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Abstract
Alzheimer’s disease (AD) is the most common form of dementia, which is progressively affecting elderly people. The
dyshomeostasis of biometals and accumulation of toxic metals are usually observed in numerous neurodegenerative diseases
including AD. In the central nervous system, metal imbalance–caused neurotoxic activities are usually linked with decreased
enzymatic activities, increased aggregation of proteins, and oxidative stress, where a series of processes can result in neurode-
generation and cell death. Even though the relations between neurodegenerative diseases and biometal imbalance are still elusive,
there is a growing interest in a group of major endogenous proteins that are associated with the transports of metals. Aberrant
expression of these endogenous proteins is associated with the biometal imbalance and AD pathogenesis. Indeed, heavy metals
are extremely toxic to the nervous system. Various studies have demonstrated that the toxic effects of heavy metals can result in
amyloid beta (Aβ) aggregation, neurofibrillary tangles, and even loss of neurons. In this article, we have focused on the
molecular processes through which exposure to biometals and toxic metals can play roles in AD pathogenesis.
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AChE Acetylcholinesterase
AD Alzheimer’s disease
APP Amyloid precursor protein
ATOX1 Antioxidant protein-1
ATP Adenosine triphosphate
ATP13A2 ATPase cation transporting 13A2
ATP7A and B ATPase copper transporting alpha and beta
Aβ Amyloid beta
BACE1 Beta-secretase 1
BBB Blood-brain barrier

CDK5 Cyclin-dependent kinase 5
CSF Cerebrospinal fluid
CTR1 Copper transporter 1
CTR1C Copper transporter 1C
DMT1 Divalent metal transporter 1
FAD Familial AD
FPN Ferroportin
GSK3β Glycogen synthase kinase 3β
IRE Iron-responsive element
IRP1 Iron regulatory protein 1
IRP2 Iron regulatory protein 2
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Lf Lactoferrin
LRP Lipoprotein receptor–related protein
MTf Melanotransferrin
MTs Metallothioneins
NFTs Neurofibrillary tangles
OS Oxidative stress
oxo8dG 8-Hydroxyguanosin
PS1 Presenilin 1
ROS Reactive oxygen species
SLC30A10 Solute carrier family 30 member 10
SOD Superoxide dismutase
SPCA1 Secretory pathway Ca2+-ATPase 1
SPs Senile plaques
Tf Transferrin
ZIPs Zinc-importing proteins
ZnT Zinc transporter

Introduction

Alzheimer’s disease (AD) is a chronic and irreversible neuro-
degenerative disease associated with dementia in elderly peo-
ple [1, 2]. In AD brain, neuropathological alterations are as-
sociated with the amyloid-beta (Aβ) aggregation which gen-
erates senile plaques (SPs) and primarily results in various
consequences, for example, hyperphosphorylated aggregates
of the microtubule-associated tau protein in neurofibrillary
tangles (NFTs), impaired neuronal connectivity, and loss of
neurons [3–5]. Numerous studies have extensively analyzed
Aβ’s structure and its harmful effects in inducing oxidative
stress (OS), autophagy, and neuroinflammation [6–8]. To treat
AD, several drug candidates were developed to eliminate or
decrease Aβ generation [9–11]. Nevertheless, most of them
failed in clinical trials [12, 13]. In recent times, it has been
revealed that Aβ aggregation is not regarded as the initial
event of AD pathogenesis; rather, Aβ aggregation is
a subsequent event of the disease [10, 14]. Thus, new research
approaches are required to discover effective AD treatments.
Several studies have demonstrated that homeostasis of essen-
tial biometals (for example calcium, magnesium, manganese,
copper, zinc, and iron) is impaired in case of AD.
Furthermore, these metals contribute significantly to the me-
tabolism and aggregation of tau and Aβ. Depending on these
findings, a metal hypothesis for AD has been proposed [12,
15], which is suggesting that targeting the interactions of
metals with Aβ may prove more effective in AD prevention.

Several studies have demonstrated the pathophysiological
impacts of metal imbalance in the brain [16, 17]. In a study,
Akhtar et al. [18] revealed that chromium picolinate treatment
attenuated streptozotocin-induced cognitive impairment.
Furthermore, treatment with chromium picolinate reversed
pathology of AD, as demonstrated by enhanced memory, de-
creased oxidative damage, mitochondrial dysfunction,

neuroinflammation, and upregulated insulin signaling [18].
Nonetheless, still, there are arguments regarding impaired
biometal activity as the causative factor for AD. The presence
of the blood-brain barrier (BBB), makes it difficult to treat the
brain diseases [19, 20]. As the BBB cannot be passively
penetrated by the biometals, thus the mentioned metal
imbalance in the AD brain cannot only be associated with
the decreased or increased exposure to metals, but rather
to a more initial distribution of intracellular ions in an
unclear manner. Therefore, brain metal homeostasis is
regulated by several metal exporters, importers, and metal
sequestering proteins.

It has been demonstrated that heavy metal accumulation in
the human body can be harmful for multiple organs.
Particularly, heavy metals are well-known to exert toxic ef-
fects on the brain. Several studies have particularly focused on
the neurological functions of cadmium, mercury, and lead in
the brain [21]. In this article, we have focused on the
biometals, heavy, and non-essential metals–induced molecu-
lar processes of AD.

