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Abstract
Status epilepticus (SE) is defined as continuous and self-sustaining seizures, which trigger hippocampal neurodegeneration,
mitochondrial dysfunction, oxidative stress, and energy failure. During SE, the neurons become overexcited, increasing energy
consumption. Glucose uptake is increased via the sodium glucose cotransporter 1 (SGLT1) in the hippocampus under epileptic
conditions. In addition, modulation of glucose can prevent neuronal damage caused by SE. Here, we evaluated the effect of
increased glucose availability in behavior of limbic seizures, memory dysfunction, neurodegeneration process, neuronal activity,
and SGLT1 expression. Vehicle (VEH, saline 0.9%, 1 μL) or glucose (GLU; 1, 2 or 3 mM, 1 μL) were administered into
hippocampus ofmaleWistar rats (Rattus norvegicus) before or after pilocarpine to induce SE. Behavioral analysis of seizures was
performed for 90 min during SE. The memory and learning processes were analyzed by the inhibitory avoidance test. After 24 h
of SE, neurodegeneration process, neuronal activity, and SGLT1 expression were evaluated in hippocampal and
extrahippocampal regions. Modulation of hippocampal glucose did not protect memory dysfunction followed by SE. Our results
showed that the administration of glucose after pilocarpine reduced the severity of seizures, as well as the number of limbic
seizures. Similarly, glucose after SE reduced cell death and neuronal activity in hippocampus, subiculum, thalamus, amygdala,
and cortical areas. Finally, glucose infusion elevated the SGLT1 expression in hippocampus. Taken together our data suggest that
possibly the administration of intrahippocampal glucose protects brain in the earlier stage of epileptogenic processes via an
important support of SGLT1.
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Introduction

Status epilepticus (SE) is defined as continuous and self-
sustaining seizures lasting > 30 min, reaching a significant
number of patients [1–4]. Because it is an epileptogenic insult,

SE is capable of leading to temporal lobe epilepsy (TLE) and
promoting severe damage to the central nervous system
(CNS), such as activation of a recurrent excitatory circuit,
neurodegeneration, aberrant neurogenesis, and mossy fiber
sprouting [5–7]. Despite treatment with AEDs, about 30% of
patients may be refractory to standard drugs, experiencing
frequent and lasting seizures capable of promoting brain dam-
age [8–10].

Putative neuroprotective substances have been increasingly
identified using animal models of seizures. Intrahippocampal
administration of pilocarpine has typically been used to induce
TLE in rodents, mimicking epileptic seizures in humans,
which initiate as focal and then evolve to generalized
[11–13]. After the infusion of H-PILO, the animal behavior
is altered, presenting wet dog shake (WDS), forelimb myoc-
lonus, rearing, and falling [14–16]. As a consequence of
PILO-induced SE, especially after 24 h, selective cell death
occurs in DG hilus, CA3 and CA1 hippocampal subareas, as
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well as in extrahippocampal regions, including subiculum,
thalamus, amygdala, substantia nigra, and cortical areas
[17–21]. Furthermore, pilocarpine-induced SE increases reac-
tive oxygen species (ROS) production, directly associated
with neuronal degeneration, increasing malondialdehyde
(MAD) levels, and decreasing catalase (CAT) and superoxide
dismutase (SOD) antioxidant enzymes’ activity [22–25]. In
addition, cell death in the hippocampus and adjacent limbic
areas can lead to memory and learning impairments [26–28].

Glucose is the main source of energy for the mammalian
brain, and energy deficit can lead to neuronal dysfunction
[29]. During epileptic seizures, glucose uptake increases in
hyperexcited neurons above the body’s supply capacity
[30–33]. Furthermore, oxidative stress, mitochondrial dys-
function, energy failure, and tricarboxylic acid cycle (TCA)
failure typically occur in the hippocampus and nearby area
after SE, working together contribute to neuronal damage
[31, 34, 35]. Interestingly, both hypo- and hyperglycemia lead
to aggravated epileptic seizures and, consequently, compro-
mised the physiology of CNS [36–40]. Therefore, cerebral
glucose control may be an interesting approach to protect
against damage following pilocarpine-induced SE, but its un-
derlying mechanisms of action remain uncertain. Since the
neuronal membranes are impermeable to glucose, the trans-
port of glucose into the neuron is mediated by facilitated dif-
fusion and secondary active transport, via glucose transporters
(GLUTs) and sodium/glucose cotransporters (SGLTs), re-
spectively [41, 42]. SGLT1 isoform is expressed in the hippo-
campus and other brain regions, including amygdala, hypo-
thalamus, basal ganglia, and cortical areas [30, 43, 44]. We
have previously observed that SGLTs play a crucial role in
protecting against pilocarpine-induced SE damage. When we
inhibited hippocampal SGLTs with phlorizin, a nonspecific
inhibitor, there was an increase in WDS number, seizure se-
verity, and neuronal death pattern after SE [13]. In addition,
other authors have shown that glycemic index control was
able to suppress neuronal death following kainate-induced
SE, indicating that hippocampal glucose modulation may be
a critical therapeutic target [36].

Starting from this, we tested the hypothesis that increased
glucose availability upregulate SGLTs translocation, which is
correlated to the neuroprotective effect in the acute phase of
epileptogenesis.

Methods

Animals

This study was conducted in strict accordance with the Guide
for the Care and Use of Laboratory Animals of the Brazilian
Society of Laboratory Animals Science (SBCAL). All exper-
imental procedures were approved by the Ethical Committee

of the Federal University of Alagoas (Protocol # 04/2016),
according to Ethical Principles adopted by the Brazilian
College of Animal Experimentation (COBEA). Animal stud-
ies are reported in compliance with the approved guidelines.
Experiments were conducted in male Wistar rats (Rattus
norvegicus [n = 81, 240–340 g, 2–3 months]) from the main
breeding stock of the Federal University of Alagoas. Animals
were maintained on a 12-h/12-h light/dark cycle at 21 ± 2 °C,
with lights on at 07:00 AM and lights off at 07:00 PM. They
were individually housed in plastic cages with food and water
ad libitum. All experiments were designed tominimize animal
suffering and to limit the number of animals used.

All animals were monitored by research staff at least 2
times per day, in order to observe signs of illness or impair-
ment by observing the general body condition, respiration
rate, dehydration, posture, immobility, social interaction, and
response to manipulation. For the animals submitted to SE,
monitoring the health was carried out for 2 h/day until the
complete post-ictal recovery (about 2 days after SE; note that
intrahippocampal pilocarpine model allows rapid recovery
and a high rate of survival) [12, 13]. During this period, ani-
mals were treated with electrolyte and nutrient replacement (ip
injection of saline 0.9%, and by feeding animals with pasty
food). None of the animals presented clinical/behavior signal
of pain or unexpected distress, used as humane endpoint
criteria for euthanasia.

Surgical Procedure

Animals were anesthetized with ketamine (100 mg/kg, ip) and
xylazine (10 mg/kg, ip) and received 0.1 mL/100 g veterinary
pentabiotic (Fort Dodge®, subcutaneous) before the surgery.
After fixing on stereotaxic, animals received local anesthetic
(lidocaine with epinephrine, subcutaneous [Astra®]).
Posteriorly, a cannula was implanted stereotaxically in the
hilus of the dentate gyrus (DG) of the left hippocampus, ac-
cording to following coordinates: − 6.30 mm anterior-
posterior (AP, reference: bregma); 4.50 mm medial-lateral
(ML, reference: sagittal sinus); − 4.50 mm dorsal-ventral
(DV, reference: dura mater) [7, 12, 13, 45]. After the surgery,
animals were 7 days in recovery.

