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Abstract
Identification of molecular mechanisms underlying early-stage Alzheimer’s disease (AD) is important for the development of
new therapies against and diagnosis of AD. In this study, gas chromatography time-of-flight mass spectrometry (GC-TOF-MS)-
based metabolomics approach was employed to investigate the metabolic profiles in plasma and brain tissues harvested from 5-
month-old APP/PS1 transgenic mice and their wildtype counterparts. Since different brain regions were expected to have their
own distinct metabolic signals, four different brain regions, namely cortex, hippocampus, midbrain and cerebellum tissues, were
dissected and had their metabolic profiles studied separately. Biochemical assays were also performed on plasma and brain cortex
tissue of transgenic mice and wildtype mice, with a focus on mitochondrial health. Amyloid precursor protein and amyloid-β
levels in plasma, brain cortex tissue and mitochondria fractions isolated from brain cortex were measured to assess the amyloid
pathology. Our findings include the observation of extensive metabolic alterations in cortex and cerebellum of APP/PS1 mice,
but not in their hippocampus, midbrain and plasma. The major pathways affected in cortex and cerebellum of APP/PS1 mice
were closely related to impaired energymetabolism and perturbation of amino acidmetabolism in these mice. APP/PS1mice also
exhibited higher amyloid-β40 and amyloid-β42 in their cortex, accumulation of mitochondria APP in their cortex, and presented
an altered oxidative state in their brain. Treatment with the peroxisome proliferator-activated receptor gamma (PPARγ) agonist
pioglitazone (PIO) successfully restored the energy metabolism, lowered amyloid-β levels and afforded the APP/PS1 mice a
better antioxidative capacity in their cortex.
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Introduction

Alzheimer’s disease (AD) is a progressive, irreversible neuro-
degenerative disorder that affects large areas of the cerebral
cortex and hippocampus [1]. The disease is characterised by

two key protein abnormalities, namely cerebral plaques laden
with insoluble amyloid-β (Aβ) peptides and intraneuronal
neurofibrillary tangles made up of hyperphosphorylated tau
protein [2]. These amyloid plaques and neurofibrillary tangles
spread through the brain as the disease progresses [3]. Because
Aβ plays such a crucial role in the disease, it is little wonder
that many pharmaceutical companies developing disease-
modifying treatments for AD have chosen to focus on anti-
Aβ therapeutics [4]. However, the evidence supporting
amyloid-lowering approaches as clinically viable are waning.
Several large phase 3 trials of anti-amyloid approaches in pa-
tients with mild-to-moderate AD have been published, albeit
with disappointing results [5, 6]. Therefore, targeting Aβ
alone may not be enough to achieve positive clinical out-
comes, especially during late stages of the disease [7].

In order to unravel the pathological changes underlyingAD
pathogenesis and identify the drug targets that can effectively
prevent or delay the disease progression, many researchers
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have recently been focusing their efforts on investigating and
characterising early-stage AD phenotypes [8, 9]. Reliable
early-stage AD diagnostic tools can also assist clinicians and
researchers to position drug interventions at the right temporal
therapeutic window for effective detection of treatment effects
in AD clinical trials [10]. Therefore, tools that can facilitate
investigation of early-stage AD would prove to be invaluable,
and metabolic profiling presents itself as a promising ap-
proach in this aspect [11, 12]. Defined as the quantitative
measurement of the dynamic multiparametric metabolic re-
sponse of living systems to pathophysiological stimuli or ge-
netic modification [13], metabolic profiling offers distinct ad-
vantages over other B-omics^ approaches. Firstly, owing to
their low molecular weights, metabolites are structurally con-
served across species [14], unlike protein and gene expres-
sions which usually involve different isoforms that often carry
notably different properties. Secondly, since the metabolome
lies downstream of genomes, transcriptomes and proteomes,
metabolic signals have been shown to be amplified [15]. This
allows metabolic profiling approach to detect subtle fluctua-
tions in the system, and therefore represents a more sensitive
platform for probing into early disease stages, as well as for
detecting and monitoring the therapeutic response to drug
treatment.

Many studies have shown that abnormalities in cerebral
glucose metabolism are an early feature of AD [16, 17], sug-
gesting that impaired energymetabolism in the brain may play
an early and proximal, even if not the primary, role in the
pathogenesis and progression of AD [18]. Because the brain
relies almost exclusively on glucose as a substrate for energy
production, cerebral function is directly dependent on the
availability of glucose and its use. In the brain, free energy
required to drive most cellular reactions is derived from phos-
phorylation of adenosine triphosphate (ATP), which is mostly
produced in the mitochondria from the aerobic oxidation of
glucose [19]. The peroxisome proliferator-activated receptors
(PPARs) are a subfamily of nuclear receptors which serve as
ligand-modulated transcription factors that regulate gene-
expression programs of metabolic pathways [20].
Specifically, the isoform PPARγ is the most extensively stud-
ied and is well-documented to coordinate lipid, glucose and
energy metabolism [21]. Moreover, it has been proposed as a
potential therapeutic target to rescue mitochondrial function in
neurological diseases [22]. The PPARγ agonist pioglitazone
(PIO) has been studied extensively for AD therapy in both
preclinical and clinical studies [23–28]. Despite substantial
engagement of PPARγ agonists in AD clinical trials, the ther-
apeutic effects of PPARγ agonists in the brain are still not
fully understood [29]. Since metabolic profiling technique
can potentially be used as a valuable tool to better understand
the mechanisms of action of therapeutic compounds [30], we
postulate that the metabolic profiling approach could be
employed as a powerful study platform to elucidate the

therapeutic effects of PPARγ agonists such as PIO in treating
AD. Once validated, such findings will provide useful insights
into the mechanisms of action for this class of compounds in
AD therapy.

Applied on a carefully chosen disease model, metabolic
profiling strategies could produce comprehensive data that
allow further hypotheses to be generated and tested using
the same model. One of the more commonly used disease
models in AD research is the amyloid precursor protein
(APP) expressing model, where cells (in vitro model) or ani-
mals (in vivo model, often mice are used as models)
possessing the APP transgene would overexpress the trans-
membrane protein APP, proteolytic processing of which will
lead to accumulation of neurotoxic amyloid-β deposits. To
generate a more aggressive APP model, another transgene,
presenilin-1 (PS1) could be added to amplify the toxicity in-
duced by APP. PS1 mutation is responsible for increasing
expression of PS1, a critical catalytic subunit which regulate
the proteolytic activity of γ-secretase. Together with the in-
creased expression of APP, the enhanced activity of γ-
secretase will lead to accelerated generation of neurotoxic
amyloid-β, therefore producing observable AD phenotypes
in the disease models at a much earlier time point [31]. The
APP/PS1 double transgenic mouse model has been widely
used in the field of AD research to understand the disease
better [32], and has also been used routinely as an in vivo
screening model for therapeutic compounds [33].

