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Abstract
Status epilepticus (SE) can lead to serious neuronal damage and act as an initial trigger for epileptogenic processes that may lead
to temporal lobe epilepsy (TLE). Besides promoting neurodegeneration, neuroinflammation, and abnormal neurogenesis, SE can
generate an extensive hypometabolism in several brain areas and, consequently, reduce intracellular energy supply, such as
adenosine triphosphate (ATP) molecules. Although some antiepileptic drugs show efficiency to terminate or reduce epileptic
seizures, approximately 30% of TLE patients are refractory to regular antiepileptic drugs (AEDs). Modulation of glucose
availability may provide a novel and robust alternative for treating seizures and neuronal damage that occurs during
epileptogenesis; however, more detailed information remains unknown, especially under hypo- and hyperglycemic conditions.
Here, we review several pathways of glucose metabolism activated during and after SE, as well as the effects of hypo- and
hyperglycemia in the generation of self-sustained limbic seizures. Furthermore, this study suggests the control of glucose
availability as a potential therapeutic tool for SE.
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Introduction

Status epilepticus (SE) is a clinical emergency characterized
by either a continuous self-sustained seizure or a sequence of
short seizures with no return to baseline, unleashing a high
mortality rate [1–8]. SE can be convulsive or nonconvulsive
[9–16], and it is capable of promoting neuronal death, gliosis,

and wide molecular changes in several brain areas [4, 11, 12,
17, 18]. Furthermore, SE leads to temporal lobe epilepsy
(TLE), which is characterized by spontaneous recurrent sei-
zures, abnormal synaptic reorganization, mossy fiber
sprouting, hippocampal neurodegeneration, and neurogenesis
[19–23]. SE induction in rodents by electrical or chemical
stimulation have been used to model epileptogenesis process
and TLE clinical features [4, 8, 10–13, 24–32]. Local or sys-
temic administration of the pilocarpine (PILO) or kainic acid
leads to a pattern of repeated limbic seizures and/or SE, which
can endure for many hours [4, 8, 19, 30, 32].

Recent [18F]fluorodeoxyglucose positron emission tomog-
raphy (FDG-PET) studies with patients and animal models
showed that SE induces secondary hypometabolism in the
epileptogenic areas, including hippocampus, cortex, and stri-
atum [33–40]. Secondary hypometabolism has also been as-
sociated to specific patterns of SE in studies with humans and
animal models [33, 41–43]. During an epileptic seizure or SE,
the overexcited neurons must increase glucose uptake [44–46]
above organism’s supply capacity, resulting in adenosine tri-
phosphate (ATP) deficit in the nervous tissue [47], where
energy consumption is much higher than in several other body
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tissues [48]. Glucose is taken up into brain cells by two major
groups of transporters: (1) glucose transporters (GLUTs) for
facilitated diffusion and (2) sodium/glucose cotransporters
(SGLTs) for its secondary active transport [49–54]. Glucose
transporter 1 (GLUT1) is expressed in both blood–brain bar-
rier and glial cells [55], while glucose transporter 3 (GLUT3)
presents high glucose affinity and transport capacity in neu-
rons [54, 56–59]. Sodium/glucose cotransporters 1 and 2
(SGLT1 and SGLT2) have been observed in hippocampus
[50, 51]. Despite the evidence of glucose availability modu-
lating brain damage, it has been difficult to define the role of
glucose transporters and associated glucose metabolism in
isolated epileptic seizures or during and after SE.

Here, we review recent advances regarding regulation of
glucose supply during self-sustained epileptic seizures. Our
purpose was to survey the main data associated with the mod-
ulation of glucose in seizures, in order to discuss the possible
pathways that could explain the alterations on seizures suscep-
tibility in hypo- and hyperglycemic conditions. Furthermore,
we summarize these findings and draw an overview to con-
tribute for new insights in treatment strategies that could ef-
fectively reduce neuronal damage associated with TLE, in the
absence of counteractive side effects.

Intracellular Metabolism of Glucose and SE

The physiological pattern of the brain requires high amounts
of energy supply, in constant demand, comprising an average
of 20% of the body’s energetic consumption [60]. Glucose is
converted into glucose-6-phosphate (glucose-6P) immediate-
ly after being transported to the intracellular environment.
Glucose-6P is processed through glycolysis, resulting in two
molecules of pyruvate which are metabolized during the tri-
carboxylic acid cycle and the oxidative phosphorylation in the
mitochondria [61].

Functional brain imaging techniques, such as FDG-PET
and functional magnetic resonance imaging (fMRI), allowed
for the conduction of integrative studies between regional
brain energy metabolism (energy delivery and use) and neural
cell activity [62–65]. FDG-PET detects alterations in regional
cerebral blood flow, as well as in glucose and oxygen con-
sumption [9, 66–68] while fMRI provides data on regional
blood oxygenation levels [69]. It was demonstrated that cere-
bral glucose metabolism is altered in epilepsy as well as in
other neurological disorders [70–75].