Intrahippocampal Microinjections

Animals received either glucose, pilocarpine, or vehicle by mi-
croinjections (1 μL) of glucose in the left hilus of the DG of
hippocampus, as described below. The rats were divided into 8
experimental groups: VEH (n = 10), H-PILO (n = 10), G+P
1 mM (n = 10), G+P 2 mM (n = 10), G+P 3 mM (n = 10), P+
G 1mM (n = 10), P+G 2mM (n = 10), and P+G 3mM (n = 11).

Animals were gently immobilized, and the drug microin-
jection was performed. VEH animals received only one ad-
ministration of intrahippocampal saline 0.9%. H-PILO
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animals received microinjections of vehicle (saline 0.9%), and
after 30 min, pilocarpine (1.2 mg) was administrated to evoke
limbic seizures. G+P animals received microinjections of 1, 2,
or 3 mM glucose [diluted in saline 0.9%]), and after 30 min,
pilocarpine (1.2 mg) was administrated to evoke limbic sei-
zures. In addition, P+G animals received microinjections of
pilocarpine (1.2 mg), and after 5 min, 1, 2, or 3 mM glucose
[diluted in saline 0.9%]) were administrated. We used a 5-μL
syringe (Hamilton Company, Reno, NV, USA) connected to a
microinjection pump (Harvard Apparatus PHD 2000,
Holliston, MA, USA) at a speed of 0.5 μl/min.

All animals that develop SE were rescued with diazepam
(5 mg/kg; ip) after 90 min of SE onset. Furthermore, animals
that did not develop SE received the injection of diazepam
under the same conditions.

Behavioral Analysis

SE Seizures

After microinjection of intrahippocampal pilocarpine, behav-
ioral activity was recorded by video camera (Full HD Digital
Camcorder Sony DCR-PJ6) for a period of 90 min, which is
enough time to observe neurodegeneration [12, 13]. Racine’s
scale [46] was used to categorize the behavioral analysis into
the following classes observed: (0) immobility, (1) facial
movements, (2) head nodding, (3) forelimb clonus, (4) rear-
ing, and (5) rearing and falling.

Furthermore, the latency period for the SE was analyzed.
Number of wet dog shake (WDS) was quantified before and
along SE. During the SE, the 90-min observation time was
split into 18 windows of 5 min and the most severe seizure
with more frequency in each interval was used to represent the
window [12]. In addition, the number and total time of class
3–5 seizures were analyzed to better understand the severity
and evolution of seizures along the SE among different exper-
imental groups. Finally, to determine the severity of seizures,
the representative scales of each window were summed, and
the result was divided by the total number of windows.

Inhibitory Avoidance Test (IAT)

In the inhibitory avoidance test (IAT), all animals were placed
in an automatically operated box (40 × 25 × 25 cm) with a
wall glass front, being the floor constituted by a steel grid
coupled to an energy generating box. The test was divided
into (1) learning/training session, before SE, animal was kept
on the platform and received a shock (2.0 s of 0.2 mA) after
getting off with its four paws on the grid, and (2) test session,
24 h after training and SE, animal was placed in the same
apparatus, under the same environmental conditions, without
the aversive stimulus.

Biochemical Assessments

Animals (n = 14) that survived within 24 h after
intrahippocampal pilocarpine-induced SE were guillotined, and
the brains were directly placed on an ice-plate and dissected in
order to remove the hippocampus. Hippocampi were immediate-
ly frozen in liquid nitrogen for further future use and stored at −
80 °C.

Total Thiol Content (Sulfhydryl Groups)

Sulfhydryl content was determined from reaction with com-
pound DTNB (5,5′-Dithiobis (2-nitrobenzoic acid). Aliquot of
homogenate (100 μg protein) was incubated in the dark with
25 μL of DTNB (20 mM) and the final volume of 1 mL with
extraction buffer was completed. Absorbance reading was
taken on spectrophotometer (AJX-6100PC) at 412 nm [47].
Results were expressed in mmol/mg protein.

Lipid Peroxidation

The colorimetric technique was used for the determination of
thiobarbituric acid reactive substances (TBARS) [48]. A total
of 0.3 mg/mL of hippocampi homogenate were added to
200 μL of 30% (w/v) trichloroacetic acid and stirred for 1 min.
Then, 200 μL of 10 mM TRIS HCl, pH 7.4, was added to the
material, stirred for 1 min, and then centrifuged at 2500 rpm for
10 min at 4 °C. The collected supernatant (450 μl) was mixed
with 0.73% (w/v) thiobarbituric acid (450μL)which reactedwith
the lipoperoxidation products to form a pink-colored compound.
Themixturewas incubated for 15min at 100 °C and then cooled.
The absorbance reading was performed in a spectrofluorimeter
(Flex Station 3, Molecular Devices) at 535 nm. The results were
expressed as mmol/mg protein.

Superoxide Dismutase (SOD) Activity

Determination of SOD activity was carried out accordingly to
Misra and Fridovich [49]. The hippocampi homogenate
(100 μg protein) was incubated in sodium carbonate buffer
(50 mM, pH 10.2, + 0.1 mM EDTA) in a water bath at 37 °C.
The reaction was initiated by the addition of 30 μL of epi-
nephrine (150 mM) in acetic acid (0.05%) in a final volume of
1 mL. The absorbance was read at 480 nm for 1 min on the
spectrophotometer (AJX-6100PC). One unit of SOD was de-
fined as the amount of protein required to inhibit the autoxi-
dation of 1 μmol of epinephrine per minute. The results were
expressed in U/mg protein.

Catalase Activity (CAT)

Catalase activity was monitored accordingly to Aebi [50]. The
test is based on the determination of the decomposition of H2O2.
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Eighty micrograms of proteins was added to a 50 mMphosphate
buffer (sodium phosphate monobasic monohydrate + dibasic
sodium phosphate), pH 7.0, 35 °C. The reaction was then started
with 0.3 mM H2O2 in a final volume of 1 mL. The decrease in
absorbance was monitored at 240 nm on a spectrophotometer
(AJX-6100PC) for 1 min. One unit of CAT was defined as the
amount of protein required to convert 1 μmol de H2O2 per min-
ute to H2O. The results were expressed in U/mg protein.

Histological Processing

In order to perform the histological procedures, animals were
injected with an overdose of xylazine and ketamine at 24 h after
SE induction and were transcardially perfused with 0.1 M
phosphate-buffered saline, pH 7.4 (PBS), followed paraformal-
dehyde solution (4%, diluted in PBS). Afterwards, the brains
were removed, cryoprotected with sucrose 20%, frozen at −
20 °C for 3 h and stored at − 80 °C. Sections were then cut
(30 μm thickness) using a cryostat (Leica CM 1850) at a tem-
perature ranging from− 18 to− 22 °C andwere processed for FJ-
C staining and immunofluorescence techniques.

FJ-C Staining Procedure

Brain sections were placed onto slides and then subjected to
successive washes of 100% ethanol for 3 min, 70% ethanol for
1 min, distilled water for 1 min. Afterwards, slides were trans-
ferred to a solution of 0.06% potassium permanganate for
15 min on a rotating platform. Slides were rinsed three times
for 1 min in distilled water and then transferred to the FJ
staining solution (0.0001%) for 30 min. After, slides were
rinsed three times for 1 min in distilled water [51]. Finally,
slides were coverslipped using fluoromount (EMS). The sec-
tions were examined, and images captured using a fluores-
cence microscope (Nikon DS RI1).