Biometals and Alzheimer’s Disease

Iron

Iron (Fe, an essential trace metal) is involved with several vital
neuronal functions in the brain, including synthesis of myelin,
mitochondrial respiration, and transport of oxygen [22].
Furthermore, iron also plays a role as a cofactor for numerous
metalloproteins associated with signal transduction and me-
tabolism [23, 24]. Numerous studies also found increased
levels of iron in AD brains [25, 26], particularly in putamen
and globus pallidus areas [27, 28]. Nonetheless, as compared
to healthy individuals, studies observed reduced or unchanged
levels of iron in the serum of AD individuals [29, 30]. It has
been revealed by a meta-analysis that there is a significantly
decreased level of iron in the serum of AD individuals as
compared to healthy controls. Nonetheless, iron level in CSF
was not influenced by AD; however, further analyses are es-
sential because of the relatively small number of CSF studies
carried out till now [29]. Scientists have carefully studied iron
content in 12 selective areas of the brain via separated meta-
analyses by utilizing cross-referenced statistical methods [29].
They also observed that 8 certain areas of the brain contained
an elevated level of iron that correlated with the clinical diag-
nosis of AD in a statistically validated manner. Indeed, these
findings provided rigorous statistical support for the model
that iron homeostasis was altered in individuals with AD,
along with the finding of lower iron in their serum and evi-
dence for iron overload in various specific areas of the brain
[29]. Nevertheless, meta-regression analyses showed in sev-
eral studies that differences in iron levels in serum might be
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owing to the different mean ages [30]. Unfortunately, clarifi-
cation of this aforesaid imbalance is still not known. Studies
also showed that in case of AD, excessive levels of iron can
stimulate the production of hydroxyl radical by Fenton reac-
tion, which can eventually lead to an elevated level of oxida-
tive stress in AD.

Dynamic relationship between efflux and influx of iron is
important to maintain homeostasis of intracellular iron, where
various transporter proteins have significant contributions. In
AD individuals, impairment of iron exporter ferroportin
(FPN), along with iron importers, such as melanotransferrin
(MTf), lactoferrin (Lf), divalent metal transporter 1 (DMT1),
and transferrin (Tf), can significantly play role in the accumu-
lation of iron in the affected areas of the brain (Fig. 1). Except
for oligodendrocytes, DMT1 is expressed on microglia, astro-
cytes, and neurons. DMT1 is associated with the pathway
involved in Fe2+ influx [31]. In the AD brain, DMT1+IRE

(iron-responsive element) and DMT1-IRE are the 2 isoforms
of DMT1 that were found to colocalize with Aβ in the
plaques. In amyloid precursor protein (APP)/presenilin-1
(PS1) transgenic mouse model, these 2 isoforms of
DMT1were also found to be elevated in the hippocampus
and frontal cortex regions, along with a decreased level of
FPN expression [32], which is further indicating that the dys-
regulated iron metabolism–associated protein DMT1 and
FPN have significant contribution in the iron-facilitated AD
neuropathogenesis. Hepcidin (a protein, involved in iron ho-
meostasis) is co-located with FPN in astrocytes, and neurons
exhibited a decreased level of FPN expression in AD brains. It
has been observed that the downregulation of hepcidin can
lead to the impaired iron export pathway which can eventually
lead to retention of cellular iron [33].

APP can catalytically oxidize Fe2+ to Fe3+ (Fig. 1) through
the activity of ferroxidase and subsequently interact with FPN

Fig. 1 The role of iron in the pathogenesis of Alzheimer’s disease. The
ferrous form of iron (Fe2+) can directly enter into the cell via DMT1,
whereas transferrin (Tf)-ferric iron (Fe3+) enters via the transferrin
receptor (TfR)-facilitated endocytosis. Elevated Fe2+ levels stimulate
the Fenton reaction to generate hydroxyl radical (•OH), which
eventually results in oxidative stress and neurodegeneration.
Furthermore, Fe2+ can elevate phosphorylation of tau via activation of
glycogen synthase kinase 3β (GSK3β) and cyclin-dependent kinase 5
(CDK5) that lead to the formation of neurofibrillary tangles (NFTs). The
iron chelators reduce the phosphorylation of tau by inhibiting the GSK3β

and CDK5. In the cellular environment, Fe2+ binds with the iron-
responsive element (IRE) in the 5′ UTR region of amyloid precursor
protein (APP) mRNA, which results in the induction of APP translation
that leads to the formation of amyloid beta (Aβ). This generated Aβ can
interact with Fe2+ as well as increase Aβ aggregation. Fe2+ can only go
out of the cell by using ferroportin (FPN) along with the activity of
haptoglobin or ceruloplasmin. APP can also interact with FPN to oxidize
Fe2+ into Fe3+ for Tf binding. Nevertheless, the binding of hepcidin (HP)
with FPN leads to its internalization to avert the export of Fe2+
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to mediate the export of iron [34]; nevertheless, this mecha-
nism is suppressed through extracellular zinc (Zn), which
originates from Zn-Aβ complexes [35]. In the same study,
researchers exhibited that loss of soluble tau can result in
retention of iron via weakening APP-induced export of iron
[36], and such inhibition can be achieved by the use of lithium
[37] or an iron chelator [38]. In addition to this, sirtuin 2
controls homeostasis of cellular iron through deacetylation
of nuclear factor erythroid-derived 2-related factor 2, which
functions as a transcription factor to regulate the expression of
FPN [39]. In a study, it was found that compounds derived
from Chinese herbs can decrease the expression of DMT1 and
can increase the expression of FPN, which is suggesting a new
approach to reduce iron overload-mediated impairment in AD
[32]. In BBB’s endothelial cells, Tf-transferrin receptor (TfR)
complex was found to play a role in iron uptake. Iron transport
across BBB can take place owing to receptor-facilitated endo-
cytosis of Tf-bound iron [40]. A study showed that cerebro-
spinal fluid (CSF) levels of Tf were markedly different in case
of familial AD (FAD) when compared between individuals
who carried mutations and related non-carriers [41]. Lf’s
structure is similar to the structure of Tf, where both of these
iron importers have 2 lobes, in which each lobe contains a
binding site for Fe3+ (Fig. 1) [42]. In AD patients, Lf expres-
sion is high in macrophages/monocytes and fibrillar-type SPs
in the cerebral cortex region of individuals with AD [43].
Furthermore, the formation of SPs mediates the age-related
deposition of Lf [44]. Interestingly, lipoprotein receptor–
related protein (LRP, a cell surface receptor) is associated with
the clearance of Aβ by an endocytic process. Furthermore, Lf
can bind with LRP and can significantly increase soluble Aβ
clearance instead of Aβ generation [45]. A liposomal system
involving surface Lf was developed for the delivery of neuron
growth factors through the BBB. Indeed, the aforesaid tech-
nique was useful to control AD progression [46, 47].