In this study, we employed a gas chromatography time-of-
flight mass spectrometry (GC-TOF-MS) setup to perform
metabolic profiling on C57BL/6 mice that carry the APP
and PS1 transgenes, with a similar focus on early-stage dis-
ease phenotypes. A thorough search among published litera-
tures revealed relatively fewer studies that employed GC-MS-
based metabolic profiling approach to study AD, as compared
to studies that used NMR-based metabolic profiling tech-
nique. There is also a lack of study that employed GC-MS-
based metabolic profiling technique to look at metabolic
changes in different brain regions in an AD model [34]. On
top of that, most GC-MS-based metabolic profiling studies
utilised GC-quadrupole-MS [34, 35], which in general has a
lower sensitivity than GC-TOF-MS due to its compromised
duty cycle [36], and our TOF-MS could be more superior to a
quadrupole-MS when employed in a non-targeted metabolo-
mics setting. Therefore, a GC-TOF-MS-based metabolic pro-
filing of an appropriately chosen APP model could generate
useful findings that will complement existing knowledge and
other NMR-based AD metabolic profiling studies to allow for
a better understanding of AD pathophysiology. Utilising the
GC-TOF-MS-based metabolic profiling approach, we also in-
vestigated the ability of PIO in minimising or reversing the
metabolic alterations observed in APP/PS1 transgenic mice.
Selected biochemical assays were then performed to follow up
on findings generated from metabolic data in this study.
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Accumulation of APP in cortical mitochondria was also
assessed in this study, since mitochondrial APP accumulation
was found to be one of the main early-stage AD phenotypes
observed in an in vitro APP model [37]. On top of that, we
also attempted to examine the oxidative state in APP/PS1
transgenic mice by measuring activities of two major antiox-
idative enzymes, namely superoxide dismutase (SOD) and
catalase, in their cortex and plasma tissue and compare against
activities observed in non-transgenic wildtype mice.

Materials and Methods

Chemicals

A 2% methoxyamine hydrochloride in pyridine (MOX re-
agent) and N-methyl-N-(trimethylsilyl) trifluoroacetamide
(MSTFA) with 1% trimethylchlorosilane (TMCS) were pur-
chased from Thermo Fisher Scientific (Waltham, MA, USA).
PIO was purchased from Cell Molecular Pharmaceutical
R&D (Xi’an, China). All other reagents used were of
analytical grades.

Animal Husbandry

APP/PS1 transgenic male and female breeders were used to
generate breeding colony to obtain APP/PS1 transgenic mice
for experiments in this study. Transgenic breeders were gen-
erous gifts from Professor Gavin S. Dawe’s research group
(National University of Singapore, Singapore). Themice were
paired for breeding in separate cages and pups were weaned
4 weeks after birth. Mouse tail genotyping was used to con-
firm the presence of APP and PS1 transgene in offspring. To
carry out the genotyping, PureLink Genomic DNA Mini kit
(Life Technologies, Carlsbad, CA, USA) was first used to
extract DNA from sampled mouse tails. DNA extractions
were then subjected to PCR amplification with primers (sep-
arately for APP, PS1 and internal control) and GoTaq Green
Master Mix (Promega, Madison, WI, USA). Mixtures were
then resolved by DNA gel electrophoresis, whereas gel imag-
ing was done using Molecular Imager Gel Doc XR and
analysed using Image Lab Software (Bio-Rad, Hercules,
CA, USA). APP/PS1 transgenic mice intended for experi-
ments were housed in groups (maximum of 5 mice per cage)
under standard conditions of humidity, temperature and 12-h
light/dark cycle with ad libitum access to food and water. All
mice were maintained under constant conditions for
4 days prior to experiments. All animal handling proto-
cols were carried out in accordance with Singapore
National Advisory Committee on Laboratory Animal
Research (NACLAR) guidelines and approved by Institutional
Animal care and Use Committee (IACUC), National University
of Singapore.

Animal Experiment and Sample Collection

A total of 10 male APP/PS1 transgenic mice (18 weeks old)
were split into two treatment groups (n = 5), where one group
received PIO treatment and the other group received vehicle
treatment as disease control. Another 5 male wildtype mice
(18 weeks old, taken from the same breeding colony) were
also given vehicle treatment and they serve as healthy control
in this experiment. PIO was dissolved in DMSO and diluted
20 times with 1% (w/v) methyl cellulose to be administered
via oral gavage (p.o.). PIO treatment was given as single p.o.
administration every day for 14 days, and dosage used in this
study was 30 mg/kg of PIO. Vehicle-treated APP/PS1 and
wildtype mice were also given vehicle treatment for 14 days.
Twenty-four hours after the last dose of the 14-day treatment
regimen, all mice (20 weeks old) were sacrificed by CO2

euthanization and their blood samples were collected via car-
diac puncture into eppendorf tubes supplemented with hepa-
rin. Transcardial perfusion with saline was then performed on
the sacrificed mice to remove traces of blood from their organs
before whole brain tissues were carefully removed from their
skulls. Immediately after the whole brains were collected, dif-
ferent brain parts (cortex, hippocampus, cerebellum and mid-
brain) were dissected and transferred into separate clean
eppendorf tubes. All biological samples were kept on ice im-
mediately after collection. Blood samples were centrifuged at
4000g for 10 min and plasma samples were then aliquoted
from the supernatants into clean eppendorf tubes. All plasma
and brain part samples were stored at − 80 °C until analysis.