SGLT1 and c-Fos Immunofluorescences

We used an antibody that binds to SGLT1 or nuclear protein
c-fos. After intrahippocampal pilocarpine-induced SE, there is
an increased glucose uptake via SGLT and c-Fos overexpres-
sion, which indicates a neuronal hyperexcitability.
Immunofluorescence was used to analyze the expression of
both proteins primarily in the hippocampus and other areas of
the brain.

The immunohistochemistry assays were done in histo-
logical slide, and the protocol used for detection of SGLT1
and c-Fos antigens was the same, with only alteration of
primary antibodies. The following primary antibodies
were used: rabbit polyclonal IgG to SGLT1 (Catalog
Number - Orb11364, Biorbyt®, 1:100) and rabbit poly-
c lonal IgG to c-Fos (Lot # C1010, Santa Cruz
Biotechnology®, 1:50). Secondary antibody was used:

Alexa Fluor 594 Donkey secondary antibody (anti-rabbit
IgG, Biolegend®, San Diego, CA; 1: 2000). Briefly, the
immunohistochemistry protocol begins with brain tissue
slices submerged in methanol (10 min), followed by two
baths of 10 min in PBS 1x. An antigenic rescue was then
performed with citrate buffer (pH 6) for 10 min (output 6)
and, after a cooling period (30 min, room temperature),
immersed in the same solution. Sections were then incu-
bated in an autofluorescence blocking solution with PBS/
glycine 3% (1 h, room temperature), followed by a second
blocking solution for nonspecific sites using fish skin gel-
atin in 0.05% in PBS 1X and equine serum 1.5% (1 h,
room temperature, Product code – 11540636, Gibco™®
Horse Serum, heat inactivated). Shortly thereafter, it was
incubated with the anti-SGLT1 or anti-cfos primary anti-
body diluted in fish skin gelatin in 0.05% in PBS 1X
(overnight, 4 °C). In the second stage, the slices were
washed with PBS 1x (2 times in 10 min), followed by
incubation with Alexa 594 diluted in fish skin gelatin
0.05% in PBS 1X (1 h, room temperature). Sections were
washed with PBS 1x (two baths of 5 min), and DNA was
counterstained with fluorescent dye 4′,6-diamidino-2-
phenylindole (DAPI, ab104139, Abcam®, USA; 1:1000,
diluted in PBS 1x, 15 min, room temperature). Finally, the
sections were washed (PBS 1x, five baths of 2 min) and
used as mounting medium PBS/glycerol. To control for
binding specificity, sections were subjected to the same
protocol with omission of anti-SGLT1 and anti-cfos pri-
mary antibodies. Sections were examined and images cap-
tured using a fluorescence microscope (Nikon DS RI1).

Cell Counting and Densitometry

SGLT1 expression was quantified by densitometry, while
fluoro-Jade-positive (FJ+) and c-Fos-positive (c-Fos+)
cells were quantified by using the ImageJ software
(Wayne Rasband; Research Services Branch, National
Institute of Mental Health, Bethesda, MD, USA). In order
to quantify the FJ+ and c-Fos+ neurons in the hippocam-
pus and extrahippocampal areas, different coordinates
were used [45]. All cells were counted on the contralateral
side because animals that received microinjection of
intrahippocampal pilocarpine developed a scar around the
microinjection site [12].

In the hippocampus, we sampled in three different coordi-
nates: CA1, CA3, and hilus of dentate gyrus, (AP − 2.56 mm,
AP − 3.30 mm, and AP −6.30 mm), as showed by Castro et al.
[12]. These regions were selected because of the high sensi-
tivity to the neurodegenerative process. In addition, for the
mapping of cortical areas, we used three different coordinates:
motor primary and secondary (M1 and 2), somatosensory pri-
mary (S1), retrosplenial granular (RSGc), agranular insular
(AIP), ectorhinal (Ect), perirhinal (PRh), and piriform (Pir)
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(AP − 2.64 mm, AP − 3.36 mm, AP − 4.80 mm).
Additionally, the mapping of the dorsal subiculum (DS) and
the substantia nigra (reticular part, SNR) were made based on
three other coordinates: DS (AP − 4.92 mm, AP − 5.04 mm,
AP − 5.20 mm) and SNR (AP − 4.80 mm, AP − 4.92 mm, AP
− 5.04 mm). Finally, the thalamic (lateral posterior,
mediorostral part [LPMR], and centrolateral [CL]), hypotha-
lamic (paraventricular, posterior part [PVP]), and amygdaloid
(lateral, dorsolateral part [LaDL]) nuclei were mapped accord-
ing to the following coordinates: thalamus and hypothalamus
(AP − 2.92 mm, AP − 3.36 mm, AP − 3.72 mm) and amyg-
dala (AP − 2.92 mm; AP − 3.48 mm; AP − 3.84 mm).

Statistical Analysis

All experimental values are presented as mean ± SEM, and a
significance level of 5% (described as p < 0.05) was adopted
for all statistical tests. Comparisons of most of the results were
performed by unpaired t test or one-way analysis of variance
(ANOVA), followed by Dunnett’s post-test (GraphPad Prism
version 5.00 for Windows, GraphPad Software, San Diego,
CA, USA). Only in the inhibitory avoidance test, the data were
expressed as median with interquartile range and compared by
the Kruskal-Wallis test. The number of animals is cited in the
figure legends.

Results

Intrahippocampal Glucose Supply Does Not Change
Latency for Seizures but Increases the Number ofWDS

Typically, as expected, after administration of intrahippocampal
pilocarpine, the animals had a change in behavior, including
immobility, facial movements, head nodding, and myoclonic
movements of the limbs that evolved to continuous tonic clonic
convulsive seizures, indicating the onset of SE.

In the initial periods after intrahippocampal pilocarpine mi-
croinjection, animals had a latency interval without manifest-
ing epileptic seizures. In order to verify if the increase in
glucose supply at different concentrations (1, 2 or 3 mM) be-
fore and after intrahippocampal pilocarpine interferes with the
generation time of SE, the animal behavior was carefully eval-
uated before SE (Fig. 1A and B). The latency for SE was
similar in all groups that received the different concentrations
of glucose in relation to the control (one-way ANOVA, F (6,

64) = 0.4881, P = 0.8149; Fig. 1C).
In intrahippocampal pilocarpine models, it is common to ob-

serve the presence of repetitive movements in the head and neck
of rodents, motor pattern that stereotypes the shaking of a wet
dog. As expected, wet dog shake (WDS) was quite common and
frequent during the latency period in all animals, reducing dras-
tically after the beginning of the SE. Increased glucose supply

(3 mM) after intrahippocampal pilocarpine increased the number
of total WDS when compared to the control (t test, t16 = 2.252,
P = 0.0387; Fig. 1D).

The Impairment in Memory Consolidation Is
Maintained After Increased Glucose Availability

In order to evaluate the effect of increased hippocampal glu-
cose availability on memory consolidation, the inhibitory
avoidance test was performed (Fig. 1A and B). During the
training period, all animals spent little time on the platform
(Fig. 1E). In contrast, in the test period, the group that did not
have SE consolidated a long-term memory. Typically, the
group that received only H-PILO had impaired memory con-
solidation, as expected (Kruskal-Wallis test, p = 0.0006 vs
VEH; Fig. 1F). Increased glucose availability (1, 2 or 3 mM)
before and after intrahippocampal pilocarpine was not able to
reverse memory dysfunction following pilocarpine-induced
SE (Kruskal-Wallis test, p = 0.0006 vs VEH; Fig. 1F).