Copper

Copper (Cu, an essential trace metal) is also involved with
various important cellular activities, such as it plays role
as a structural component of enzymes that are essential for
antioxidant defense and energy metabolism [48].
Association of copper with AD pathophysiology is com-
plex. Increased copper levels have been identified in SPs
[49]. In AD brain, a deficiency in the total copper levels
in the AD brain has been reported by some studies [50].
Furthermore, another study revealed that even though the
combined serum and plasma copper level was higher in
AD individuals [51], however, total CSF levels of copper
were not different when compared between AD individ-
uals and healthy subjects [52, 53]. The reason for this
heterogeneity is that a substantial amount of copper pre-
cipitates with SPs in AD-affected areas, which can further

lead to a deficiency of copper in other areas. Indeed, cop-
per can interact with both tau and Aβ and can exacerbate
their pathological outcomes [54, 55].

Still, the processes associated with copper dislocation in
the AD brain are not clear. Copper transporter 1 (CTR1) and
the copper transporting P-type ATPases, such as ATPase cop-
per transporting alpha and beta (ATP7A and B), are the main
transporters associated with the cellular regulation of mono-
valent copper [56, 57] (Fig. 2). It was reported that DMT1
might contribute to divalent copper delivery into cells to syn-
thesize copper-containing enzymes [58]. However, in terms of
copper overload, dual-roles are played byATP7A andATP7B
in the export of excess copper out of cells in an adenosine
triphosphate (ATP) hydrolysis–dependent manner. Along
with the transporters, a group of intracellular proteins, known
as molecule chaperones, for example, copper chaperone for
superoxide dismutase (SOD), cytochrome oxidase enzyme
complex, and antioxidant protein-1, also play roles in copper
delivery to certain targets [58, 59]. Interestingly, the genetic
knockdown of copper transporter 1C (CTR1C) in a
Drosophila model of AD markedly decreased the accumula-
tion of copper in the brain [60]. Similar findings were also
seen in flies when DmATP7 (a copper exporter) was in-
creased, or when CTR1B (a copper importer) was suppressed
in AD flies. Furthermore, these flies showed elevated Aβ
generation but a decrease in Cu-Aβ complex-mediated OS,
indicating that Aβ oligomers, or the elevated levels of Aβ
aggregates, were less toxic in a decreased influx of copper-
induced by CTR1 knockdown [60]. In an ADmouse model, it
was observed that ATP7A can be increased in activated
microglial cells where the amyloid plaques are gathered,
which can further lead to a substantial change of copper traf-
ficking in microglia. This finding suggests a neuromechanism,
where inflammation-mediated copper dyshomeostasis in mi-
croglia is linked with AD [61]. On the other hand, genetic
studies showed that a cohort analysis of a single nucleotide
polymorphism in ATP7B is responsible for impairments in
circulating non-ceruloplasmin-bound copper which can ele-
vate the AD risk, which further indicates that alterations in
copper homeostasis might speed up the neurodegeneration
process which can lead to AD [53, 62].

Zinc

Zinc (Zn, an essential trace metal) is an important constituent
of about 100 s of proteins and enzymes [63]. This trace metal
is also extensively associated with cell signaling as compared
to other metals, mainly because it can also play a role as a
neurotransmitter [64]. Since a former study reported zinc re-
distribution into extracellular SPs, therefore functions of zinc
have been widely studied in AD pathogenesis (Fig. 3) [65]. In
AD individuals, inconsistent findings have been observed
with the levels of zinc. However, numerous studies have
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reported increased zinc levels in the CSF and brains of AD
individuals [66]. Other studies observed reduced or even no
difference in the levels of zinc in the serum and brain of AD
individuals as compared to controls [30, 67, 68]. Still, the
exact cause of such diverse findings with the levels of zinc
is not known. Henceforth, the development of zinc as an AD
treatment is hindered. It is known that zinc binds with the
histidine residues in the Aβ’s C-terminus and promotes the
formation of aggregates. As compared to copper and iron, zinc
has a greater affinity to bind with Aβ in a wide pH range [69].

Homeostasis of zinc in neurons is mainly regulated by 3
groups of transporters including metallothioneins (MTs),
zinc-regulated transporter-like, and iron-regulated transport-
er-like proteins (ZIPs), and zinc transporters (ZnTs) (Fig. 3).
It has been found that ZnTs mediate the efflux of zinc from
cells or facilitate excessive zinc from the cytoplasm into intra-
cellular vesicles and organelles [70]. Functions of ZIPs are
nearly opposite to the roles of ZnTs. ZIPs mediate the import

of zinc into cells or facilitate zinc movement from intracellular
vesicles into the cytoplasm [70, 71]. MTs also play roles in the
maintenance of zinc homeostasis and regulate the cellular
levels of zinc and other related signaling mechanisms [72].
In the brains of AD individuals, immunofluorescence studies
confirmed that various ZnTs (including ZnT1, 3, 4, 5, 6, and
7) are widely present in Aβ plaques of cortex region [73].
Among them, ZnT3 is mainly found on the synaptic vesicles
of zinc-containing glutamatergic neurons [74]. ZnT3 levels
reduce in elderly people with aging, especially in AD individ-
uals [75].