Sample Preparation for GC-TOF-MS-Based Metabolic
Profiling Analysis

Plasma and brain part samples were thawed and kept on ice
before sample preparation. About 20–25 mg of brain part
samples (cortex, hippocampus, cerebellum and midbrain)
were transferred into new eppendorf tubes, and 10 μL/mg of
Milli-Q water was added to each tube containing the brain part
sample before they were lysed with bead homogeniser. One
hundred fifty microlitres of each tissue homogenate was then
transferred into new tubes for subsequent sample preparation.
One hundred microlitres of plasma samples were used without
dilution for sample preparation. To prepare biological samples
for GC-TOF-MS analyses, 950 μL of chilled methanol (con-
taining 50 μM of myristic-d27 acid as internal standard) was
first added to plasma and brain part homogenate samples for
protein precipitation. All mixtures were vortex-mixed at high
speed for 5 min, followed by centrifugation (14,000g) for
20 min at 4 °C to pellet the precipitated protein. For each
sample, 900 μL of clear supernatant was transferred into
pre-silanized glass tubes for drying and then evaporated to
dryness at 50 °C under a gentle stream of nitrogen gas using
TurboVap nitrogen evaporator (Calliper Life Science,
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Hopkinton, MA, USA). To ensure complete elimination of
water which might interfere with the subsequent sample prep-
aration steps, 100 μL of anhydrous toluene (stored with sodi-
um sulphate) was added to each dry residue, vortex-mixed for
1 min and dried again at 50 °C under nitrogen gas. After
completion of the drying process, 50 μL of MOX reagent
was added to each dried extract, vortex-mixed for 2 min and
incubated at 60 °C for 2 h as a methoximation step. Following
the methoximation step, derivatisation ofmetabolites was then
initiated by adding 100 μL of MSTFA (with 1% TMCS) to
each sample, vortex-mixed for 2 min and incubated at 60 °C
for 1 h. This step aimed to increase volatility and stability of
metabolites present in the samples. Following the completion
of derivatisation step, each sample was vortex-mixed again for
2 min and centrifuged at 3000g at room temperature for 5 min
to spin down any insoluble solids. Supernatants were then
carefully transferred into GC autosampler vials for subsequent
injection into the GC-TOF-MS analytical instrument.

GC-TOF-MS Data Acquisition and Preprocessing

Brain part and plasma samples were analysed in batches sep-
arated according to the types of samples.Within each batch for
one particular sample type, sample injections were
randomised tominimise procedural artefact during subsequent
analyses. Data acquisition for GC-TOF-MS analyses were
carried out using an Agilent 7890A Gas Chromatography
(Agilent Technologies, Santa Clara, CA) coupled to
PEGASUS 4D Time-of-Flight Mass Spectrometer TOF-MS
(LecoCorp., St. Joseph, MI). A DB-1 GC column (Agilent
Technologies) with an altered length of 22.9 m (internal diam-
eter of 250 μm and film thickness of 0.25 μm) was used as the
primary column. The secondary column was removed and
settings for secondary column were disabled. Helium was
used as the carrier gas to facilitate separation at a constant
flow rate of 1.5 mL/min. Injector split ratio was set to 1:10
and a total injection volume of 1 μL was used. The injector
inlet and ion source temperatures were both maintained at
250 °C throughout the entire GC run. Oven temperature gra-
dient was programmed as follows: firstly, the oven tempera-
ture was set to equilibrate at 70 °C for 0.5 min before sample
injection was initiated; upon sample injection, oven tempera-
ture was kept at 70 °C for another 0.2 min and then ramped up
at a rate 8 °C/min to 270 °C where it was held at that temper-
ature for 5 min; finally, oven temperature was further in-
creased by 40 °C/min to reach 310 °C and held for another
5 min. The MS detection was operated in EI mode (standard
ionisation energy 70 eV) and detector voltage was set at
1800 V. Data were acquired using full scan mode, with mass
range set at m/z 50–600, and an acquisition rate of 15 Hz was
employed. Acquisition delay was set at 195 s to prevent the
large solvent front peak from entering the mass analyser. GC
chromatogram data acquisition, baseline correction, peak

deconvolution, analyte alignment, peak area calculation as
well as preliminary analyte identification by mass spectral
searches (based on NIST, Fiehn Rtx5 and our own in-house
libraries built using previous analyses of commercially avail-
able metabolite standards) were all performed using LECO
ChromaTOF software version 4.21 before subjecting the met-
abolic data to multivariate data analysis. For preliminary met-
abolic peak identification, peaks with similarity index (SI) of
70% or more were assigned putative metabolite identities
based on the mass spectral libraries matches. To ensure proper
matching between sample spectrum and library spectrum,
mass spectral from both sample peak and library peak were
visually inspected, and retention time (RT) of libraries were
checked using a mix of fatty acid methyl esters peak markers
that were injected before sample injections. As for integration
of area under each metabolite peak, baseline offset, minimum
peak width, signal to noise (S/N) ratio and number of apexing
masses were set at 0.5, 2.5 s, 100 and 3, respectively.
Calculation of the area under peak for each metabolite was
performed based on the unique mass selected frommass spec-
trum detected for each metabolic peak. Metabolic data matrix
was generated using LECO ChromaTOF’s calibration feature
as described in previous literature [38], with similarity thresh-
old between analyte peak and reference peak set at 70% in-
stead of 60%. The resulting metabolic data were processed by
normalising peak area of each analyte based on peak area of
myristic-d27 acid in their own respective sample, followed by
another normalisation using total integral area of all included
metabolic peaks. Normalised metabolic peak areas were then
constructed into a data matrix for subsequent multivariate data
analysis.

Multivariate Data Analysis of Metabolic Data Matrix

Normalised data was subjected to multivariate data analysis
(SIMCA-P software version 13.0, Umetrics, Umeå, Sweden)
with separate analyses carried for different types of brain part
samples (plasma, cortex, hippocampus, cerebellum and mid-
brain). Data were first mean-centred and unit-variance scaled
before being subjected to principal component analysis
(PCA). The purpose of PCAwas to observe clustering trends
among analysed samples, as well as to identify outliers in the
data and exclude them with sufficient justifications based on
observation of gross errors that might have been introduced
during sample handling or GC-TOF-MS analytical runs. After
the initial data overview using PCA, metabolic data were fur-
ther subjected to partial least squares discriminant analysis
(PLS-DA) to build a discriminant model, with one built sep-
arately for plasma and each type of brain part sample. Model
validity and potential overfitting of both PLS-DA models
were checked by performing 100 observation-dependent
randomised permutation tests and visually inspected using
model validation plot. As a rule of thumb, model validation
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plot for this permutation test is considered valid when (1) none
of the cumulative Q2 values calculated for permuted datasets
is higher thanQ2 value of original dataset, and (12) the regres-
sion line of Q2 values of original and permuted datasets trend
towards zero (or negative values) when the correlation be-
tween original dataset and permuted datasets is decreasing.
Once PLS-DA model passed model validation step, the same
dataset was then analysed using orthogonal partial least
squares discriminant analysis (OPLS-DA), which affords a
more straightforward identification of discriminant metabo-
lites responsible for differentiation between APP/PS1 trans-
genic mice and wildtype mice (healthy control). To select
from OPLS-DA model a list of potential discriminant metab-
olites for further analysis, variable importance in projection
(VIP) cut-off value was set to 1.00 to generate a list of poten-
tial discriminant metabolites that could have contributed sig-
nificantly to the separation between APP/PS1 and wildtype
mice in the OPLS-DA model. To determine significance of
difference in metabolite levels between APP/PS1 and
wildtype mice, two-tailed independent t test with Welch’s cor-
rection was used for statistical comparison of these potential
discriminant metabolites between the two groups and
Bonferroni-adjusted P value was used to determine signifi-
cance. Discriminant metabolites that have VIP ≥ 1.00 and P
value lower than Bonferroni-adjusted significance levels were
deemed to have contributed significantly to the differentiation
of metabolic profiles between APP/PS1 and wildtype mice.
Fold-change (FC) value for each discriminant metabolite with
respect to the healthy control was calculated using the follow-
ing Eq. 1, where x and y represent average metabolite levels
calculated for APP/PS1 transgenic mice and non-transgenic
wildtype mice, respectively.