Intrahippocampal Glucose Supply Attenuates the
Severity of Seizures During SE

In order to assess the impact of glucose modulation on the sever-
ity of seizures, epileptic seizures were analyzed during 90 min of
SE according to Racine’s scale [46] (Fig. 2A andB). The number
and total time of class 3, 4, and 5 seizures remained unchanged
after administration of the different glucose concentrations (1, 2
and 3 mM) before and (1 or 2 mM) after intrahippocampal pilo-
carpine (p > 0.05). However, the higher glucose concentration
(3 mM) after intrahippocampal pilocarpine was able to reduce
the frequency and total time of class 3, 4, and 5 seizures com-
pared to control (Fig. 2C, D, F, G, I, J; p < 0.05).

When analyzed in detail the effect of increased glucose
concentration (3 mM) in the evolution of the seizures over
the SE, we observed that in the intervals of 20–40 and 30–
50 min, class 3 and 4 seizures remained reduced, respectively
(Fig. 2 E and H, p < 0.05). In all other final times, class 3 and 4
seizures of the P+G (3 mM) group remained like those of the
control, except class 4 seizure that decreases again at 90 min
(Fig. 2H, p < 0.05). In addition, class 5 seizure is decreased in
the range of 30–60 min (p < 0.05), remaining the same to the
control until the end of the SE (Fig. 2K).

Using the average of the most severe seizures along the 18
windows of SE, the seizure severity was evaluated.
Corroborating previous behavioral findings, only the high
availability of glucose (3 mM) after intrahippocampal pilocar-
pine was able to reduce the severity of seizures compared to
the H-PILO group (one-way ANOVA, F (6, 64) = 1.65, P =
0.04; Fig. 2L). In other words, glucose availability may exert
an anticonvulsive effect on the SE.
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Brain Glucose Supply Reduces Neuronal Death in the
Hippocampus and Other Brain Areas

Classically, pilocarpine-induced SE triggers neuronal death in
several brain areas, especially in the hippocampus [12, 13]. In
order to evaluate whether brain glucose modulation can prevent
neuronal damage caused by SE, the neurodegeneration process
was evaluated by histochemistry of FJ. When glucose was ad-
ministered prior to intrahippocampal pilocarpine at all concen-
trations (1–3 mM), the number of FJ + neurons was reduced in
the DG hilus (one-way ANOVA, F (6, 33) = 4.985, P = 0.001),
CA3 (one-way ANOVA, F (6, 33) = 4.976, P = 0.001), and CA1

(one-way ANOVA, F (6, 33) = 9.216, P < 0.0001) subfields of
hippocampus compared to the control (Fig. 4 A1–4, B1–4, and
C1–4). Similarly, all concentrations of glucose after
intrahippocampal pilocarpine were able to attenuate neuronal
death in the same areas of the hippocampus (P < 0.001, Fig. 3
A5–8, B5–8, and C5–8). In other words, besides promoting an
anticonvulsive role, hippocampal glucose modulation prevents
the neuronal damage characteristic of SE. The highest concen-
tration of glucose (3 mM) administered after intrahippocampal
pilocarpine showed better efficiency in the behavior of seizures
and in the neurodegenerative process; therefore, it was chosen
for the analysis of the other methodological approaches.

Fig. 1 Glucose control does not alter latency for seizures and memory
dysfunction but increases the number of WDS after pilocarpine-induced
SE. The experimental scheme (A, B). Rats received glucose microinjec-
tions 30 min before (A) or 5 min after intrahippocampal pilocarpine (B).
Glucose infusion prior and after intrahippocampal pilocarpine do not
change the latency to SE (one-way ANOVA, F (6, 64) = 0.5160, P =
0.7941; C). The supply of hippocampal glucose (3 mM) increased the
number of total WDS (one-way ANOVA, F (6, 64) = 0.8919, P = 0.5063;
D). After 24h of SE, long-term memory consolidation was analyzed by
inhibitory avoidance test in both rats receiving glucose before (A) or after
(B) intrahippocampal pilocarpine. Initially, all animals were submitted to
an aversive stimulus (training session) prior to SE induction (E). Memory

consolidation was not protected from increased glucose (1, 2, or 3 mM)
administration before (gray, blue, and red bar) and after (gray, blue and
red bar outline) intrahippocampal pilocarpine (Kruskal-Wallis test, p =
0.0006 vs VEH; F). Latency and WDS data represent the mean ± S.E.M.
of 10–11 rats. *P < 0.05; one-way ANOVA with Dunnett’s post hoc test
or unpaired t test. Memory dysfunction data represent the median with
interquartile range. *P < 0.05, ***P < 0.001, and ****P < 0.0001 com-
pared with VEH; one-way ANOVA with Kruskal-Wallis test with
Dunn’s post hoc test. VEH, vehicle; H-PILO, pilocarpine and saline;
G+P, glucose followed by pilocarpine infusion; P+G, pilocarpine follow-
ed by glucose infusion; DZP, diazepam; SE, status epilepticus; SEM,
standard error of the mean
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Some infusion of glucose administered before and after
intrahippocampal pilocarpine were also able to attenuate the
number of FJ+ neurons in motor (one-way ANOVA, F (6,

30) = 4.81, P = 0.0015), somatosensory (one-way ANOVA,
F (6, 19) = 2.17, P = 0.09), insular (one-way ANOVA, F (6,
26) = 6.16, P = 0.0004), ectorhinal (one-way ANOVA, F (6,

Fig. 2 Increased glucose availability reduces seizure severity following
intrahippocampal pilocarpine-induced SE. The experimental scheme (A,
B). Rats received glucose microinjections 30 min before (A) or 5 min
after intrahippocampal pilocarpine (B). The epileptic seizures were ana-
lyzed during the 90 min of SE, according to the Racine’s scale. Over the
90 min of SE, the total number (one-way ANOVA, F (6, 64) = 1.716, P =
0.04; C) and time (one-way ANOVA, F (6, 64) = 2.035, P = 0.01; D) of
class 3 seizures (head and neck myoclonus) were decreased when admin-
istered glucose (3mM; red bar outline) into the hippocampus. Class 3 was
reduced at the beginning and at the end of SE (E). Glucose administration
(3 mM; red bar outline) reduced the total number (one-way ANOVA, F (6,

64) = 2.714, P = 0.01; F) and time (one-way ANOVA, F (6, 63) = 2.328,
P = 0.02; G) of class 4 seizures, decreasing significantly in the 30–50 time

range (H). Similarly, the total number (one-way ANOVA, F (6, 63) =
1.742, P = 0.03; I) and time (one-way ANOVA, F (6, 63) = 1.744, P =
0.02; J) of class 5 was attenuated by increased glucose availability
(3 mM; red bar outline). During the evolution of class 5, glucose inter-
fered strongly between times 30–60 (K). Increased glucose supply
(3 mM; red bar outline) was able to decrease the severity of seizures
(one-way ANOVA, F (6, 64) = 1.65, P = 0.04; L). Error bars indicate the
SEM. Data represent the mean ± S.E.M. of 10–11 rats. *P < 0.05,
**P < 0.01, and ***P < 0.001; one-way ANOVA with Dunnett’s post
hoc test or unpaired t test. H-PILO, pilocarpine and saline; G+P, glucose
followed by pilocarpine infusion; P+G, pilocarpine followed by glucose
infusion; DZP, diazepam; SE, status epilepticus; SEM, standard error of
the mean