Furthermore, an age-dependent impairment in cognitive
functions has been observed in ZnT3 knockout mouse models
[76]. However, in the ZnT3 deficit mouse models (while over-
expressing APP), reduced levels of plaque burden and synap-
tic zinc were observed [77], which further indicating the role
of synaptic zinc in amyloid plaque deposition in case of AD.
In AD, ZnT3 knockout-mediated elevated levels of intra-

Fig. 2 The role of copper in the
pathogenesis of Alzheimer’s
disease. In the human body,
copper is most commonly shifting
between cuprous (Cu+) and cupric
(Cu2+) forms. Cu+ enters into the
brain cells via copper transporter
1 (CTR1), whereas Cu2+ uses
divalent metal transporter 1
(DMT1) to enter into the brain
cells. Cu+ accumulation is se-
questered into specific locations
in the cells via several chaperones
of copper such as antioxidant
protein-1 (ATOX1). ATOX1
plays a role in the Cu+ transfer to
ATPase copper transporting alpha
and beta (ATP7A and B), which
also aids the Cu+ import into
synaptic vesicles for release and/
or directly facilitate copper efflux
that interacts with amyloid beta
(Aβ). Excessive levels of intra-
cellular Cu2+ might cause activa-
tion of Fenton reaction to elevated
oxidation of biomolecules. In ad-
dition, Cu2+ is associated with the
activation of GSK3β that eventu-
ally leads to
hyperphosphorylation of tau.
Cu2+ also increases the phos-
phorylation of amyloid precursor
protein (APP) and generate Aβ,
which results in the formation of
senile plaques

5Mol Neurobiol (2021) 58:1–20



neuronal zinc worsened the damages of neurons [49].
However, more studies are required on the mechanisms relat-
ed to zinc reuptake into the presynapses. ZIPs play vital roles
in facilitating the influx of zinc, and other processes may also
indirectly contribute in this regard including presenilins
(presenilin mutation is known as a causative factor for
FAD) [78]. Moreover, MTs are the main zinc-buffering
peptides that play roles in the maintenance of cytosolic
zinc balance. MT-1 to MT-4 are the 4 major isoforms
of MT that are found to be expressed in brains. In AD
individuals, level of MT-1 and MT-2 increases, while
the MT-3 level decreases [79]. Deficiency in MT-1/2
reduced the amyloid plaque burden in an animal model
of AD and therefore recovered the APP-mediated alter-
ations in mortality [80].

Interestingly, MT-3 is linked with the aggregation of
Aβ via cysteine oxidation. The deficiency of MT-3 was
found to partially rescue the APP-mediated mortality of
females and resulted in alterations in APP-mediated be-
havioral phenotypes of mouse models [81]. Following
the polymerization of actin, MT-3 controls the uptake
of Aβ in astrocytes via its positive activity [82].

Studies involving spectroscopy and microscopy con-
firmed that MT3 averts Cu-Aβ-induced neurotoxic ac-
tivities perhaps through a metal exchange in between
aggregated Cu-Aβ (1–40) and Zn-MT-3, which can fur-
ther result in inhibition of reactive oxygen species
(ROS) generation [83]. A different study reported the
protective functions of MTs (derived from astrocytes)
on primary cortical neurons against Aβ toxicity via sup-
pressing the generation of proinflammatory cytokines,
increasing the B-cell lymphoma 2 levels, and decreasing
contents of ROS [84].

Zinc has been found to induce tau aggregation under
reducing conditions [85]. Interestingly, zinc suppressed
the intramolecular disulfide bond formation but mediat-
ed intermolecular bonds between important cysteine res-
idues. In addition to this, exposure to zinc elevated the
phosphorylation of phosphoinositide 3 kinase and
mitogen-activated protein kinase-dependent pathways
which are vital for tau modifications [86]. For a better
understanding of the AD-linked zinc dyshomeostasis,
more studies are required to assess the functions of zinc
transporters in AD pathogenesis.

Fig. 3 The role of zinc in the
pathogenesis of Alzheimer’s
disease. In the plasma membrane,
zinc importing protein (ZIP)
mainly regulates the zinc (Zn2+)
entry, while zinc transporter
(ZnT) regulates the efflux of
Zn2+. An elevated level of Zn2+

increases the accumulation of Aβ,
tau modification as well as in-
crease the formation of reactive
oxygen species (ROS).
Conversely, lower levels of Zn2+

reduce the bioavailability of Zn2+

and amyloid beta (Aβ) clearance
as well as cause synaptic
dysfunction
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Manganese

Manganese (Mn, an important trace element) exerts various
vital physiological functions for intracellular homeostasis and
growth [87]. Manganese plays an important role as a cofactor
for important enzymes that are associated with normal cell
function, for instance, glutamine synthetase and SOD. There
is growing evidence that indicates that an overload of manga-
nese is linked with neurodegenerative diseases and a slight
increase in the level of manganese can trigger symptoms that
are related to manganese poisoning [88]. Processes that are
linked with manganese-induced cytotoxicity include reduced
cellular antioxidant defense and autophagy, buildup of intra-
cellular toxic metabolites, aberrant energy metabolism, mito-
chondrial dysfunction, and ROS overgeneration [89, 90].

Significantly increased level of manganese was found in
the brain of AD individuals with dementia in comparison with
the healthy subjects, while the maximum manganese level
was found in the parietal cortex [91, 92]. This finding indi-
cates that an overload of manganese might be associated with
the cognitive deficit and AD pathology. Chronic exposure of
manganese altered gene expression which dispersed Aβ
plaques in non-human primates. Interestingly, p53 mostly
targeted the altered genes; amyloid-beta precursor-like protein
1 (APLP1) was one such gene, which was found to be the
major upregulated gene in the frontal cortex [93]. Exposure
to manganese mainly affects the frontal cortex which can lead
to incipient dementia [94]. Treatment with manganese elevat-
ed Aβ levels both in vitro and in vivo; the associated process
is perhaps linkedwith the interruption of Aβ degradation [92].
In a study, it was revealed that manganese may weakly bind
with the specific Aβ sites [95]. Nonetheless, more studies are
required to demonstrate the effects of suchmanganese binding
with Aβ in mediating Aβ aggregation. Indeed, manganese is a
constituent of manganese (Mn) SOD (Mn-SOD), which is an
antioxidant enzyme that significantly contributes to preserv-
ing the vitality of mitochondria. Elevated manganese levels
can hinder oxidative respiration, which can increase ROS gen-
eration and eventually can result in mitochondrial dysfunction
[96]. In a transgenic mouse model of AD, partial Mn-SOD
deficiency elevated Aβ plaque deposition and phosphoryla-
tion of tau [97, 98]. However, Mn-SOD overexpression
exerted various benefits against the pathology of AD
via decreasing the burden linked with cortical plaques
[99], which further confirmed the associations between
the AD pathophysiology and mitochondrial oxidative
stress. Moreover, manganese toxicity triggered cognitive
impairment in humans, and it has been hypothesized
that high level of manganese uptake can result in defi-
ciency of iron in the Golgi apparatus, which is in line
with the finding that iron and manganese compete with
the same transport processes and binding sites, at least
to some degree [100].