Glucose Metabolism in Clinical Studies

SE promotes a sharp increase of regional cerebral blood flow
and oxygen consumption correlated with enhancement in glu-
cose utilization [76]. In an 11-year-old girl, an intense
hypometabolism was observed in most of the left hemisphere,

6 weeks, and 8 months after one SE episode. The right hemi-
sphere, however, showed a heterogeneous increase in the met-
abolic rate of glucose only at 8 months after the SE occurred
[77]. Similarly, a severe hypometabolism was observed in the
left hemisphere of a 48-year-old right-handed man with Alien
hand syndrome after a complex partial SE. Notably, the peri-
odic lateralized epileptiform discharges (PLEDs) generated
during the SE were only detected in the left hemisphere, es-
pecially in areas such as basal ganglia and thalamus [78].
Moreover, a patient presenting right hemispheric PLEDs due
to SE showed right hypometabolism in the temporal, parietal,
and occipital lobes [79]. The same pattern has been seen in an
elderly patient with permanent sensorimotor dysphasia after
SE [42]. These authors suggest that both lateralized seizures
and hypometabolism are directly correlated with the pattern of
neuronal death observed in hippocampal formation and adja-
cent areas [11, 12, 80].

In other clinical studies, FDG-PET showed scattered areas
of regional hypometabolism in pediatric and adult patients
with refractory and nonconvulsive SE [9, 81, 82]. A recent
study showed hypometabolism in cortical areas, such as fron-
tal, parietal, and posterior cingulate cortices, and hypermetab-
olism in thalamic, caudate and dentate nuclei, and cerebellar
vermis, of a 17-year-old girl with absence of SE [83].
According to the authors, these findings indicate a relevance
of the thalamus in absence of SE, as well as modulation of
cortical and cerebellar regions associated with the control of
epileptiform discharges. Table 1 shows a summary of clinical
studies related to cerebral glucose metabolism.

Glucose Metabolism in Animal Models

Since the 1990s, distinct animal models of SE have shown
alterations in the metabolism of cerebral glucose during or
af te r se l f - sus ta ined se izures [10, 28] . In 1991,
VanLandingham and Lothman, using continuous hippocam-
pal stimulation (CHS), developed a nonconvulsive model of
self-sustained limbic SE (SSLSE). This model was used to
evaluate the regional cerebral glucose utilization (RCGU) af-
ter 90 min of CHS [10, 28]. RCGUwas observed in acute (1 h
after induction) and chronic (1 week or 1 month) periods.
During the acute period, RCGU was elevated in some brain
regions, such as hippocampus, retrohippocampal area, and
limbic and nonlimbic structures, while hypometabolism was
observed in neocortical structures. In the chronic period, 1
week after SE, an increase of RCGU was recorded in some
limbic regions, but RCGU levels returned to baseline at 30
days after SE [10]. On another study, rats were submitted to
the same protocol with or without hippocampal
commissurotomies, in order to evaluate whether hippocampal
commissures were necessary for the initiation and mainte-
nance of SSLSE. These studies showed RCGUwas bilaterally
and symmetrically enhanced in hippocampus and other areas
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(retrohippocampal, limbic, and nonlimbic structures) in the
group with preserved commissures, while both groups pre-
sented bilateral hypometabolism in neocortical regions [28].

Glucose hypometabolism was also shown in rodent SE
models induced by kainic acid or PILO. In lithium-PILOmod-
el of SE in rats, a severe glucose hypometabolism occurred in
hippocampus, cortex, and striatum during epileptogenesis,
and this alteration was associated to other pathological chang-
es, such as hippocampal, atrophy, neuronal death, and gliosis
[33, 84]. This hypometabolism was partially recovered in the
chronic phase, maybe due to increased cell number associated
with astrogliosis [68]. Similarly, in the early phase after sys-
temic PILO-induced SE, glucose utilization was reduced se-
verely in limbic structures, such as hippocampus; however,
glucose levels were restored during the chronic period [39].
Controversially, other authors have reported that reduced glu-
cose metabolism gradually expands to limbic regions in the
chronic phase [36]. Furthermore, in the kainic acid-induced
SE model in rats, FDG-PET demonstrated hippocampal
hypometabolism after 24 h of SE, which tended to decrease
in the early phase of epileptogenesis and then stood out again
with the emergence of CREs, what was accompanied by an
increase in the expression of GLUT1 and synaptophysin in the
same area [43]. These authors concluded that the glucose
hypometabolism precedes neuronal loss and CRE. In addition,
in a mouse model of PILO-induced SE, mitochondria were
metabolically dysfunctional in hippocampal formation and
cortex, 3.5 to 4 weeks after SE [85]. Moreover, a recent study
showed a significant increase in glucose uptake in rat hippo-
campus after 4 and 24 h of SE induced by lithium-PILO, later
returning to baseline levels [86]. Controversially, these same
authors observed a hippocampal hypometabolism in chronic
epileptic rats [86]. Table 2 shows a summary of preclinical
studies of SE related to cerebral glucose metabolism.