1223Mol Neurobiol (2021) 58:1217–1236



Fig. 3 Increased glucose availability attenuates neurodegeneration
process in the hippocampus following intrahippocampal pilocarpine-
induced SE. After 24 h of SE, the neurodegeneration process was evalu-
ated by Fluoro-Jade C (FJ-C) histochemistry in both rats receiving glu-
cose 30 min before or 5 min after intrahippocampal pilocarpine. Hilar
interneurons (A1–7) and pyramidal neurons of the CA3 (B1–7) and CA1
(C1–7) regions were labeled with FJ (FJ+, green). Increased glucose
administration at all concentrations before and after intrahippocampal
pilocarpine was able to reduce the number of FJ + neurons in the DG
hilus (one-way ANOVA, F (6, 33) = 4.985, P = 0.001; A8), as well as in
the CA3 (one-way ANOVA, F (6, 33) = 4.976, P = 0.001; B8) and CA1

(one-way ANOVA, F (6, 33) = 9.216, P < 0.0001; C8) regions.
Representative digital zoom was done on the photomicrographs of the
control (A1, B1 ,and C1; see squares) Arrows represent the DG hilus,
CA3, or CA1 regions.Magnification, 100×; scale bar, 100 μm. Error bars
indicate the SEM. Data represent the mean ± S.E.M. of 5–7 rats.
*P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001 comparedwith
H-PILO; one-way ANOVA with Dunnett’s post hoc test or unpaired t
test. H-PILO, pilocarpine and saline; G+P, glucose followed by pilocar-
pine infusion; P+G, pilocarpine followed by glucose infusion; DZP, di-
azepam; SE, Status epilepticus; SEM, standard error of the mean
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29) = 3.79, P = 0.006), perirhinal (one-way ANOVA, F (6,
26) = 3.73, P = 0.008), and piriform (one-way ANOVA, F
(6, 23) = 4.36, P = 0.004) cortices compared to control (Fig.
4 A–F 1–8). In addition, thalamic [lateral posterior (one-way
ANOVA, F (6, 27) = 8.66, P < 0.0001) and centrolateral (one-
way ANOVA, F (6, 26) = 15.06, P < 0.0001)], hypothalamic
[posterior paraventricular (one-way ANOVA, F (6, 27) =
10.96, P < 0.0001)], and amygdaloid lateral (one-way
ANOVA, F (6, 27) = 4.27, P = 0.004) nuclei were protected
due to high glucose administration (Fig. 5 A–D 1–8).
Similarly, the supply of cerebral glucose was able to reduce
neuronal damage in the subiculum (one-way ANOVA, F (6,
33) = 6.38, P = 0.0002) and the substantia nigra (one-way
ANOVA, F (6, 30) = 4.48, P = 0.002) (Fig. 5 E, F 1–8).
Besides, presenting an anticonvulsive effect, modulation of
hippocampal glucose plays a neuroprotective role in several
brain regions.

Effects of Brain Glucose Supply on Oxidative Stress
Markers and Antioxidants Enzymes Activity in the
Hippocampus

Typically, pilocarpine-induced SE exacerbates reactive
oxygen species (ROS) levels in hippocampus. In order to
analyze whether hippocampal glucose control interferes
with oxidative stress promoted by SE, oxidative stress
markers and antioxidants enzymes activity were assessed
(Online Resource 1A). As the higher concentration of glu-
cose (3 mM) administered after intrahippocampal pilocar-
pine had a more significant result, it was chosen for all
subsequent analyzes. MDA formation was significantly
increased in hippocampus of H-PILO animals when com-
pared with VEH, but increased glucose (3 mM) supply
after intrahippocampal pilocarpine was not able to prevent
elevated MDA levels (one-way ANOVA, F (2, 8) = 5.182,
P = 0.036) (Online Resource 1B). In addition, as a result of
intrahippocampal pilocarpine-induced SE, the total thiol
number was markedly reduced in the hippocampus of H-
PILO animals and hippocampal glucose infusion did not
change this condition (one-way ANOVA, F (2, 10) = 6.048,
P = 0.019) (Online Resource 1C). Concordant with the el-
evated MDA level, we found significant decreases in the
activity of antioxidant enzymes CAT (one-way ANOVA,
F (2, 8) = 24.57, P = 0.0004) and SOD (one-way ANOVA,
F (2, 9) = 4.947, P = 0.0355) in P+G 3 mM and H-PILO
animals, compared with VEH (Online Resource 1D and
E). Specifically, hippocampal glucose modulation did not
reverse decreased antioxidant enzymatic activity. Taken
together, these data indicate that increased glucose avail-
ability was not able to interfere with oxidative stress
caused by intrahippocampal pilocarpine-induced SE.

Increased Glucose Availability Attenuates Neuronal
Activity in the Hippocampus and Other Brain Areas

Neuronal hyperexcitability is a typical characteristic of
pilocarpine-induced SE [12, 52, 53]. In order to identify whether
modulation of hippocampal glucose interferes with neuronal hy-
perexcitability, cellular activity was evaluated by cFOS immu-
nofluorescence. In hippocampus, increased glucose (3 mM) after
intrahippocampal pilocarpine reduced the total number of
cFOS+ neurons in the DG hilus (t test, t8= 2.481, P = 0.0380),
CA3 (t test, t10 = 5.651, P = 0.0002), and CA1 (t test, t8 = 2.735,
P = 0.0257) subfield compared to control (Fig. 6 A–F 1–4).

As in neurodegenerative processes, a hippocampal-like re-
sult was observed in neuronal activity in other brain areas.
Elevated hippocampal glucose supply (3 mM) after
intrahippocampal pilocarpine decreased neuronal activity in
retrosplenial (one-way ANOVA, F (6, 22) = 3.59, P =
0.012), perirhinal (one-way ANOVA, F (6, 22) = 3.59, P =
0.012), and piriform (one-way ANOVA, F (6, 16) = 3.70, P =
0.017) cortices in relation to control (Online Resource 2 A-F
1–4). In addition, the total number of cFOS+ neurons was
lower in the subiculum of the group that received the glucose
infusion when compared to control (one-way ANOVA, F (6,
20) = 6.51, P = 0.0006; Online Resource 2 G-H 1–4).
Similarly, intrahippocampal administration of glucose was
able to attenuate neuronal activity in thalamic [lateral posterior
(one-way ANOVA, F (6, 22) = 10.94, P < 0.0001) and
centrolateral (one-way ANOVA, F (6, 22) = 3.54, P = 0.01);
Online Resource 3 A-D 1–4], hypothalamic [posterior
paraventricular (one-way ANOVA, F (6, 20) = 5.21, P =
0.0023); Online Resource 3 E-F 1–4], and amygdaloid
(lateral) nuclei (one-way ANOVA, F (3, 9) = 9.65, P =
0.0036; Online Resource 3 G-H 1–4).