Manganese transport is facilitated by several importers,
including dopamine transporter, ZIP14, ZIP8, Tf/TfR,
DMT1, and also via multiple exporters including FPN,
SLC30A10 (solute carrier family 30 member 10), park9/
ATP13A2, and the secretory pathway Ca2+-ATPase 1
(SPCA1). Among them, DMT1 mediates iron influx and this
transporter is the first mammalian transporter for cellular up-
take of manganese. It has been found that DMT1 mediates
manganese movement across the BBB, mainly under the con-
ditions of iron deficiency [101]. Through a ligand-receptor
endocytosis process, DMT1 transports divalent manganese,
whereas Tf transports trivalent manganese into cells via a
ligand-receptor endocytosis process [102]. ZIP14 and ZIP8
possess increased binding capacity with zinc; however, mul-
tiple studies revealed that these transporters are also associated
with the manganese absorption from the lungs and liver
[103–105]. The contribution of exporter proteins in the main-
tenance of manganese levels has also been studied. It has been
identified by genome analysis that SLC30A10might transport
both manganese and zinc. Manganese accumulation has been
detected in the carriers of mutations in SLC30A10 and indi-
viduals with Parkinson’s disease (PD) [106]. In the frontal
cortex of APP/PS1 transgenic mouse models and AD individ-
uals, the level of SLC30A10 was found to be markedly de-
creased, which further indicates that its dysregulation can play
role in AD pathology [107]. In a pH-dependent manner, FPN
(an iron exporter) can play a role as a cellular exporter of
manganese to attenuate cytotoxicity and manganese accumu-
lation [108, 109]. Moreover, ATP13A2 (ATPase cation
transporting 13A2) plays a role as a cation transporter in the
transportation of zinc and manganese. It has been revealed by
studies that ATP13A2 overexpression decreases the intracel-
lular level of manganese, which as a result can alleviate
manganese-induced lethality; loss-of-function mutations in
ATP13A2 are associated with the rise in both Aβ plaques
and α-synuclein in Lewy body disease [110]. In addition to
this, a SPCA1 homolog in yeast, plasma membrane ATPase-
related 1, mediated the transport of manganese and Ca, and
ectopic SPCA1 expression in yeast increased sensitivity to
manganese toxicity [111]. Therefore, it has been indicated that
SPCA1 functions as another regulator for cellular manganese
homeostasis. However, further studies are required to investi-
gate the affinity betweenmanganese and SPCA1 and the func-
tions of SPCA1 in the pathogenesis of AD.

Magnesium and Calcium

Magnesium (Mg, a major macro element) plays crucial roles
in several enzymatic synthesis and cellular mechanisms such
as synaptic plasticity, ion channels, and energy metabolism
[112, 113]. Calcium (Ca, a major macro element) plays a role
as a ubiquitous second messenger and its role in regulating
cellular function has been extensively studied [114]. Levels of

7Mol Neurobiol (2021) 58:1–20



intracellular calcium are strictly controlled via several
calcium-binding proteins, calcium channels, pumps, and are
also controlled by other metal ions including magnesium. It
has been found that magnesium can act as a calcium antago-
nist. Magnesium also plays a role in the maintenance of intra-
cellular calcium concentrations and protecting neurons from
excitatory responses mediated via calcium overload, under
physiological conditions [115]. Nonetheless, disruptions in
calcium and magnesium homeostasis change a series of pro-
cesses that can result in various diseases including neurode-
generation [116].

Magnesium levels in serum and brain are considerably low-
er, while levels of calcium were found to be considerably in-
creased in AD individuals as compared to age-matched healthy
subjects [117–119]. Frequently elevated calcium concentra-
tions can lead to the raised expression of ApoE and APP and
can also mediate the generation of Aβ aggregation via a mech-
anism involving γ-secretase stabilization [120, 121], while Aβ
aggregation can lead to altered membrane calcium permeability
that can further worsen AD [122]. Some studies have also
assessed the contribution of magnesium in AD pathogenesis.
It has been revealed by an in vitro study that both magnesium
and calcium can induce themechanism of hyperphosphorylated
tau aggregation [123]. Magnesium-l-threonate administration
elevated concentrations of magnesium in the brain, which re-
sulted in reduced β-secretase (BACE1) levels thus decreased
the β c-terminal fragments and soluble APP levels, therefore
alleviated the cognitive impairments and synaptic loss linked
with Alzheimer’s symptoms [124]. Moreover, magnesium sul-
fate treatment decreased hyperphosphorylated tau levels via
suppressing the phosphorylation of glycogen synthase kinase
3β (GSK3β) and elevating the activity of phosphatidylinositol
3 kinase (PI3K) and protein kinase B (Akt) [125, 126], there-
fore indicating that magnesium can play a role as a neuropro-
tective factor in AD development. The underlying mechanism
associated with magnesium blocking the long-term activation
of N-methyl- d-aspartate (NMDAR)-induced calcium influx
and therefore decreasing calcium-mediated neuroinflammation.
Indeed, NMDARs are cationic channels that are activated by
glutamate, containing an increased permeability to calcium ions
upon the synaptic activity, for instance, memory and learning.
Aβ aggregation–mediated NMDAR over-activation might take
place during the early AD stages [127]. Intracellular calcium
concentrations can be increased by continuous calcium influx,
which can further trigger numerous enzymatic processes that
can lead to neuronal death, protein destruction, and peroxida-
tion [128]. As an endogenous blocker, magnesium can bind
with the NMDAR subtypes including NR1/2A and NR1/2B,
which are components of NMDARs present in brain areas af-
fected by AD, under normal conditions [129]. Blocking chan-
nels by the addition of magnesium decreased influx of calcium
into post-synaptic neurons, to decrease excitotoxic cell death
during dementia. In case of neurodegenerative diseases,

activation of ATP-gated P2X purinergic receptors (P2XRs)
linked with neuroinflammation has also been reported [130].
P2X7R can help in the formation of an oligomer to form mem-
brane pores inmicroglia to facilitate the influx of calcium [131].
It has been revealed by using tissue culture that magnesium can
decrease intracellular calcium levels via P2X7R, and that im-
proved stimulation of purinergic receptor-activated neuroin-
flammation, which further indicates that elevated magnesium
level can play role as an effective calcium entry inhibitor via
cell surface channels [132].