Fold−change ¼ x=y ð1Þ

Fold-change values were used to assess the degree of alter-
ations for each discriminant metabolite. To interpret the bio-
logical meaning behind the observed metabolic alterations,
information regarding discriminant metabolites was sourced
from freely available online metabolite databases such as
Human Metabolome Database (HMDB) [39] for information
on the metabolite itself, Kyoto Encyclopedia of Genes and
Genomes database (KEGG) [40] for metabolic pathway inter-
pretations and relevant published literature.

Evaluating PIO’s Therapeutic Effects on Discriminant
Metabolites

To assess the therapeutic potential of PIO on metabolic per-
turbation in plasma and different brain parts of APP/PS1 trans-
genic mice, we examined PIO’s effects on the list of discrim-
inant metabolites identified from multivariate data analysis.
Discriminant metabolites for APP/PS1 mice were regarded

as being normalised or Btreated^ if their levels in PIO-
treated transgenic mice were altered significantly when com-
pared against vehicle-treated transgenic mice, and the direc-
tion of change is heading towards metabolite levels observed
in non-transgenic wildtype mice (healthy control). Since dif-
ferent types of samples (plasma, cortex, hippocampus, cere-
bellum and midbrain) have their own list of discriminant me-
tabolites, PIO’s treatment effects on each list were assessed
separately. Statistical comparison of data for evaluation of
treatment effects was performed using two-tailed independent
t test with Welch’s correction, and P value < 0.05 will be
defined as being Btreated^ to guide the discussion in this
paper.

Measurement of Amyloid-β40 and Amyloid-β42
Levels in Cortex and Plasma

Amyloid-β40 and 42 levels in cortex and plasma samples of
vehicle-treated APP/PS1 mice, PIO-treated APP/PS1 mice
and non-transgenic wildtype mice were quantitatively mea-
sured using colorimetric sandwich ELISA kits, according to
the protocols provided by the manufacturer (#SIG-38954 and
#SIG-38956 from Covance, Princeton, NJ). Cortex tissue
samples from all mice were homogenised with PBS supple-
mented with 1× protease inhibitor cocktail in a ratio of 1:10
before loading into coated plates that came with the ELISA
kits. Plasma samples were diluted 30 times with PBS for their
amyloid-β40 and 42 measurements to be taken using this
method. Total protein analysis measured using micro BCA
protein assay kit (#23235 from Pierce Biotechnology,
Rockford, IL) indicated that cortex tissue harvested from
APP/PS1 mice consistently displayed higher level of total
protein expression than non-transgenic wildtype mice.
Therefore, non-normalised cortical amyloid-β40 and 42 data
were used for comparison between the three groups of mice,
and data were made comparable by loading equal tissue mass
into plate before measurements were taken. All absorbance
readings were measured using Tecan Infinite M200 micro-
plate reader (Tecan, Switzerland). Data means were statistical-
ly compared using two-tailed independent t test with Welch’s
correction, with significance level set at P < 0.05.

Measurement of APP Levels in Cortex and Cortical
Mitochondrial Fractions

APP levels were assessed in both cortex samples and mito-
chondria fractions extracted from cortex tissue of APP/PS1
mice, APP/PS1 mice treated with PIO and non-transgenic
wildtype mice. Cortex tissue samples were homogenised in
a ration of 1:10 with PBS supplemented with 1× protease
inhibitor cocktail. To extract mitochondria fractions, cortex
tissue samples were first homogenised on ice using a pre-
chilled dounce homogeniser and differential centrifugation
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procedure detailed in a commercially available kit was used
for mitochondria extraction (#89874 from Thermo Fisher
Scientific, Waltham, MA). It should be noted that, following
the manufacturer’s recommendation, mitochondrial pellets
were obtained using centrifugation at 3000g (instead of
12,000g) to improve purity of extraction. To assess the purity
of mitochondrial fraction, a western blot analysis was used to
detect for presence of different organelles in extracted frac-
tions and compared against whole tissue homogenate.
Presence of different organelles was measured using antibody
cocktail suitable for organelle detection (ab133989 from
Abcam, Cambridge, UK). Antibodies targeting four different
organelle markers were used in the western blot analysis,
namely anti-sodium potassium ATPase antibody (plasma
membrane), anti-ATP5A antibody (mitochondria), anti-
GAPDH antibody (cytosol) and anti-histone H3 antibody (nu-
cleus). Following extraction, the purified mitochondrial frac-
tions were further homogenised using a probe sonicator to
completely lyse the mitochondria for analysis of APP using
colorimetric sandwich ELISA kit (#KHB0051 from Life
Technologies, Carlsbad, CA). Cortical APP data were not
normalised for the same reason stated in previous section,
whereas mitochondrial APP data were normalised based on
total protein level present in eachmitochondrial fraction (mea-
sured using micro BCA protein assay kit). All absorbance
readings were measured using Tecan Infinite M200 micro-
plate reader. Means between different groups were compared
using two-tailed independent t test with Welch’s correction,
with P < 0.05 to be considered as a significant mean
difference.