Translocation of the Sodium/Glucose Cotransporter 1
(SGLT1) Increases After High Hippocampal Glucose
Availability Followed by Intrahippocampal
Pilocarpine

During a metabolic deficit, such as SE, the uptake of glucose
is increased by greater SGLT function, which is essential dur-
ing the epileptic seizures [13, 30, 43, 44]. We analyzed
SGLT1 expression by immunofluorescence to test whether
increased glucose availability alters SGLT1 translocation to
the neuronal membrane. The higher glucose concentration
(3 mM) administered after intrahippocampal pilocarpine was
able to exacerbate the SGLT1 translocation in the DG hilus (t
test, t7 = 2.407, P = 0.0470), as well as in CA3 (t test, t8 =
2.926, P = 0.0191) and CA1 (t test, t8 = 3.467, P = 0.0085)
subareas of hippocampus compared to the control (Fig. 7 A–
F 1–4). Thus, modulation of hippocampal glucose plays an
anticonvulsive and neuroprotective role possibly involving
SGLT1.
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Discussion

Glucose consumption is acutely accentuated during epileptic
seizures [30, 54], and the effects of its modulation are vast and

very complex in the epileptic brain. Along the SE, character-
ized by continuous and self-sustained seizures [2, 55–58],
there is a marked increase in cerebral blood flow and oxygen
consumption, and consequently, in glucose utilization [59].
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Most patients with SE present an intense secondary
hypometabolism, which is capable of compromising several
brain areas [60–65]. Severe hypometabolism coupled with
limited glucose availability [66–68] may be directly associat-
ed with the typical process of neuronal death in the hippocam-
pus and nearby regions. In view of this, the control of glyce-
mic status can be a determining factor during SE. In the pres-
ent study, we evaluated the effects of high availability of hip-
pocampal glucose on the severity of epileptic seizures and
histological changes following intrahippocampal
pilocarpine-induced SE. Overall, our main finding was that
modulation of the hippocampal glucose index is able to pro-
tect the brain from damage resulting from intrahippocampal
pilocarpine-induced SE.

After intrahippocampal pilocarpine injection, a latency pe-
riod preceding SE is common in animal models [7, 12, 13].
The alteration in latency may be an important factor to be
considered for the genesis of epileptic seizures; however, we
observed that the latency interval for SE was not altered after
glucose administration. In addition, WDS is typically ob-
served throughout this latency phase prior to kainic acid- or
H-PILO-induced SE [14, 69–71]. Our findings demonstrated
that glucose infusion after intrahippocampal pilocarpine was
able to increase the number of WDS during latency. Previous
studies have argued that WDS elevation can act as an endog-
enous anticonvulsant mechanism [14]. In other words, the
pronounced motor manifestation of the WDS after cerebral
glucose supply may be indicative of the reduction in seizures
severity, considering that WDS and epileptic seizures may
possibly be propagated through different pathways [69, 72].

Classically, epileptic seizures worsen throughout SE [11],
starting with milder seizures, such as chewing behavior and
head nodding, that intensify for forelimb myoclonus, rearing,
and falling [12, 13]. In order to observe the effect of hippo-
campal glucose control on the severity of seizures, epileptic
seizures followed by glucose infusion were evaluated accord-
ing to Racine’s scale [46]. We demonstrated that
intrahippocampal increased glucose availability after pilocar-
pine was able to attenuate the number and total time of classes
3–5, indicating the decrease of the severity of the seizures.

Decreased score and duration of seizures have been asso-
ciated with the anticonvulsant effect of several substances
with antiepileptic potential [73, 74]. In contrast to our find-
ings, the intraperitoneal infusion of pyruvate, a natural metab-
olite of glucose, is not able to alter the time or severity of
seizures [75]. On the other hand, it has been previously de-
scribed that the glycolytic inhibitor 2-deoxy-D-glucose (2-
DG) is capable of attenuating susceptibility to seizures [76],
similarly to our data. The glycolytic inhibitor 2-DG has shown
an efficient seizures suppressor effect in several animal
models [77, 78], reducing epileptiform burst, severity and du-
ration of seizures, as well as increasing the latency for
intrahippocampal pilocarpine-induced seizures in rats [79,
80]. Because it is a glucose analog, 2-DG enters the cell via
glucose transporters and is converted to 2-DG-6-phosphatase
by hexokinase [81–83], which impedes its metabolism by
glycolysis [84]. Interestingly, 2-DG attenuates the levels of
ATP that activate the non-voltage dependent potassium chan-
nel (KATP) regulated by intracellular ATP/ADP status [85,
86], as well as upregulates the protein and mRNA expression
of Kir6.1 and Kir6.2 subunits of this channel [76], which
together indicate an antiepileptic role [87].

Hyperglycemia and hypoglycemia have also influenced
seizure susceptibility [36–38, 40, 88]. Although no interfer-
ence was observed in seizure sensitivity of hypoglycemic B6
mice, an interesting study showed that hyperglycemia was
able to modulate seizure susceptibility [36]. As previous stud-
ies [89, 90], these authors found that streptozotocin (STZ)-
induced hyperglycemia (experimental diabetes—chronic or
sustained hyperglycemia model) was able to accentuate the
duration of seizures during KA-induced SE in B6 mice, indi-
cating a higher susceptibility to seizures. In contrast, using an
acute hyperglycemia model, they showed that the severity of
seizures was reduced due to the increase in latency time to
onset of severe seizures. Based on this, the glycolytic pathway
has been shown to be a determinant factor for the modulation
of seizure propagation, but the underlying mechanism for dif-
ference in seizures sensitivity in both models is uncertain.
Thus, hippocampal glucose control may act as a potential
anticonvulsant agent.

Glucose transporter activity is associated with epilepsy [13,
91]; however, the effect of glucose in additional pathways
with anticonvulsant effects activated by N-methyl-D-aspartate

�Fig. 4 Increased glucose supply decreases the neurodegeneration process
in cortical areas after intrahippocampal pilocarpine-induced SE. After
24 h of SE, the neurodegeneration process was evaluated by Fluoro-
Jade C (FJ-C) histochemistry in both rats receiving glucose 30min before
or 5 min after intrahippocampal pilocarpine. The concentration of 3 mM
glucose had a more significant potential in protecting neuronal damage
following SE. Some concentrations of hippocampal glucose (1, 2, or
3 mM) before and after intrahippocampal pilocarpine reduced FJ+ neu-
rons in M1 (one-way ANOVA, F (6, 30) = 4.81, P = 0.0015; A1–8; dark
blue rectangle), S1 (one-way ANOVA, F (6, 19) = 2.17, P = 0.09; B1–8;
light blue rectangle), AIP (one-way ANOVA, F (6, 26) = 6.16, P =
0.0004; C1–8; green rectangle), Ect (one-way ANOVA, F (6, 29) =
3.79, P = 0.006; D1–8; yellow rectangle), PRh (one-way ANOVA, F
(6, 26) = 3.73, P = 0.008; E1–8; orange rectangle) and Pir (one-way
ANOVA, F (6, 23) = 4.36, P = 0.004; F1–8; pink rectangle) areas com-
pared with control (H-PILO, black bar). Arrows represent the FJ+ neu-
rons in each cortical area. A digital zoom was performed with the same
proportions in all groups of animals to better show the FJ + neurons in the
different brain areas. Magnification, 100×; scale bar, 100 μm. Error bars
indicate the SEM. Data represent the mean ± S.E.M. of 5–7 rats.
*P < 0.05 and **P < 0.01 compared with H-PILO; one-way ANOVA
with Dunnett’s post hoc test. H-PILO, pilocarpine and saline; G+P, glu-
cose followed by pilocarpine infusion; P+G, pilocarpine followed by
glucose infusion; M1, motor; S1, somatosensory; AIP, insular; Ect,
ectorhinal; PRh, perirhinal; Pir, piriform; SEM, standard error of the
mean
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(NMDA), 5-HT1B/1D, and GABA receptors remain unclear.
Interestingly, it was showed that chronic administration of
high doses of morphine can promote an anticonvulsant effect
in mice with pentylenetetrazole-induced seizures [92]. In

addition, it was suggested that theN-methyl-D-aspartate recep-
tor (NMDA-R)/nitric oxide (NO) pathway is involved with
the anticonvulsant role of morphine. Sumatriptan promotes
reduction in the severity of seizures in lithium-PILO-induced
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SE model, suggesting a mechanism mediated through 5-
HT1B/1D receptors and associated with anti-inflammatory
properties [93]. Furthermore, protection against motor sei-
zures can also be mediated through GABA receptors [94].
Although our data indicates that glucose modulation plays a
crucial role in reducing the severity of the seizures, the intra-
cellular mechanism of action underlying the anticonvulsant
effect of glucose control remains uncertain. All these data
discussed support the hypothesis that the activation of the
glycolytic pathway can be multifactorial, since in our results
the improvement observed in the behavior of the seizures was
associated with greater local bioavailability of glucose. Thus,
we believe that present study opens new perspectives for pre-
vention and developing novel epilepsy therapies.