Taken together, these clinical and experimental findings
support the idea that SE compromises intracellular glucose
metabolism, which may contribute to the activation of inflam-
matory mechanisms, neuronal loss and gliosis, and may also

predispose the brain to develop epilepsy [87]. Therefore, re-
storing glucose metabolism during and after continuous self-
sustained seizures may be an effective way of dealing with
epileptogenesis and its complications. Additionally, because
of the different pathophysiological findings, experimental
models, brain areas, and phases of epileptogenesis, the precise
mechanism among the possible factors that contribute to
hypometabolism or hypermetabolism in these conditions has
not been reported in current literature. Therefore, new clinical
and preclinical trials should be carried out to address this
issue.

Hypo- and Hyperglycemic Mechanisms
Associated with SE Generation

Metabolic disorders are often associated with epileptic sei-
zures; however, their relationship is poorly understood. The
importance of glucose balance has emerged from studies dem-
onstrating that epileptic seizures can be accentuated under
conditions of hyper- or hypoglycemia [47].

Hypoglycemia and SE

Hypoglycemia is a clinical condition characterized by low
plasma glucose concentration affecting both diabetic and non-
diabetic patients. Hypoglycemia and hypoglycemic seizures
may occur due to an increase in the amount of insulin in the
plasma, being common in patients who are under treatment
with insulin [88].

Neuronal excitation is tightly tied to brain energy metabo-
lism. Severe hypoglycemia represents a serious threat for nor-
mal brain metabolism causing unbalance between inhibitory
and excitatory neuronal networks, what leads to increased
seizure susceptibility and risk for brain damage. The function-
al and structural injuries induced by severe hypoglycemiamay
persist when normal glucose levels are restored, leading to

Table 1 Main clinical studies related to cerebral glucose metabolism

Scientific articles Main results

Van Bogaert et al. [77] Hypometabolism in left hemispheric after 6 weeks and 8 months of SE (an 11-year-old girl)

Duane et al. [81] Hypometabolism in areas of both hemisphere (a 7-year-old boy with left hemiparesis secondary)

Fernández-Torre et al. [42] Left hemisphere and contralateral cerebellar cortex (a right-handed 74-year-old man) with hypometabolism

Kim et al. [78] Hypometabolism in left cerebral hemisphere, affecting the basal ganglia and thalamus (a 48-year-old right-handed man)

Sakakibara et al. [79] Hypometabolism in right cerebral hemisphere, affecting temporal, parietal, and occipital lobes (a man with PLED)

Barros et al. [82] Hypometabolism in left occipital lobe (a 7-year-old boy with super-refractory partial SE)

Pari et al. [9] Widespread hypometabolism in posterior regions bilaterally (19-year-old woman with nonconvulsive SE)

Shimogori et al. (2014) Cortical hypometabolism (absence SE)

Shimogori et al. [83] Hypermetabolism in thalamic and cerebelar structures (a 17-year-old girl with absence SE)
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permanent cognitive dysfunction, EEG abnormalities, and
predisposition for unprovoked seizures [89].

According to several studies, there is a not fully understood
relationship between hypoglycemia and epileptic seizures
[90–94]. It is well established that low glucose concentrations
can change cortical excitability [95] and stimulate glutamate
release, inducing cerebral hyperexcitability and, consequent-
ly, NMDA receptor-mediated excitotoxicity [96], with hippo-
campus showing particular susceptibility to these effects [97].

Studies aiming to describe epileptic manifestations associ-
ated with hypoglycemia have been carried out since the
1980s. Sapolsky and Stein [98], following a kainic acid-
induced SE in rats, showed that hippocampus of hypoglyce-
mic animals presented more damage when compared with
normoglycemic or hyperglycemic ones, suggesting that limit-
ed energy compromises the survival of neurons in seizures.
Severe acute cases of hypoglycemia in humans as a compli-
cation of therapy for insulin-dependent diabetes mellitus [90]
or due to the excessive consumption of alcohol [99] are often
associated with neurological side-effects [100, 101], resulting
frequently in generalized seizures [102, 103]. A study evalu-
ated causes of symptomatic convulsive SE in children, and
found that most of them had metabolic disorders, such as
electrolyte imbalance, hypoglycemia, hypocalcemia, or hypo-
magnesemia [91]. Other authors found that 11% of adult pa-
tients with SE presented a metabolic disfunction as cause of
convulsive SE [104]. Unfortunately, these studies did not sep-
arate the isolating effect of blood glucose from other metabol-
ic disturbances [105]. In rats, insulin-induced hypoglycemia
also leads to generalized seizures [92, 106].