Measurement of Lactate Dehydrogenase (LDH)
and Citrate Synthase Activities

Comparison between metabolic data for APP/PS1 and non-
transgenic wildtype mice showed that two major discriminant
metabolites between these two groups are citric acid and lactic
acid (results shown below). Among these two discriminant
metabolites, PIO exerted treatment effect on lactic acid but
not citric acid. Therefore, we assessed the activities of LDH
and citrate synthase in cortex samples taken from APP/PS1
mice, PIO-treated APP/PS1mice and non-transgenic wildtype
mice. LDH activities were measured using a commercially
available colorimetric assay kit (#K726-500, BioVision,
Milpitas, CA, USA), where LDH’s ability to reduce NAD to
NADH was assessed in each sample, and colorimetric probe
was used to measure the activity of this reaction. Citrate syn-
thase activities in cortex samples harvested from all three
groups of mice were also measured using a commercially
available kit (#K318-100, BioVision, Milpitas, CA, USA),
where citrate synthase activities for all samples were measured
based on their ability to convert acetyl-CoA and oxaloacetate
into intermediates which would then develop into coloured

products for detection. All absorbance readings were mea-
sured using Tecan Infinite M200 microplate reader. Means
between different groups were compared using two-tailed in-
dependent t test with Welch’s correction, with P < 0.05 to be
considered as a significant mean difference.

Measurement of SOD and Catalase Activities

Since oxidative stress is one pathological phenotype common
in most AD models, we attempted to assess the oxidative
capacities in cortex and plasma samples of vehicle-treated
APP/PS1 mice and wildtype mice as well as PIO-treated
APP/PS1 mice by measuring activities of two major antioxi-
dative enzymes. A commercially available kit (#706002,
Cayman Chemical, Ann Arbor, MI, USA) was used to mea-
sure SOD activity, where a mixture of xanthine oxidase and
hypoxanthine was used to generate superoxide radicals which
would be scavenged by SOD present in samples. Unreacted
superoxide radicals would react with tetrazolium salt to form a
detectable coloured dye, thus producing an inverse relation-
ship between amounts of coloured dye formed and SOD ac-
tivities in samples. Catalase activity was also assessed using a
commercially available kit (#707002, Cayman Chemical, Ann
Arbor, MI, USA), where reaction of catalase with methanol in
presence of H2O2 to produce formaldehyde was monitored
colorimetrically using a triazole dye. All absorbance readings
were measured using Tecan Infinite M200 microplate reader.
Means between different groups were compared using two-
tailed independent t test with Welch’s correction, with
P < 0.05 to be considered as a significant mean difference.

Results

GC-TOF-MS-Based Metabolic Profiling of Plasma
Samples

PCA for plasma samples did not display any visible clustering
trend on scores plot, suggesting only slight or no difference
between the plasma metabolites from the two groups of mice
(Fig. 1a). A PLS-DA model generated using the same meta-
bolic data did not pass the model validation plot as randomly
permuted datasets gave higher Q2 values than the Q2 value

Fig. 1 (a) PCA of plasma samples fromwildtype and APP/PS1 transgen-
ic mice; (b) Y-permuted model validation plot for PLS-DA of same
dataset; (c) OPLS-DA of their plasma metabolic profiles (R2(Y) =
0.932, Q2(cum) = 0.194)
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calculated for original dataset (Fig. 1b), which indicates high
risk of model over-fitting and little interpretability for the
dataset. OPLS-DA model constructed using the same data is
presented in Fig. 1c (1-predictive and 1-orthogonal com-
ponents, R2(Y) and Q2(cum) were 0.932 and 0.194, re-
spectively). The small Q2(cum) value indicates that sep-
aration of plasma metabolic profiles between the two
groups of mice was not clear. Nevertheless, a list of
25 potential discriminant metabolites (VIP ≥ 1.00) was gener-
ated based on the OPLS-DAmodel (data not shown), and only
two metabolites (L-threonine and L-valine) have P < 0.05.
Interestingly, one of them (L-threonine, + 28.6%) has P value
lower than Bonferroni-adjusted significance level (0.002).

GC-TOF-MS-Based Metabolic Profiling of Cortex
Samples

PCA for metabolic profiles in cortex samples displayed a clear
clustering between APP/PS1 mice and non-transgenic
wildtype mice (Fig. 2a). Model validation plot for PLS-DA
model generated using the same dataset showed a valid model,
as all Q2 values calculated for randomly permuted datasets
were lower than actual Q2 value itself, and the regression line
of Q2 values intersected y-axis below zero (Fig. 2b). OPLS-
DA model constructed using the same data is presented
in Fig. 2c (1-predictive and 1-orthogonal components, R2(Y)
and Q2(cum) were 0.986 and 0.863, respectively). The high
Q2(cum) value indicates that separation of cortical metabolic
profiles between the two groups of mice was robust. Based on
this OPLS-DA model, a list of 22 potential discriminant me-
tabolites (VIP ≥ 1.00) that contributed to separation was iden-
tified and presented in Table 1. Ten out of these 22metabolites
achieved significance when means were compared between
APP/PS1 and non-transgenic wildtype mice, as determined
by P < 0.0023 (Bonferroni-adjusted significance level).

GC-TOF-MS-Based Metabolic Profiling
of Hippocampus Samples

Similar to cortical metabolic profiles, PCA for hippocampus
samples displayed a clear grouping that separates APP/PS1
mice from non-transgenic wildtype mice (Fig. 3a). Y-
permuted validation plot shows that the PLS-DA model built

using this dataset is valid (Fig. 3b). OPLS-DA model (1-pre-
dictive and 1-orthogonal components) constructed using the
same data gave R2(Y) andQ2(cum) values of 0.986 and 0.914,
respectively, which indicate that the separation between APP/
PS1 mice and wildtype mice based on their hippocampal met-
abolic profiles is significant (Fig. 3c). Based on this OPLS-
DA model, a list of 21 potential discriminant metabolites
(VIP ≥ 1.00) that contributed to separation was identified
and presented in Table 2. Only 1 out of these 21 metabolites
achieved significance when means were compared between
APP/PS1 and non-transgenic wildtype mice, as determined
by P < 0.0024 (Bonferroni-adjusted significance level).

