposed to cocaine are consistent with previous

studies that have also shown upregulation of Iba-1 following
cocaine exposure [58–60].

To examine the molecular changes involved in cocaine-
mediated activation of microglia, we employed pharmacologi-
cal approaches. Our findings demonstrated that pharmacologi-
cal inhibition of ROS using tempol reduced cocaine-mediated
priming of NLRP3 inflammasome. These data thus implicate
the role of ROS in cocaine-induced priming of NLRP3, a find-
ing that is consistent with previous studies showing ROS-
mediated priming of the NLRP3 inflammasome [12, 13, 15].
Tempol has been previously shown to reduce oxidative damage
and the development of behavioral sensitization in rodents [17].
Recently, in an in vitro model of diabetic nephropathy, expo-
sure of HK-2 cells (an immortalized proximal tubule epithelial
cell line from normal adult human kidney) to high glucose
demonstrated increased expression of ROS-mediated NLRP3
activation, which was notably inhibited in cells pretreated with
Tempol [61]. Our findings also suggest that ROS elevation lies
upstream of NLRP3 activation.

Our in vivo findings demonstrated that expression of ma-
ture IL-1β was upregulated in the striatum of cocaine-
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Fig. 7 Pharmacological
inhibition of NLRP3 attenuated
cocaine-induced upregulation of
inflammasome markers and
microglial activation. C57BL/6
wild-type mice were divided into
groups; receiving cocaine or
saline injections for seven
consecutive days in the presence
of absence of MCC950
pretreatment. Mice were injected
with NLRP3 inhibitor MCC950
(50 mg/kg or vehicle, i.p.) daily
followed by cocaine
administration (20 mg/kg, i.p.) an
hour later. Mice were euthanasia
within 1 h of the last injection
followed by removal of brains for
analysis of IL-1β and microglial
activation. Cocaine increased the
expression of mature IL-1β in
both the striatum and cortex
compared with control animals.
Pre-treatment with MCC950
suppressed the expression of
mature IL-1β in both the brain
regions (a, b). The expression of
microglial activation markers Iba-
1 and CD11b in the striatum and
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MCC950 (c, d). N = 3/group.
Quantification of western blots is
shown under each blot. Data are
shown as mean ± SEM and *p <
0.05
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administered mice compared with control mice, thus suggesting
cocaine-induced cleavage of pro-IL-1β. In keeping with these
findings, it has also been reported that circulating levels of IL-1β
are increased in humans with crack-cocaine disorders and could
be associated with an activation of the reward, immune, and
inflammatory systems [8]. Activation of the NLRP3
inflammasome by mechanism(s) involving ROS, lysosome rap-
ture, or potassium efflux has been well documented [12, 30–32,
62, 63]. The effects of cocaine on the cleavage and release of
mature IL-1β, however, has not yet been clearly elucidated. In
this study, we provide data that cocaine-exposed microglia acti-
vate NLRP3 inflammasome signaling with the release of IL-1β
involving the upstream activation of ROS. Studies are underway
to ascertain the detailed molecular mechanism(s) underlying
cocaine-mediated activation of the NLRP3 inflammasome.

The critical role of NLRP3 in cocaine-mediated microglial
activation was further explored by both pharmacological and
gene silencing (siRNA) approaches. Our results demonstrated
that both MCC950 (NLRP3 inhibitor) as well as the NLRP3
siRNA attenuated cocaine-mediated activation of the NLRP3
inflammasome, as evidenced by the reduced expression of
mature IL-1β. There are numerous studies reporting the use
of MCC950 as a potential pharmacological inhibitor of
NLRP3 to alleviate the NLRP3-mediated immune activation
in various disease settings [52, 64–78]. Our findings also dem-
onstrated that both pharmacological inhibition and gene si-
lencing of NLRP3 resulted in significant inhibition of
cocaine-mediated expression of IL-1β and activation of mi-
croglia, as evidenced by decreased expression of both Iba-1
and CD11b. Our results thus suggest that targeting the NLRP3
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dependence upregulated the
expression of NLRP3 pathway
mediators and microglial
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inflammasome could be developed as an adjunctive therapeu-
tic approach to ameliorate the deleterious effects of cocaine.

Conclusion

In summary, herein we report that the NLPR3 inflammasome
signaling involving generation of reactive oxygen species
plays a role in cocaine-mediated activation of microglia.
Blockade of NLRP3 reduced cocaine-mediated activation of
NLRP3 inflammasome and ensuing microglial activation and
inflammation is depicted in Fig. 9. Taken together, inhibiting
the NLRP3 inflammasome could thus be developed as a po-
tential therapeutic strategy for dampening cocaine-mediated
neuroinflammation.
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