Typically, pilocarpine-induced SE causes hyperexcitability
neuronal and neuronal death in DG hilus, CA3, and CA1
subfields of the hippocampus [12, 13, 55]. The role of glucose
control in the neurodegeneration process is complex and un-
certain. It is known that during the SE there is an exacerbated
release of glutamate and excessive intracellular calcium that
may lead also to ROS increase [95–98], promoting cell death
by excitotoxicity [96, 99, 100]. In addition, limited energy
availability [66, 68], impaired ATP production [101], and
the release of ROS [102–104] may contribute to SE-induced
excitotoxic cell death. Therefore, excitotoxic cell death may
be sensitive to energy availability.

We report here that the increased infusion of
intrahippocampal glucose before and after intrahippocampal
pilocarpine decreased neuronal activity and cell loss in areas
of the hippocampus. Our findings corroborate previous studies
that have shown that infusion of glucose or its metabolites exert

a neuroprotective effect against SE-induced neuronal death. A
relevant study demonstrated that administration of exogenous
glucose (20%, ip) for 3 consecutive days following KA-
induced SE significantly reduced cell loss in hilus DG, and
CA3 and CA1 subfields [36]. Similarly, another study showed
that pyruvate (500 mg/kg, ip) was able to attenuate neuronal
death caused by KA-induced SE in the same regions of the
hippocampus [75]. These authors have interestingly correlated
the lower neuronal loss promoted by pyruvate to the reduced
accumulation of zinc in hippocampal neuronal cell bodies, sug-
gesting a putative mechanism of action of the glycolytic path-
way that justifies the potential neuroprotective effect. Many
studies indicate zinc as an endogenous mediator of KA-
induced neuronal death [105–107], which has been shown to
occur through oxidative necrosis [108, 109] associated with
mitochondrial damage and energy failure [110, 111], as well
as NADPH oxidase induction and poly (ADP-ribose) polymer-
ase (PARP) activation [112, 113]. These findings support the
idea that controlled infusion of glucose or its metabolites may
play a neuroprotective role, reducing neuronal activity and,
consequently, the degeneration process caused by SE.

SE-induced seizures preferentially affect one or more
extrahippocampal areas, including thalamus, amygdala, sub-
stance nigra, and neocortical regions, increasing glucose utili-
zation, excitability, and neuronal death [18–21, 52, 114].
Thalamus is a strategically located region that communicates
through afferent and efferent pathways with motor areas of the
cerebral cortex, amygdaloid nuclei, and motor-related subcor-
tical structures, such as the basal ganglia [115, 116]. Since the
basal ganglia-thalamo-cortical loops are responsible for con-
trolling voluntary movement, involving events such as mus-
cular contraction, motor planning, and execution [12, 117,
118], its dysfunction is associated with the development of
generalized motor seizures [70], neuronal damage, and cogni-
t ive defici t [18, 21, 119]. We demonstrated that
intrahippocampal glucose supply was able to reduce neuronal
activity and death following intrahippocampal pilocarpine-
induced SE in the amygdaloid and thalamic nuclei, subiculum,
substantia nigra, and cortical areas. Similar to our data, as in
the hippocampus, pyruvate protected the cortex and thalamus
from neuronal death, which was correlated with decreased
zinc in these regions [75]. Since there is mitochondrial dys-
function, tricarboxylic acid cycle (TCA) damage, and oxida-
tive stress in hippocampal formation and other brain areas,
such as the cortex and thalamus [31, 34, 35], cerebral glucose
control may be a putative therapeutic approach to protect
against neuronal damage caused by SE.

Hippocampal and extrahippocampal regions are responsi-
ble for memory consolidation and learning processes.
Pilocarpine-induced SE can cause damage to the hippocam-
pus and several adjacent brain areas, triggering neuronal death
and, consequently, learning deficits and memory dysfunction
[26–28, 119–122]. In order to evaluate the effect of

�Fig. 5 Glucose control reduces the neurodegeneration process in the
thalamus, amygdala, subiculum, and substantia nigra after
intrahippocampal pilocarpine-induced SE. The concentration of 3 mM
glucose had a more significant potential in protecting neuronal damage
following SE. Most hippocampal glucose concentrations (1, 2, or 3 mM)
before and after intrahippocampal pilocarpine decreased FJ+ neurons in
PVP (one-way ANOVA, F (6, 27) = 10.96, P < 0.0001; A1–8; red rect-
angle), CL (one-way ANOVA, F (6, 26) = 15.06, P < 0.0001; B1–8; pink
rectangle), LPMR (one-way ANOVA, F (6, 27) = 8.66, P < 0.0001; C1–
8; dark red rectangle), LaDL (one-way ANOVA, F (6, 27) = 4.27, P =
0.004; D1–8; blue rectangle), DS (one-way ANOVA, F (6, 33) = 6.38,
P = 0.0002; E1–8; light blue rectangle) and SNR (one-way ANOVA, F
(6, 30) = 4.48, P = 0.002; F1–8; green rectangle) areas compared with
control (H-PILO, black bar). Arrows represent the FJ+ neurons in each
brain area. A digital zoomwas performed with the same proportions in all
groups of animals to better show the FJ + neurons in the different brain
areas. Magnification, 100×; scale bar, 100 μm. Error bars indicate the
SEM. Data represent the mean ± S.E.M. of 5–7 rats. *P < 0.05,
**P < 0.01, ***P < 0.001, and ****P < 0.0001 compared with H-PILO;
one-way ANOVAwith Dunnett’s post hoc test. H-PILO, pilocarpine and
saline; G+P, glucose followed by pilocarpine infusion; P+G, pilocarpine
followed by glucose infusion; PVP, posterior paraventricular th ncl; CL,
centrolateral th ncl; LPMR, lateral posterior th ncl; LaDL, lateral amyg-
daloid ncl; DS, subiculum; SNR, substantia nigra; ncl, nucleus; th, tha-
lamic; SEM, standard error of the mean
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hippocampal glucose modulation on memory consolidation,
cognitive deficit followed by intrahippocampal pilocarpine-
induced SE was analyzed by the inhibitory avoidance test.
Our f ind ings showed tha t g lucose supply af te r
intrahippocampal pilocarpine was not able to prevent memory
dysfunction. According to our findings, it has been established
that STZ-induced diabetic hyperglycemia worsens the mem-
ory and learning performances followed by pilocarpine-
induced SE [89]. These authors demonstrated that chronic
and progressive glycemic exacerbation plays an excitotoxic
role that leads to neuronal death, which justifies cognitive
damage. Although our data showed that controlled glucose
increase in hippocampal region can protect from neuronal
loss, the deficit in memory consolidation and learning pro-
cesses remained unchanged.