There is relative limitation in studies that have evaluated
the relationship between hypoglycemia and epilepsy in animal
models. One such study investigated this relationship by eval-
uating the modulation, by glycemic levels, of kainate-induced
seizure susceptibility, as well as its neuropathological conse-
quences [47]. These authors found no difference in the sever-
ity of seizures between hypoglycemic mice and other groups,
as evidenced by similar latency at the onset of the first severe
seizure and its duration. However, their results demonstrated
that mice with insulin-induced hypoglycemia had an increase
in hippocampal neurodegeneration, with significant loss of
cells in three hippocampal subfields (dentate hilus, CA3 and
CA1) [47].

Diabetes is not directly related to seizures, however the
hypoglycemic conditions eventually generated in this process
may be associated. Seizures can occur in diabetic and non-
diabetic rats [94], and seizures may be associated with acute
hypoglycemia, as well as the death of animals is related to the
frequency of seizures and not to blood glucose levels. This
suggests that hypoglycemia would be a predisposing factor to
seizures, therefore a morbidity and not a mortality factor.
Furthermore, the same authors showed that severe hypogly-
cemia as a precondition for seizures was associated with ani-
mal deaths, and suggest that this is probably due to the
brainstem involvement in the seizures, which may affect the
cardiorespiratory system and lead to mortality [93, 94].

Unlike animal model studies, in the last years several,
mostly cohort, studies in human patients have been conducted
to elucidate the relationship between hypoglycemia and epi-
lepsy. In 2015, Halawa and colleagues investigated an

Table 2 Main preclinical studies of SE related to cerebral glucose metabolism

Scientific articles Main results

Hippocampal stimulation

VanLandingham and
Lothman [10]

Acute: ↑ glucose utilization (hippocampus and other structures) and hypometabolism in neocortical structures
Chronic: ↑ glucose utilization (1 week/limbic regions)
Return to baseline levels (30 days)

Kainic acid model

Jupp et al. [43] ↓ Glucose metabolism in hippocampus (24 h after SE)
Hypometabolism tend to decrease (by 1 week) and more intense during SRSs
↑ GLUT1 and synaptophysin

Pilocarpine model

Guo et al. [39] ↓ Glucose utilization (hippocampus and limbic structures)—early phase after SE
Glucose utilization restored—chronic phase after systemic pilocarpine-induced SE in rats

Lee et al. [36] ↓ Glucose metabolism gradually expands to limbic regions—chronic phase after SE
Lithium-pilocarpine induced SE in rats

Smeland et al. [85] Mitochondrial metabolic dysfunction (hippocampal formation and cortex)—pilocarpine-induced SE in mice

Zhang et al. [68] ↓ Glucose metabolism—epileptogenesis partial recovery glucose uptake (hippocampus)—chronic phase after SE—
systemic pilocarpine-induced SE in rats

García-García et al. [33, 84] ↓ Glucose metabolism (hippocampus, cortex and striatum)—lithium-pilocarpine model in rats
Associated to hippocampal neurodegeneration and gliosis
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association between different levels of hypoglycemia and the
occurrence of epileptic seizures in patients without previous
diagnosis of epilepsy; as a result, coma was reported as the
neurological symptom mostly caused by hypoglycemia, with
convulsions being a rare event. In addition, a cohort study
with more than 2,000 patients with type 1 diabetes identified
an increased risk for epilepsy in these patients with a history of
hypoglycemia (16,5%) compared with patients without hypo-
glycemia (2,67%) [107]. Moreover, an elegant study showed
that seizures associated with hypoglycemia occurred in 90 of
170 patients aged 0 to 4 years; in 68% of the patients, the first
hypoglycemic seizure was brief and fast, whereas the remain-
ing 32% had more severe conditions and evolved to SE or
coma [108]. The evaluation of such events according to the
age of the patients demonstrated that brief seizures were more
frequent than SE in both age groups studied: 63% versus 37%
in neonates and 71% versus 29% in infants/children; in fact,
blood glucose levels seem to be critical for the type of seizures
presented by these patients, as they were significantly lower in
SE than in brief seizures events [108].

Comparing neonatal period with childhood, the sequelae of
SE are more intense in early ages [108]. Hypoglycemia in the
neonatal period is relatively more common than in the older
age groups and is considered a possible cause of seizures in
the first year of life [109]. The relationship between the first
hypoglycemic event and seizures was observed and this out-
come was more frequent in children under 3 years old [108].
In the first years of life, seizures may initially appear as
spasms [110].