Various factors including buffering proteins, exchangers,
channels, and numerous transporters are associated with the
maintenance of cellular calcium and magnesium homeostasis.
Various channels can facilitate the influx of magnesium into
cells, for instance, transient receptor potential melastatins 6
and 7 (TRPM6/TRPM7), magnesium transporter 1 (MagT1),
and cyclin M (CNNM) transporter. Solute carrier family 41
member 1 (SLC41A1) and sodium-independent magnesium
exchanger are essential to favor magnesium extrusion [133,
134]. In addition to this, intracellular calcium balance can be
attained via several calcium transporters. NMDAR, store-
operated calcium channels, voltage-gated calcium channels,
and α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid
receptors (AMPARs) are accountable for the increased level
of calcium. On the other hand, calcium-binding buffering pro-
teins including calbindin can mediate calcium storage in the
endoplasmic reticulum (ER), while the activities of the
calcium-ATPase pump and sodium-calcium exchanger facili-
tate calcium export out of cells. Indeed, mutant presenilins
activate 2 types of calcium receptors and that plasma mem-
brane calcium-permeable channels permit the leakage of cal-
cium ions from the ER into the cytoplasm, therefore triggering
a vital effect on ER-Ca dynamics in the AD brain [135, 136].
Furthermore, Aβ oligomers can either induce the formation of
calcium-permeable channels or bind with NMDARs, there-
fore can mediate the entry of calcium through the plasma
membrane [137, 138]. Nonetheless, the contribution of mag-
nesium transporters in AD pathology is poorly understood.
The physiological function of TRPM7 was found to be coor-
dinated by presenilins, the mutation of which can result in
familial AD [139]. TRPM2 removal in APP/PS1 mouse
models ameliorated age-dependent memory impairments
and decreased ER stress, while in vitro studies revealed
that the knockdown of TRPM2 blocked the Aβ-induced
rise in the magnitude of whole-cell current, therefore
suggesting the significance of TRPM2 effect in Aβ neu-
ronal toxicity [140]. It was also mentioned that TRPM2
alteration can result in calcium imbalance, even though
its contribution in the regulation of magnesium linked
with AD was overlooked [140]. Moreover, PD dementia
and amyotrophic lateral sclerosis were found to be
linked with lower levels of magnesium and calcium as
compared to healthy subjects, which is further
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suggesting the dysfunction of TRPM2 and TRPM7
channels [141].

Pathogenic Mechanisms of Heavy
Metal–Induced Alzheimer’s Pathology

Various studies have revealed the heavy metal-induced mo-
lecular mechanisms that are involved in AD pathogenesis. In
this section, we have explained the molecular processes and
analyzed the signaling mechanisms based on molecular net-
works linked with various heavy metals (cadmium, mercury,
and lead) mediated AD pathogenesis. Furthermore, we have
also discussed the connections of various molecular objects
with the signaling pathways (Table 1).

Cadmium

Indeed, Aβ aggregation is an important hallmark of AD path-
ogenesis [172–174]. Interaction between cadmium (Cd) and
Aβ is associated with elevated AD risk [172, 175, 176].
Certain metals are also involved with the NFTs formation
[172, 177]. Cadmium also can interact with Aβ1–42 [172]. It
is known that Aβ1–42 is an important component of SPs that
contributes significantly in AD pathogenesis [178–180].
Cadmium is also associated with the Aβ aggregation
(Fig. 4) [172, 181]. In line with this finding, tyrosine and
histidine residues located at the N-terminal part of the peptide
and the binding blocked ion channel of Aβ1–42 [172, 181].
AD risk can also be increased via decreased or elevated ex-
pression of certain proteins and these alterations are induced
by the exposure to cadmium [182]. For instance, M1 receptor
can be blocked by cadmium, which can result in AChE (ace-
tylcholinesterase)-R downregulation and AChE-S

overexpression [182]. In basal forebrain, cadmium was also
found to activate the cell death of cholinergic neuronal cells
[182]. This finding is similar to the mechanism involved in
AD-related brain degeneration [182]. Interestingly, these
symptoms are linked with elevated levels of Aβ, GSK3β,
and formation of tau filament (Fig. 4) [182]. Indeed, GSK3β
is an important constituent of tau paired helical filaments,
which is located in the deposits of NFTs that disturb functions
of neurons, and it is used as a marker for AD-related neuro-
degeneration [183].

As compared to healthy subjects, potential neurotoxic
activity of cadmium has been detected owing to increased
levels detected in plasma [184], liver [185], and brain
tissues [67] of AD individuals [172]. Elevated cadmium
levels were also identified in the hair and blood of AD
individuals. Cadmium-exposed workers experienced neu-
robehavioral problems in memory, psychomotor speed,
and attention [186]. Like humans, Li X et al. [187] con-
firmed that APP/PS1 transgenic mouse models exhibit
symptoms of the ethological disorder including memory
and learning following exposure to cadmium. Indeed,
these observed symptoms are AD characteristics. It is
considered that cadmium may play roles in AD and this
heavy metal might be involved with the generation of
NFTs and Aβ aggregation [172].