Additionally, pilocarpine-induced SE is able to raise ROS
generation by mitochondria, which are their major target
[22–25]. Mitochondrial dysfunction includes deficits in mito-
chondrial oxygen consumption ratios to form ATP [123], de-
crease of respiratory chain complex I activity from 20 h of SE
[31, 34, 124], mitochondrial ultrastructural damage, and re-
duction of cytochrome oxidase III (complex IV of respiratory
chain) mRNA and protein levels in chronic epileptic rat tissue
[125]. Although attenuated neurodegeneration, our results
showed that increased glucose availability did not interfere
with oxidative stress followed 24 h after SE, both in MDA
(product of lipid peroxidation) levels and in CAT and SOD
oxidant enzyme activity. The effect of hippocampal glucose
modulation on oxidative stress in pilocarpine-induced SE is
poorly described, but a study indicated that the use of a

Fig. 6 Glucose modulation decreases neuronal activity in the
hippocampus after intrahippocampal pilocarpine-induced SE. After 24 h
of SE, the neuronal activity was analyzed by cFOS immunofluorescence
in both rats receiving glucose 5 min after intrahippocampal pilocarpine.
The nuclei were labeled with DAPI (blue, middle panels). Fluorescent
labeling of the hippocampus shows strong cFOS immunoreactivity (red,
left panels) in hilar interneurons (DG hilus, A1) and pyramidal neurons
(CA3, C1; and CA1, E1) in H-PILO rats. Merge of cFOS and DAPI is
shown in right panels. Quantitative analysis of cFOS immunofluorescent
labeling of pyramidal neurons and interneurons of the H-PILO (black
bars) and P+G (red bar outline) rats shown in B4, D4 and F4. Glucose
control (3 mM) after intrahippocampal pilocarpine reduced the number of
cFOS+ neurons in the DG hilus (t test, t10 = 2.521, P = 0.0303; B4), as

well as in the CA3 (t test, t10 = 5.750, P = 0.0002; D4) and CA1 (t test,
t9 = 2.581, P = 0.0296; F4) regions. Representative digital zoom was
done on the photomicrographs of the control (A1–3, C1–3, and E1–3;
see squares) Arrows represent the DG hilus, CA3, or CA1 regions. All
images were digitally adjusted to the same proportions in all groups of
animals to better highlight and specify the different hippocampal areas
(hilus, CA3 and CA1). Magnification, 200×; scale bar, 50 μm. Error bars
indicate the SEM. Data represent the mean ± S.E.M. of 3–6 rats.
*P < 0.05 and ***P < 0.001 compared with H-PILO; unpaired t test. H-
PILO, pilocarpine and saline; P+G, pilocarpine followed by glucose in-
fusion; DZP, diazepam; SE, status epilepticus; SEM, standard error of the
mean
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synthetic antioxidant prevented oxidative stress, deficits in
mitochondrial oxygen consumption rates, hippocampal neu-
ronal death, and cognitive damage [123]. Therefore, the neu-
roprotective effect of hippocampal glucose control is not as-
sociated with oxidative stress.

We observed an additional benefit to the 3 mM glucose infu-
sion after pilocarpine administration. Both G+P 3 mM and P+G
3mMpromoted similar effects to reduce neurodegeneration pro-
cess in hilus, CA3 and CA1 of hippocampus, M1, ECT, thala-
mus, amygdala, subiculum, and substantia nigra regions. P+G
3 mM promoted additional benefits as increase WDS; reduces
the number, time, and severity of seizures; and reduced the neu-
rodegeneration process in S1, AIP, PRH, and PIR areas.
Therefore, our findings suggest that these additional benefits of

glucose administration after intrahippocampal pilocarpine are re-
lated with the higher glucose availability when the neuronal ex-
citability increases during epileptic seizures. In contrast, when
glucose is infused 30 min before intrahippocampal pilocarpine
administrationmay occur an intracellular glucose flux to neurons
and dispersion, which reduces the local supply of glucose at the
onset of seizures. Thus, the bioavailability of hippocampal glu-
cose can influence the different results observed.

During SE, a metabolic deficit, it has been established that
SGLTs play a crucial compensatory role in glucose uptake by
hippocampal neurons [30, 43, 44]. Previously, we demonstrat-
ed that nonspecific inhibition of SGLTs with phlorizin was
able to enhance severity seizures and neuronal death, indicat-
ing the importance of their expression during SE [13]. Here,

Fig. 7 Increased glucose supply increases the SGLT1 translocation in
hippocampal neurons after intrahippocampal pilocarpine-induced SE.
After 24 h of SE, the SGLT1 expression was analyzed by immunofluo-
rescence and quantified by densitometry in rats receiving glucose 5 min
after intrahippocampal pilocarpine. The nuclei were labeled with DAPI
(blue, middle panels). Fluorescent labeling of the hippocampus shows
strong SGLT1 immunoreactivity (red, left panels) in hilar interneurons
(DG hilus, A1) and pyramidal neurons (CA3, C1; and CA1, E1) in P+G
rats. Merge of SGLT1 and DAPI shown in right panels. Quantitative
analysis of SGLT1 immunofluorescent labeling of pyramidal neurons
and interneurons of the H-PILO (black bars) and P+G (red bar outline)
rats shown in B4, D4, and F4. Glucose modulation (3 mM) after
intrahippocampal pilocarpine intensified the SGLT1 expression in

neurons of DG hilus (t test, t7 = 2.407, P = 0.0470; B4), CA3 (t test,
t8 = 2.926, P = 0.0191; D4) and CA1 (t test, t8 = 3.467, P = 0.0085; F4)
regions. Representative digital zoom was done on the photomicrographs
of the control (B1–3, D1–3, and F1–3; see squares). Arrows represent the
DG hilus, CA3, or CA1 regions. All images were digitally adjusted to the
same proportions in all groups of animals to better highlight and specify
the different hippocampal areas (hilus, CA3 and CA1). Magnification,
400×; scale bar, 25 μm. Error bars indicate the SEM. Data represent the
mean ± S.E.M. of 4–6 rats. *P < 0.05 and **P < 0.01 compared with H-
PILO; unpaired t test. H-PILO, pilocarpine and saline; P+G, pilocarpine
followed by glucose infusion; DZP, diazepam; SE, status epilepticus;
SEM, standard error of the mean
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we also showed for the first time that intrahippocampal infu-
sion of glucose possibly via glucose sensors T1R2/T1R3
[126] increased SGLT1 expression in hippocampal subfields
that have been associated with neuroprotection process similar
to presented in our results (Online Resource 4).

Conclusion

In summary, we showed that hippocampal glucose availability
increases the amount of WDS, as an anticonvulsant attempt,
and reduces the severity of seizures during intrahippocampal
pilocarpine-induced SE. In addit ion, the ectopic
intrahippocampal supply of glucose attenuates neuronal activ-
ity and the process of neurodegeneration in hippocampal and
extrahippocampal regions, without preventing memory deficit
and oxidative stress. Finally, we observed that these findings
can be sustained by increased SGLT1 expression. Although
hypo- and hyperglycemia have been reported as the reason for
increased seizure susceptibility and neuronal damage follow-
ing SE, our results support the hypothesis that local glucose
control exerts a neuroprotective profile via SGLT1 transloca-
tion, during the acute phase of epileptogenesis, indicating a
putative therapeutic strategy of epilepsy.
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