It is important to note that SE is not necessarily associated
with systemic factors, including hypoglycemia, in human pa-
tients, therefore hypoglycemia does not work as an etiological
agent of SE [111]. Although this study was performed through
medical records and electroencephalograms of only three pa-
tients without systemic complications who had died between
11 and 27 days after triggering SE, other authors found a weak
correlation between hypoglycemia and epileptic seizures [88,
112]. For example, in a case of 229 diabetic patients, only 2

presented hypoglycemia and epileptic seizures concomitantly,
representing a total of 0.8% of the diabetic patients evaluated
[88]. Table 3 shows a summary of clinical and preclinical
studies that correlate hypoglycemia and SE.

Hyperglycemia and SE

Amongmetabolic disturbances, hyperglycemia has frequently
associated with deleterious effects on the central nervous sys-
tem (CNS) induced by epileptic seizures [113]. Both type I
and type II diabetes increase the susceptibility to epileptic
seizures in these patients, emphasizing the importance of gly-
cemic control for seizure treatment [114, 115]. Neuronal ex-
citability and epileptic seizures are related to the rapid use of
glucose and glycolysis [116, 117]. Hyperglycemia may also
be associated with other factors to become the cause of SE. It
is known that age can influence the outcome and severity of
convulsive SE [118, 119].

As in the clinical studies, it has been shown that diabetic
animals frequently develop seizures, depending on the sever-
ity of an ischemic insult and blood glucose concentration
[113, 120]. Additionally, rats with diabetic hyperglycemia
had a higher severity of seizures which induced a greater dam-
age of the hippocampus after SE, followed by a higher mor-
tality rate, or worsening of the cognitive capacity for learning
in surviving animals [117]. This corroborates with another
study that showed an increase of kainate-induced cell loss
after SE in mice with non-ketotic hyperglycemia and
diabetes-induced hyperglycemia [47].

Currently, there are some studies that point out that hyper-
glycemia can facilitate the entry of glucose into the brain and
be involved in cell death during SE [121], also triggering
morphological changes at the presynaptic terminals of mossy
fibers that play important roles in increasing neuronal damage.
Acute and chronic hyperglycemia produces increased suscep-
tibility to excitotoxic cell death, the same effect observed as a
consequence of seizures [47, 122]. High levels of glucose in
the brain may increase the amount of ATP, facilitating ATP-

Table 3 Main clinical and
preclinical studies that correlate
hypoglycemia and SE

Scientific articles Main results

Clinical reports

Schober et al. (2012) Severe hypoglycemic events associated with epilepsy

Gataullina et al. [108] ↑ Correlation between hypoglycemic children and SE

Falip et al. [88] ↓ Correlation between hypoglycemia and epileptic seizures

Halawa et al. (2015) ↑ Risk for developing seizures associated with hypoglycemic events

Chou et al. [107] ↑ Risk of epilepsy in patients with DM1 and history of hypoglycemia

Arhan et al. (2017) 64% with hypoglycemia had intractable epilepsy

Animal model

Schauwecker [47] Severe hypoglycemic events in epilepsy patients

Maheandiran et al. [94] Seizures were associated with acute hypoglycemia
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dependent brain reactions. These results show that hypergly-
cemia by itself is able to kill neurons, especially in the hilus
region of hippocampus [121]. On the other hand, infusing a
certain concentration of glucose after kainic acid-induced SE
can be profoundly neuroprotective against seizure-induced
neuronal damage [47, 121]. In this context, this brain glucose
modulation can protect neurons of specific hippocampi re-
gions. Table 4 shows a summary of clinical and preclinical
studies that correlate hyperglycemia and SE.

Glucose Transporters in the Brain and Their
Involvement in SE Modulation

Although the brain accounts for only 2% of body mass, it
receives 15% of cardiac output and 25% of glucose supply,
being responsible for 20% of the organism’s oxygen con-
sumption [123]. Glucose is transported through the blood-
brain barrier (BBB) to the cerebrospinal fluid via glucose
transporters or by the capillaries of the circumventricular or-
gans which do not have tight junctions nor exert barrier prop-
erties [60, 124–126]. Glucose passes through the cell mem-
brane by a specific transport system, which includes two types
of glucose transporters: (1) the facilitated diffusion GLUTs
that transport glucose in favor of its concentration gradient
and 2) the SGLTs that transport glucose in favor of the sodium
concentration gradient [127].