Mercury

The tubulin proteins polymerize into long chains or filaments
that form microtubules [188, 189]. Mercury (Hg) suppresses
the effects of tubulin, which results in neuronal damage and
eventually AD [190]. This protein shows a very high affinity
towards mercury and following binding this metal-ligand, the
structural integrity of tubulin is affected, which leads to a

Table 1 Signaling pathway–
related molecular components in-
volved in heavy metal (cadmium,
mercury, and lead)-mediated
Alzheimer’s disease

Component Function References

BH3 interacting-domain death agonist (BID) Regulates mitochondrial damage and cell death,
and exerts pro-apoptotic effects

[142–144]

Prostaglandin E synthase (PTGES) Induces acute pain in the response of
inflammation

[145–147]

Cluster of differentiation 80 (CD80) Mediates cytokine production and T cell
proliferation

[148–150]

B-cell lymphoma 2 (Bcl-2) Exerts antiapoptotic effect [151–153]

Vimentin Induces immune system and cytoskeleton
formation

[154–156]

Jun proto-oncogene (JUN) Controls gene expression for specific DNA
sequence

[157–159]

Tubulin beta 3 class III (TUBB3) Induces neurogenesis and axon guidance [160–162]

Tumor protein p53 (TP53) Shows tumor-suppressive effects [163–165]

Toll-like receptor 4 (TLR4) Induces generation of cytokines for immunity [166–168]

Transient receptor potential cation channel
subfamily C member 1 (TRPC1)

Helps in the formation of the non-selective
channel

[169–171]
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suppression of polymerization of tubulin to micro-tubulin,
which further leads to the generation of NFTs and SPs
[190]. Indeed, these NFTs and SPs are characteristic features
in the brains of AD individuals [190]. Activities of mercury
were analyzed in studies involving animal neuronal cell ex-
periments. In these studies, degeneration of axon and forma-
tion of NFTs were also reported [191]. A study on stem cells
showed that mercury played role in neuronal apoptosis and
this metal also inhibited the activities of tubulin [191].
Furthermore, mercury can cause tau hyperphosphorylation;
as a result, stabilization of microtubules in the neuron can be
affected [192, 193].

Mercury-induced OS can also affect the phosphorylation
state of tau by elevating its level [193, 194]. Indeed, tau is
closely linkedwith Aβ that can exacerbate both Aβ pathology
and tau-Aβ interactions in AD [195]. Accumulation of Aβ
can trigger tau hyperphosphorylation in AD [195], which fur-
ther suggests that Aβ accumulation can stimulate the signal
transduction pathways for the hyperphosphorylation of tau
[195–199]. It was suggested that tau dysfunction might lead
to AD pathogenesis [200]. Several studies exhibited that APP
gene expression can be affected by mercury [200–202]. In a
study, Song et al. [203] estimated whether mercury influences
Aβ accumulation facilitated by an imbalance between Aβ

Fig. 4 The role of cadmium in the
pathogenesis of Alzheimer’s
disease. Cadmium (Cd) induced
the aggregation of amyloid beta
(Aβ) oligomers or fibrils by
blocking the Aβ1–42 ion channel.
Furthermore, Cd blocks M1 re-
ceptor that causes overexpression
of AChE-S and downregulation
of AChE-R and finally increase
the expression of GSK3β that
leads to hyperphosphorylation of
tau
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generation and clearance. In that study, mercury and methyl-
mercury elevated the level of APP, which is associated with
Aβ generation. Levels of neprilysin were reduced in PC12
cells by the treatment of mercury and methylmercury.
Collectively, these findings indicated that mercury stimulated
Aβ accumulation via the overgeneration of APP and NEP
reduction [203]. Astrogliosis caused by methylmercury was
also observed in case of AD neuropathology, which eventu-
ally plays a role in APP expression via glial activation [200,
201, 204–207].

Increased levels of mercury were also identified in the
blood of AD individuals and were also detected in brain tissue
[208–210]. Increased levels of mercury were also found in
hair [211]. Furthermore, as compared to the control group,
increased mercury levels were identified in the hair of patients
with degenerative brain disease [211]. In the nervous system,
mercury can trigger dementia, attention deficits, and memory
loss [212, 213]. In a study, Haut et al. [214] examined
workers who were exposed to the vapor of mercury.
Increased mercury levels were found in the blood of these
workers and they also suffered from cognitive impairments.

Lead

Associations between AD and exposure to lead (Pb)
have been extensively studied at the molecular level
by generating oxidative DNA damage [195, 215]. In
the brain, oxidative DNA damage has been identified
during the aging process and this damage can also con-
tribute to AD pathogenesis [195, 215–218]. Following
exposure to lead, OS might play a role in the elevation
of Aβ levels which can eventually result in oxidative
damage of the nervous system [215, 219]. OS-mediated
apoptosis is found to be involved with the accumulation
of Aβ [220–222]. Lead toxicity–mediated oxidative
DNA damage might be associated with the imbalance
between 8-hydroxyguanosin (oxo8dG) accumulation
and the effect of Ogg1 mediating oxidative DNA dam-
age [215, 219]. In a study, Bolin et al. [219] stated that
oxo8dG was briefly modified at the early stage of life
(postnatal day 5); however, it later increased 20 months
following cessation of lead exposure, but the activity of
Ogg1 was found to be not altered. Besides, an age-
dependent loss in the inverse correlation between accu-
mulation of oxo8dG and Ogg1 activity was noticed. In
old age, lead activity on oxo8dG levels did not take
p l a ce i f t h e an ima l s we r e expos ed to l e ad .
Furthermore, these elevations in DNA damage took
place in the absence of any lead-mediated alterations
in manganese-SOD2, copper/zinc-SOD1, and reduced
form glutathione (GSH). Collectively, these findings
suggest that neurodegeneration and oxidative damage
in the ag ing bra in migh t be af fec t ed by the

developmental disturbances [219]. The generation of
oxo8dG owing to oxidative DNA damage is commonly
known as a marker for oxidative DNA [215, 219].
Indeed, the imbalance may be associated with the pro-
cesses of AD pathogenesis [215]. In a study, Wu et al.
[223] found that AD-associated genes (BACE1, APP)
were upregulated due to the lead exposure [223]. It
was observed that snippets of APP caused the formation
of Aβ aggregates in AD [224].