Fig. 2 (a) PCA of cortex metabolic profiles for wildtype and APP/PS1
transgenic mice; (b) Y-permuted model validation plot for PLS-DA of
cortex metabolic data; (c) OPLS-DA of cortex metabolic data (R2(Y) =
0.986, Q2(cum) = 0.863)

Table 1 List of potential discriminant metabolites that differentiate
cortex tissue of APP/PS1 mice from non-transgenic wildtype mice

Metabolite Metabolite class FC VIP P valuea

1 Citric acid Carboxylic acid 0.65 1.55 < 0.0001*

2 Glycine Amino acid 0.80 1.54 < 0.0001*

3 Inosine Purine nucleoside 1.69 1.54 < 0.0005*

4 Threonine Amino acid 0.73 1.50 < 0.001*

5 Lactic acid Hydroxy acid 1.46 1.47 < 0.001*

6 Tyrosine Amino acid 0.69 1.44 < 0.001*

7 Valine Amino acid 0.75 1.43 < 0.001*

8 Glucose Monosaccharide 1.07 1.43 < 0.005*

9 Aspartic acid Amino acid 0.66 1.42 < 0.005*

10 Malic acid Carboxylic acid 1.33 1.38 < 0.005

11 Glucose-6-phosphate Monosaccharide 1.38 1.37 < 0.005*

12 Beta-alanine Amino acid 0.50 1.36 < 0.01

13 Leucine Amino acid 0.81 1.31 < 0.005

14 Ribose-5-phosphate Monosaccharide 1.41 1.30 < 0.01

15 Fumaric acid Fatty acid 1.18 1.29 < 0.05

16 Ethanolamine Alkylamine 0.75 1.26 < 0.01

17 Serine Amino acid 0.86 1.24 < 0.05

18 Pyroglutamic acid Pyrrolidine 1.16 1.23 < 0.05

19 Glycerol Sugar alcohol 0.87 1.12 < 0.05

20 Threonolactone Lactone 1.42 1.10 < 0.05

21 N-Acetyl-L-aspartic
acid

Amino acid 1.42 1.09 < 0.05

22 Oleic acid Fatty acid 1.06 1.07 < 0.05

aP values were calculated for mean comparison between APP/PS1 and
non-transgenic wildtype mice using independent t tests (two-tailed) with
Welch’s correction. *P < 0.0023 (Bonferroni-adjusted significance level)

Fig. 3 (a) PCA of hippocampus metabolic profiles for wildtype andAPP/
PS1 transgenic mice; (b) Y-permuted model validation plot for PLS-DA
of hippocampusmetabolic data; (c) OPLS-DA of hippocampus metabolic
data (R2(Y) = 0.986, Q2(cum) = 0.914)
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GC-TOF-MS-Based Metabolic Profiling of Cerebellum
Samples

PCA for metabolic profiles of cerebellum samples also
showed a clear separation between APP/PS1 mice and non-
transgenic wildtypemice (Fig. 4a). Y-permuted validation plot
shows that the PLS-DA model built using this dataset is valid
(Fig. 4b). OPLS-DA model (1-predictive and 1-orthogonal
components) constructed using the same data showed a robust
separation between the two groups of mice, as reflected by
their R2(Y) and Q2(cum) values of 0.966 and 0.818,

respectively (Fig. 4c). Based on this OPLS-DA model, a list
of 16 potential discriminant metabolites (VIP ≥ 1.00) that con-
tributed to separation was identified and presented in Table 3.
Five out of these 16 metabolites achieved significance when
means were compared between APP/PS1 and non-transgenic
wildtype mice, as determined by P < 0.003 (Bonferroni-ad-
justed significance level).

GC-TOF-MS-Based Metabolic Profiling of Midbrain
Samples

Similar to our observations for the preceding three brain re-
gions, PCA for midbrain samples produced a distinct cluster-
ing trend that separates APP/PS1 mice from non-transgenic
wildtype mice (Fig. 5a). Validity of PLS-DA model for this
metabolic dataset was checked using Y-permuted validation
plot (Fig. 5b), and OPLS-DA model (1-predictive and 1-
orthogonal components) constructed using the same dataset
gave R2(Y) and Q2(cum) values of 0.939 and 0.680, respec-
tively, which indicate that there is also a separation between
midbrain metabolic profiles of APP/PS1 mice and wildtype
mice (Fig. 5c). A list of 18 potential discriminant metabolites
(VIP ≥ 1.00) was constructed based on this OPLS-DA model,
and 3 out of these 18 metabolites achieved significance as
determined by P < 0.0028 (Bonferroni-adjusted significance
level). The list of discriminant metabolites for midbrain sam-
ples is summarised in Table 4.

Table 2 List of potential discriminant metabolites that differentiate
hippocampus tissue of APP/PS1 mice from non-transgenic wildtype mice

Metabolite Metabolite class FC VIP P valuea

1 Ribose-5-phosphate Monosaccharide 2.11 1.66 < 0.01

2 Lactic acid Hydroxy acid 1.19 1.62 < 0.0001*

3 Glucose-6-phosphate Monosaccharide 2.04 1.61 < 0.01

4 Glucose Monosaccharide 1.58 1.55 < 0.01

5 Aspartic acid Amino acid 0.77 1.52 < 0.01

6 Creatinine Lactam 1.41 1.51 < 0.01

7 Uracil Pyrimidine 0.84 1.46 < 0.05

8 Malic acid Carboxylic acid 1.16 1.46 < 0.05

9 Succinic acid Carboxylic acid 1.14 1.45 < 0.05

10 Inosine Purine nucleoside 1.26 1.42 < 0.05

11 Beta-alanine Amino acid 0.68 1.41 < 0.05

12 Glycine Amino acid 0.95 1.40 < 0.05

13 Threonolactone Lactone 1.55 1.39 < 0.05

14 GABA Amino acid 0.80 1.33 < 0.05

15 2-Hydroxyglutaric acid Hydroxy acid 1.15 1.32 < 0.05

16 Urea Urea 1.23 1.30 < 0.05

17 Proline Amino acid 1.29 1.24 < 0.05

18 4-Guanidinobutyric
acid

Amino acid 0.81 1.24 < 0.05

19 Leucine Amino acid 0.92 1.22 < 0.05

20 Pyroglutamic acid Pyrrolidine 1.13 1.20 NS**

21 Glutamic acid Amino acid 1.47 1.17 NS**

aP values were calculated for mean comparison between APP/PS1 and
non-transgenic wildtype mice using independent t tests (two-tailed) with
Welch’s correction. *P < 0.0024 (Bonferroni-adjusted significance level).
**NS (non-significance) is defined by P > 0.05

Fig. 4 (a) PCA of cerebellum metabolic profiles for wildtype and APP/
PS1 transgenic mice; (b) Y-permuted model validation plot for PLS-DA
of cerebellummetabolic data; (c) OPLS-DA of cerebellummetabolic data
(R2(Y) = 0.966, Q2(cum) = 0.818)

Table 3 List of potential discriminant metabolites that differentiate
cerebellum tissue of APP/PS1 mice from non-transgenic wildtype mice