Glucose Transporters

GLUT1 is expressed in the basal and luminal membranes of
the BBB endothelial cells, as well as in astrocytes and cell
bodies of neurons, but it has not been described in microglia
[55]. GLUT3 is the most abundant in the brain and is
expressed in neurons, mainly in axons and dendrites, having
a transport capacity five times greater than that of GLUT1

[128]. Furthermore, GLUT3 adapts to the demands of neuro-
nal metabolism [53]. Currently, it is known that other types of
GLUTs are expressed in the brain. GLUT2 protein is present
in hypothalamic neurons and serves as a glucose sensor in the
regulation of food intake [129]; moreover, GLUT2 regulates
synaptic activity and contributes to neurotransmitters release
in hippocampal neurons. Besides, GLUT5 has been described
only in microglia as a hexose transporter and its regulation is
still poorly understood. Finally, GLUT4 and GLUT8 are
insulin-regulated glucose transporters and these transporters,
although expressed in cell bodies of cortex and cerebellum
neurons, are mainly found in the hippocampus and amygdala
[130].

Hypo- and hyperglycemia have been shown to be able to
modulate the expression of GLUTs in the brain [131]. An
interesting study showed that chronic hypoglycemia induced
by insulin infusion for 1 week increased the expression of
GLUT3, but not GLUT1, showing a correlation between the
rate of cerebral glucose metabolism and GLUTs [132].
Similarly, upregulation of GLUT3 protein was observed in
the brain of rats subjected to insulin infusion (25 U/kg) for 8
days, indicating that this transporter adapts to metabolic dis-
orders such as chronic hypoglycemia [133]. Recently, other
authors have shown the expression of GLUT3 in several
models of hypoglycemia [134]. In this study, mice with severe
insulin-induced hypoglycemia experienced seizures and a
trended higher GLUT3 in the hippocampus and cortex, which
returned to baseline levels after glucose reperfusion. In addi-
tion, these authors related the change in GLUT3 expression to
the upregulation of the nitric oxide marker (nitrotyrosin), in-
dicating that this scenario triggered by severe hypoglycemia
with seizures may be associated with glutamate/
NMDAreceptor/nitric oxide/GLUT3 axis pathway [135,
136]. Interestingly, Pitchaimani et al. [134] also showed a
change in p-BADser155 expression, suggesting a metabolic
preference for ketone bodies during hypoglycemia. In

Table 4 Main clinical and preclinical studies that correlate hyperglycemia and SE

Scientific articles Main results

Clinical reports

Huang and Reichardt [117] Excitability and epileptic seizures are related to the rapid use of glucose and glycolysis

Toledo et al. [119] Age influenced the outcome and severity of convulsive SE

Lavin [114] Glycemic control for seizure treatment

Santiago et al. [121] Be involved in cell death during SE

Thundiyil et al. (2011) The control can interrupt the seizures without the use of antiepileptics

Xia et al. [113] Associated with epileptic seizures and deleterious effect on the central nervous system

Animal model

Huang and Reichardt [117] Greater severity in the epileptic attack

Santiago et al. [121] Is able to kill neurons especially in the hilus region

Schauwecker [47] Higher susceptibility to seizure-induced cell death after SE
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summary, severe insulin-induced hypoglycemia alters the ex-
pression of GLUT3 possibly as a way of adapting the brain to
glucose uptake in order to preserve normal neuronal function-
ing [134, 137].

Additionally, it was showed that chronic streptozotocin-
induced hyperglycemia was able to increase the use of local
cerebral glucose, as well as promoting a moderate (7.5%)
reduction in the average density of GLUT1, but not GLUT3
[138]. The reduction of GLUT1 expression in BBB suggests a
neuronal protective effect of hyperglycemia in brain.
Likewise, these authors have observed a downregulation of
GLUT1 in brain regions, including cortex, amygdala, thala-
mus, and cerebellum. Similar data showed that GLUT1 ex-
pression is downregulated in the BBB after a week of diabetes
in rats [139].

GLUTs are crucial energy sources for the brain and their
disorder can lead to a series of neurological manifestations.
Considered an epileptic encephalopathy, GLUT1 deficiency
syndrome (GLUT1DS) is caused by de novo heterozygous
mutation in SLC2A1 gene, and it affects the CNS due to
impaired cerebral glucose uptake through the BBB, which
also culminates in reduced glucose levels in the cerebral spinal
fluid (hypoglycorrhachia) [140–143]. A number of clinical
phenotypes are observed in GLUT1DS patients, such as de-
layed development, cognitive and learning deficits with men-
tal retardation, movement damage, including ataxia, dystonia,
or dyskinesia, as well as absence seizures and generalized
tonic–clonic seizures [144–147]. GLUT1 deficiency or persis-
tent childhood hypoglycemia can trigger neuroglycopenia,
caused by a partial and persistent damage to the CNS glucose
supply and that culminates in hyperexcitability, epilepsy,
movement disorders and other neuropsychopharmacology
manifestation [148]. These results in GLUT1 deficiency pa-
tients, may be associated with the activation of anaerobic gly-
colysis, flux from fatty acids to triglyceride, production of
fatty acids and cholesterol esters, acting as a trigger for
epileptogenesis [149]. The ketogenic diet has been used as
the therapy of choice in GLUT1DS patients for reducing sei-
zures and motility disabilities leading to remission of parox-
ysmal symptoms [142, 150, 151]. However, this treatment has
already failed in GLUT1DS patients with refractory epilepsy
[152]. In addition, it has been reported that acute hyperglyce-
mia was able to promote a transient improvement in seizures
and EEG recording, as well as in attention and motor activity
of GLUT1DS patients [153]. Figure 1 summarizes the glucose
transporters regulation in normoglycemic, hypoglycemic, hy-
perglycemic and GLUT1DS conditions.