In a different study, Bolin et al. [219] revealed that lead
exposure in an earlier stage of life resulted in gene alterations
via hypomethylation of the APP gene, which is a gene respon-
sive to lead [225]. Furthermore, this hypomethylation trig-
gered APP gene overexpression and resulted in APP protein
generation [219, 225]. Since the level of APP becomes high
due to the lead exposure, thus the effect of Sp1 (a transcription
factor) which controls AD-related proteins is increased [219,
224, 225]. Therefore, the aggregation of Aβ was induced and
resulted in plaque formation in the brain [219, 224]. In a
mouse hippocampal cell line, increased expression of APP
was identified under chronic exposure to low-dose lead
[226]. Besides, Wu et al. [223] also confirmed that lead might
also induce AD pathogenesis in the monkey. Following lead
exposure in the brain of monkeys, these researchers also ob-
served intracellular staining of total Aβ and dense-core
plaques via immunohistochemical analysis [223]. The obtain-
ed findings suggested that there was a buildup of immunore-
active Aβ aggregates inside neuronal cells and this further
indicated the possibility of AD [223].

In the battery industry, occupation-related lead exposure is
confirmed from the studies on workers [227, 228]. It has been
found that workers of this industry are exposed to an increased
level of lead in comparison with the average adults. These
workers exhibited various symptoms of psychological dys-
functions including headaches, vertigo, forgetfulness, and par-
esthesia [229]. Moreover, an increased level of lead has also
been detected in the blood [227–229]. In a study, Sharma et al.
[227] confirmed that the workers of the industry suffered from
schizophrenia-associated differential structural problems of
the brain. Furthermore, workers in that study exhibited func-
tional differences in brain activity in frontal lobes and hippo-
campus [227]. Indeed, these symptoms are usually seen in AD
individuals. The researchers summarized that lead can trigger
neurodevelopmental diseases showing neurocognitive impair-
ments for example AD and schizophrenia [227].

Non-Biologically Relevant Metal

Aluminum

Indeed, the physiological roles of aluminum (Al) are not well-
known, but this metal is toxic to organisms [230]. In daily life,
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we inevitably come into contact with aluminum because of its
ubiquitous presence in the environment. Luckily, aluminum
compounds that are present in our ingested food items are not
dissolved at physiological pH; rather, it is then eliminated
from the body. Indeed, aluminum toxicity can take place if
increased levels of aluminum are inhaled or ingested.
Aluminum accumulates primarily in the frontal cortex and
hippocampal regions of the brain, therefore correlating to the
impairment of other essential biometals. This can result in
oxidative stress and can affect numerous signaling cascades,
features which can further result in neuronal death and induc-
tion of neurodegenerative diseases [231–233].

Former studies stated the aluminum hypothesis,
which indicated that exposure to aluminum is associated
with AD etiology [234, 235]. Even though the validity
of the aluminum hypothesis in AD has been argued for
years and is progressively being regarded as only a
fringe hypothesis as compared to various other theories
in AD research, however, exposure to aluminum still
remains important and endures to be the center of inter-
est [236]. It has been reported by an in vivo study that
chronic administration of aluminum increased Aβ gen-
eration in the cortical and hippocampal areas in rats
[237]. In transgenic mouse models of AD, aluminum
administration increased Aβ plaques accumulation and
elevated amyloidogenesis, even though this activity
might be removed through antioxidant treatment [238].
Collectively, these findings suggest that the neurotoxic
activity of aluminum takes place in an elevated level of
oxidative damage. In addition, these findings were ob-
served in cultured neurons, where prolonged aluminum
exposure caused aggregation of Aβ and fibrillar de-
posits on the surface of cells [239, 240]. In the body,
increased aluminum levels influenced the activities of 3
crucial genes including presenilin-1, presenilin-2, and
APP [241]. Aluminum also decreased the effects of
some important enzymes associated with Aβ catabolism
via triggering the activation of the amyloidogenic path-
way [242, 243], which is suggesting a probable decrease
of Aβ degradation. Moreover, aluminum increased
hyperphosphorylated tau aggregation via suppressing
the activity of protein phosphatase 2A [244]. Even
though aluminum loading stimulates neurotoxic activi-
ties and causes behavioral alterations that partially mod-
el AD, but more studies are required to confirm whether
toxic exposure of aluminum plays a role as a causal
factor for AD.

In neurons, the molecular processes that are linked with
aluminum transport are still unclear. Studies have revealed
that uptake and transport of aluminum into cells is rather com-
plicated because of other metal ions including iron, which is
suggesting that aluminum competes with iron to bind with
iron transporters (Tf/TfR or Lf/LfR), which are also involved

with aluminum transport across the BBB [245]. A homolog of
human DMT1, SMF-3, was involved with aluminum trans-
port into neurons inCaenorhabditis elegans, which ultimately
resulted in increased aluminum levels that decreased the levels
of cellular ATP and mitochondrial membrane potential [246].
Besides, aluminum suppressed iron-mediated oxidation and
the iron regulatory protein 2 (IRP2) degradation via the
ubiquitin-proteasome pathway, which is indicating that alumi-
num stabilizes IRP2 to affect the balance of intracellular iron
level [247]. Indeed, aluminum-mediated neurodegeneration
seems to be linked with a different molecular pathway that is
independent of tau- or Aβ-related toxicity and is mainly me-
diated by ROS generation and iron buildup in the brain [232].

Conclusion

The imbalances of intracellular biometal homeostasis and tox-
ic metal exposure are linked to AD pathology. Various
biometals have been reported to deposit in the brains of AD
individuals, which further increased APP expression, Aβ ag-
gregation, and hyperphosphorylation of tau. Toxic metal ex-
posure might also trigger characteristics of AD pathology
through various mechanisms including protein modification,
neuroinflammation, and OS. Therefore, more studies are re-
quired to identify wider alterations of combined metal ion
homeostasis in AD. Moreover, it is possible to identify the
probable solutions for AD by recognizing the association be-
tween specific genes and particularly heavy metals. Indeed,
major responsible genes for AD can also be targeted to treat
this disease.
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