Metabolite Metabolite class FC VIP P valuea

1 Ribose-5-phosphate Monosaccharide 1.46 1.91 < 0.0005*

2 Glucose-6-phosphate Monosaccharide 1.35 1.82 < 0.001*

3 Glutamic acid Amino acid 1.41 1.82 < 0.001*

4 N-acetyl-L-aspartic acid Amino acid 1.51 1.75 < 0.005*

5 Aspartic acid Amino acid 0.67 1.73 < 0.005*

6 Leucine Amino acid 0.81 1.53 < 0.05

7 Ribonic acid Monosaccharide 0.75 1.32 NS**

8 Succinic acid Carboxylic acid 1.16 1.29 NS**

9 Threonic acid Monosaccharide 1.26 1.27 NS**

10 Glycolic acid Hydroxy acid 1.39 1.25 NS**

11 Fumaric acid Fatty acid 0.89 1.21 NS**

12 Methylmalonic acid Carboxylic acid 1.12 1.19 NS**

13 Glyceric acid Sugar acid 1.33 1.12 NS**

14 Serine Amino acid 0.85 1.09 NS**

15 Fructose Monosaccharide 0.86 1.02 NS**

16 Valine Amino acid 0.85 1.02 NS**

aP values were calculated for mean comparison between APP/PS1 and
non-transgenic wildtype mice using independent t tests (two-tailed) with
Welch’s correction. *P < 0.003 (Bonferroni-adjusted significance level).
**NS (non-significance) is defined by P > 0.05

Mol Neurobiol (2019) 56:7267–72837274



Evaluating PIO’s Therapeutic Effects on Discriminant
Metabolites

To assess therapeutic potential of PIO in the ADmodel used in
this study, we investigated PIO’s ability to alleviate or reverse
the discriminant metabolites identified in plasma and different
brain parts of APP/PS1 mice. PIO was observed to exert no
therapeutic effect on discriminant metabolites that were iden-
tified in plasma (L-threonine), hippocampus tissue (lactic acid)
and midbrain tissue (urea and uracil). On the other hand, PIO
successfully treated 4 out of 10 discriminant metabolites
(lactic acid, L-valine, glucose and glucose-6-phosphate)
which characterised cortex tissue of APP/PS1 mice. On
top of that, out of the 5 discriminant metabolites that differen-
tiated cerebellum tissue of APP/PS1 mice from their wildtype

counterparts, PIO successfully treated 4 of them (ribose-5-
posphate, glucose-6-phosphate, L-glutamic acid and N-ace-
tyl-L-aspartic acid). It is also worth noting that among the
Btreated^ discriminant metabolites, those that are associated
with energy metabolism (lactic acid, glucose, glucose-6-
phosphate and ribose-5-phosphate) were completely rescued
by treating APP/PS1mice with PIO. Treatment effects exerted
by PIO on discriminant metabolites are graphically
summarised in Fig. 6.

Measurement of Amyloid-β (40 and 42) Levels
in Cortex and Plasma

Amyloid-β40 and amyloid-β42 levels in plasma of APP/PS1
mice and their non-transgenic wildtype counterparts did not
show any significant difference, and PIO treatment had
no effect on both amyloid-β in plasma of APP/PS1
mice. On the other hand, amyloid-β40 was observed
to increase by 19% in cortex tissue of APP/PS1 mice
as compared to non-transgenic wildtype mice, which
was reversed by PIO treatment. Remarkably, amyloid-β42
levels in cortex tissue of APP/PS1 mice increased by as
much as 364% when compared against non-transgenic
wildtype mice. The increase in cortical amyloid-β42
was partially reduced by PIO treatment in the transgenic
mice. All data for amyloid-β40 and amyloid-β42 in
cortex and plasma samples are graphically summarised
in Fig. 7.

Fig. 5 (a) PCA ofmidbrain metabolic profiles for wildtype and APP/PS1
transgenic mice; (b) Y-permuted model validation plot for PLS-DA of
midbrain metabolic data; (c) OPLS-DA of midbrain metabolic data
(R2(Y) = 0.939, Q2(cum) = 0.680)

Table 4 List of potential discriminant metabolites that differentiate
midbrain tissue of APP/PS1 mice from non-transgenic wildtype mice

Metabolite Metabolite class FC VIP P valuea

1 Urea Urea 1.55 1.85 < 0.0005*

2 Uracil Pyrimidine 0.72 1.73 < 0.005*

3 Inosine Purine nucleoside 1.52 1.73 < 0.01

4 Aspartic acid Amino acid 0.73 1.69 < 0.05

5 N-acetyl-L-aspartic acid Amino acid 3.93 1.68 NS**

6 Glucose-6-phosphate Monosaccharide 1.58 1.52 < 0.05

7 Pyroglutamic acid Amino acid 0.63 1.39 < 0.05

8 Ribose-5-phosphate Monosaccharide 1.51 1.38 < 0.05

9 Tyrosine Amino acid 0.63 1.33 < 0.005*

10 Lactic acid Hydroxy acid 1.20 1.31 NS**

11 Serine Amino acid 0.82 1.29 NS**

12 Threonine Amino acid 0.87 1.19 NS**

13 Succinic acid Carboxylic acid 1.19 1.14 NS**

14 Docosahexaenoic acid Fatty acid 1.15 1.11 NS**

15 Sorbitol Fatty alcohol 1.18 1.09 NS**

16 Glycolic acid Hydroxy acid 1.22 1.05 NS**

17 Alanine Amino acid 0.77 1.04 NS**

18 Leucine Amino acid 0.86 1.03 NS**

aP values were calculated for mean comparison between APP/PS1 and
non-transgenic wildtype mice using independent t tests (two-tailed) with
Welch’s correction. *P < 0.0028 (Bonferroni-adjusted significance level).
**NS (non-significance) is defined by P > 0.05

Fig. 6 (a) Discriminant metabolites in cortex tissue that were treated by
PIO administration; (b) discriminant metabolites in cerebellum tissue that
were treated by PIO administration
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Measurement of APP Levels in Cortex and Cortical
Mitochondria

In this study, we measured the amount of APP present in
cortex tissue and mitochondrial extracts of cortex tissue taken
from APP/PS1 mice, PIO-treated APP/PS1 mice and non-
transgenic wildtype mice. Cortical APP was observed to be
higher in APP/PS1 mice by 33%, although this increase did
not achieve significance. Interestingly, PIO treatment signifi-
cantly reduced the cortical APP in APP/PS1 mice (Fig. 8a).
APP was also observed to have accumulated significantly (+
31%) in mitochondria extracted from cortex tissue of APP/
PS1 mice. However, PIO treatment did not have any obvious
effect on the accumulation of mitochondrial APP in transgenic
mice (Fig. 8b). To ensure that there was no contaminant of
plasma membrane (a considerable source of APP) in the mi-
tochondrial extracts, a western blot analysis was used to assess
the purity of extracted mitochondria fractions. Extracted mi-
tochondrial fractions for cortex tissue showed an intense band

at 55 kDa (mitochondrial marker) and a very faint band
at 15 kDa (nuclear marker), whereas analysis of tissue
homogenate gave intense bands at both 100 kDa (plas-
ma marker) and 55 kDa (mitochondrial marker) as well
as a faint band 15 kDa (nuclear marker) (Fig. 8c). Our
western blot analysis demonstrated excellent mitochon-
drial purity in extracted fractions and ruled out the pos-
sibility of contamination from plasma membrane APP in
mitochondrial APP measurements.