Sodium/Glucose Cotransporters

SGLTs are transmembrane proteins that contribute to cellular
homeostasis by performing secondary active glucose transport
in favor of the electrochemical gradient of sodium ions. These

proteins were initially identified in the brush border membrane
of enterocytes and in the proximal kidney tubule cells [154].
SGLT1 is encoded by the SLC5A1 gene and is composed of 14
transmembrane segments, whose N-terminal face is directed
towards the interstitial and the C-terminal face is anchored in-
side the plasma membrane [155]. A powerful role of water
transport was associated with SGLT1, once the stoichiometric
relationship of transport capacity was observed to be
2Na+:1glucose:264 H2Omolecules [156]. Sodium ions initially
bind to the extracellular side of SGLT1, promoting a confor-
mational change that allows glucose to attach to the binding
site. A new conformational change of the protein allows the
release of sodium ions and glucose in the intracellular environ-
ment, after what the transport cycle is completed, allowing for
the return of the protein to its initial conformation [154].
SGLT1 is mainly expressed in the intestine, but is also present
in the kidneys, salivary glands, trachea, skeletal muscle, heart,
liver, testis, prostate and brain [49, 154, 157, 158]. Recently,
expression of SGLT1 has been shown in various regions of the
CNS, such as hippocampus (CA1 and CA3), parietal and fron-
tal cortices, putamen, paraventricular nucleus of the hypothala-
mus, amygdala, and in the Purkinje cells of the cerebellum [51].

SGLT2 isoform is encoded by the SLC5A2 gene and
carries the transport of only one sodium ion for each glucose
molecule [159]. SGLT2 has been observed in the hippocam-
pus and cerebellum. Functional assays with mouse brain slices
suggest that SGLT2 is responsible for capturing 20% of total
methyl-4-[F-18] fluoro-4-deoxy-D-glucopyranoside (Me-
4FDG), a highly specific substrate of SGLT not transported
by GLUTs [50].

Functional Role of Brain SGLTRegulation
in Limbic Seizures and Neurodegeneration
After PILO-Induced SE

In conditions of normoglycemia and adequate oxygen perfu-
sion, glucose transport is probably mediated by GLUT3 and
facilitated glucose diffusion may be sufficient for the energy
supply of neurons [154]. However, reality may be different
when energy supply is reduced and/or energy consumption is
enhanced in pathological situations such as ischemia, hypox-
emia, hypoglycemia, or epileptic seizures. The concentration
of glucose in the firing microenvironment of the neurons can
decrease greatly, being lower than the Km value of GLUT3
[49]. These authors induced an epileptic focus with penicillin
in the frontal cortex and observed increased uptake of glucose
via SGLTs, reflecting the upregulation of this protein in neu-
rons. These findings show that on a low-glucose concentra-
tion, as what occurs during seizures, SGLTs may be essential
for the survival of neurons.

Few studies have associated the SGLTs in SE modulation
[11, 49–51]. Our group has recently demonstrated for the first
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time an intrinsic association of SGLTs with neuronal survival
during limbic self-sustained seizures induced by
intrahippocampal PILO microinjection [11]. In this study,
SGLTs were blocked by intrahippocampal administration of
phlorizin (PZN), a nonspecific inhibitor of SGLTs, 30 min
prior to PILO administration. Inhibition of SGLTs increased
the number of wet dog shakes that occur during SE and can
serve as an indicator of SE severity. In addition, aggravated
self-sustained limbic seizures occurred during the 90 min of
SE, showing a higher frequency of the most severe behaviors
described by the Racine’s scale (class 5) [160] in the PZN
group. These behavioral findings indicate that the blockage
of SGLTs intensify limbic seizures during SE.

Additionally, 24 h after SE, the PZN increased the number
of Fluoro-Jade-positive neurons, a marker of neural cells in
degeneration [12, 161], in the regions of the dentate gyrus
(DG), the hilus of the DG, CA3, and CA1 of hippocampus
[11]. Taken together, these behavioral and histopathological
results support the idea that SGLTs are fundamental tools in
low-glucose concentration and high metabolic demand condi-
tions, such as during prolonged limbic seizures, thus
protecting neurons against degeneration.

New Insights for Action Mechanism
of Glucose in the SE

Under normal physiological situation, glucose crosses the
BBB through GLUT1 and can enter directly into neurons
through GLUT3. Glucose is metabolized in cytoplasm by

conversion into molecules of pyruvate, which pass through
the tricarboxylic acid cycle and oxidative phosphorylation in
mitochondria [60].

On the other hand, during prolonged epileptic sei-
zures, such as seen in SE, glucose metabolism is com-
promised, which is directly associated with mitochondri-
al dysfunction, as well as increased reactive oxygen
species levels. This metabolic deficit impairs cell surviv-
al, aggravating cell death rates. In an attempt to protect
neurons against neuronal death, according to some au-
thors [11, 50, 51], the affected brain areas increase up-
take of glucose via SGLT1 [49], possibly by enhancing
the expression of this transporter. Although greater
GLUT3 expression also occurs during SE [43] to sup-
port the increased energy demand and glucose metabo-
lism [33, 68, 82–84], SGLT1 expression is necessary in
order to transport glucose in lower concentrations, that

Fig. 1 Schematic drawing of the modulation of GLUTs expression in the
brain under normal and pathological conditions. Under normoglycemic
conditions, GLUT1 and GLUT3 are at baseline levels (a). However,
when glucose concentration decreases in CSF during chronic insulin-
induced hypoglycemia, GLUT3 expression increases as an adaptive
mechanism (b). On the other hand, streptozotocin-induced

hyperglycemia moderately decreases the expression of GLUT1 (c).
During GLUT1DS, glucose concentration in the CSF decreases due to
de novo heterozygous mutation in the SLC2A1 gene, compromising glu-
cose uptake via the BBB (d). BBB (blood-brain barrier); CSF (cerebro-
spinal fluid); GLUT (glucose transporter); GLUT1DS (GLUT1 deficien-
cy syndrome)

�Fig. 2 Schematic drawing on glucose modulation during SE and
intracerebroventricular glucose treatment. In a physiological condition,
glucose enters neurons through GLUT3, and it is metabolized to
pyruvate, following the citric acid (TCA) cycle to generate ATP (a).
However, neuronal hyperexcitability associated with hypermetabolism
occurs during SE settlement, activating a compensatory pathway mediat-
ed by SGLTs’ translocation in order to transport glucose in lower con-
centrations and attempt to protect neurons against degeneration (b). As
this epileptogenic insult is continuous and self-sustaining, a mitochondri-
al dysfunction is triggered followed by oxidative stress, culminating in
excitotoxic neuronal death. Possibly, increased SGLTs’ translocation
through modulation of brain glucose levels may protect neurons in the
acute phase of epileptogenesis (c).
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are below the Km of GLUT3 [49]. Therefore, increased
expression of SGLT1 may function as an additional

support to GLUT3, contributing to the survival of neu-
rons in hypoglycemic conditions.
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So far, control of glucose availability by modulating their
transporters may be a form of protection against damage from
SE. It is known that glucose sensors, such as T1R2/T1R3
heterodimer, are expressed in the hippocampus [162], and
these sensors transduce signals for the translocation of
SGLTs into enterocytes [163]. Our hypothesis is that in-
creased hippocampal glucose concentration activates a higher
SGLT translocation in neurons via T1R2/T1R3, protecting the
neurons from degeneration. Figure 2 summarizes the glucose
transporters and metabolic regulation in control, SE and SE
associated with intracerebroventricular treatment of glucose.

Conclusion and Future Perspectives

During the early epileptogenesis, shortly after SE, glucose
metabolism is elevated, suffering a significant decrease in
the chronic phase [86]. Furthermore, glycemic disorders
may increase the susceptibility to the genesis of epileptic sei-
zures. As seen previously, hypo- and hyperglycemia can func-
tion as crucial factors for the SE generation, although the
intrinsic pathophysiological mechanisms responsible for this
association remain unclear. In addition, hypo- and hypergly-
cemia are able to accentuate SE-induced hippocampal damage
in animal models [47]. Interestingly, these authors showed
that adequate glucose supply protects hippocampal cells
against seizure-induced excitotoxic cell death. Considering
these, regulation of glucose availability appears to be a prom-
ising pathway capable of attenuating the severity of seizures
as well as the seizure-induced brain damage in the earlier
phase of epileptogenesis generated by SE. Likewise, the intra-
cellular mechanisms of hypo- and hyperglycemia and glucose
modulation associated with SE as possible therapeutic targets
need to be further investigated.
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