Measurement of LDH and Citrate Synthase Activities

Citrate synthase activities in cortex samples of all three groups
of mice (APP/PS1 mice, PIO-treated APP/PS1 mice and non-
transgenic wildtype mice) did not show any significant differ-
ence. On the other hand, activities of LDH were observed to
have decreased significantly in cortex tissue of APP/PS1 mice
when compared against their non-transgenic wildtype mice,
and PIO treatment was observed to have reversed this reduction

Fig. 7 (a) Amyloid-β40 levels in
cortex samples; (b) Amyloid-β40
levels in plasma samples; (c)
amyloid-β42 levels in cortex
samples; (d) Amyloid-β42 levels
in plasma samples; *P < 0.05
when compared against non-
transgenic wildtype mice;
**P < 0.05 when compared
against non-treated APP/PS1
mice; all error bars represent one
SD

Fig. 8 (a) APP levels in cortex samples harvested from all three groups of
mice; (b) APP levels in extracted mitochondrial fractions; *P < 0.05
when compared against non-transgenic wildtype mice; **P < 0.05 when
compared against non-treated APP/PS1 mice; all error bars represent one

SD; (c) Western blot analysis of 4 organelle markers (100 kDa, plasma
membrane; 55 kDa, mitochondria; 36 kDa, cytosol; 15 kDa, nucleus)
performed on extracted mitochondrial fractions and cortex tissue
homogenate
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in LDH activities in APP/PS1 mice. Data for measurement of
LDH activities in cortex samples from all three groups of mice
are graphically summarised in Fig. 9.

Measurement of SOD and Catalase Activities

SOD activities were observed to have dropped significantly in
cortex samples of APP/PS1 mice when compared against
wildtype mice, and PIO treatment successfully reversed this
reduction of SOD activities in cortex tissue (Fig. 10a). There
was no reduction in SOD activities in plasma samples, but
PIO treatment was observed to have an up-regulating effect
on SOD activities in plasma of APP/PS1 mice (Fig. 10b). On

the other hand, no significant difference could be observed in
catalase activities in cortex tissue of all three groups of
mice (Fig. 10c), while catalase activities were observed
to have increased significantly in plasma of APP/PS1
mice, which was also completely rescued by PIO treatment
in the transgenic mice (Fig. 10d).

Discussion

To capture the disease phenotypes associated with early-stage
AD in this in vivo AD model, the sampling time point had to
be carefully chosen to take a biological snapshot that allows us
to meaningfully interpret our findings based on this snapshot.
The sampling time point that is the most suitable for this study
is where AD in these mouse models had progressed enough to
elicit pathophysiological alterations when compared against
non-transgenic wildtype mice, but had not progressed so
much that these mice started to suffer from build-up of Aβ
plaques in their brain tissue, which is associated more with
moderate to late-stage AD. In this study, we sacrificed the
APP/PS1 mice and harvested biological samples for investi-
gation when they were 20 weeks old, which is a time that is
slightly before these mice start to develop sparse amyloid
plaques in their brain tissue [41, 42]. By placing our investi-
gation in this time window, we hoped to capture early-stage
AD signals in this model before amyloid plaques wreak havoc
in their brains, which would then be heavily laden with exten-
sive oxidative damages and neuronal cell death.

Fig. 9 LDH activities in cortex samples taken from all three groups of
mice; *P < 0.05 when compared against non-transgenic wildtype mice;
**P < 0.05 when compared against non-treated APP/PS1 mice; all error
bars represent one SD

Fig. 10 (a) SOD activities in
cortex samples taken from all
three groups of mice; (b) SOD
activities in plasma samples; (c)
catalase activities in cortex
samples; (d) catalase activities in
plasma samples; *P < 0.05 when
compared against non-transgenic
wildtype mice; **P < 0.05 when
compared against non-treated
APP/PS1 mice; all error bars rep-
resent one SD
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Metabolic Profiling of Plasma and Brain Tissue
Samples

To gather a more comprehensive metabolic data using biolog-
ical samples harvested from APP/PS1 transgenic mice and
wildtype mice, we studied the metabolic profiles of plasma
and four different brain parts (cortex, hippocampus, cerebel-
lum and midbrain) of APP/PS1 mice and compared their met-
abolic profiles against non-transgenic wildtype mice. PCA of
plasma metabolic profiles did not show any clear sign of sep-
aration between these two groups of mice, and the subsequent
OPLS-DA did not produce any strong separation between
them. This suggests that plasma in APP/PS1 mice at 20 weeks
of age is not a sample matrix that could yield a lot of useful
information about the pathological processes occurring in this
disease model. Previously, a longitudinal study had reported it
was more difficult to distinguish the plasma metabolome of
APP/PS1 mice from their wildtype counterparts even at
6 months old [43]. In fact, metabolic markers detected in pe-
ripheral plasma of this transgenic model were usually reported
in animals at ≥ 6 months of age [44, 45]. Female APP/PS1
mice were also reported to exhibit more intensive metabolic
alterations in their plasma as compared to male AD and
wildtype mice [46]. Nevertheless, we proceeded with mean
comparison between the metabolites with VIP ≥ 1.00, which
surprisingly gave one discriminant metabolite that differenti-
ated plasma profiles of APP/PS1 mice from wildtype mice
significantly (Bonferroni-adjusted). L-threonine was observed
to be significantly higher in plasma of APP/PS1 mice, which
was inversely related to level of L-threonine in their brains
where lower levels of L-threonine were seen in cortex tissues
of APP/PS1 mice. This indicates a clear compartmentalisation
of metabolic activities between brain parts and plasma. It was
reported that comparably fewer metabolites were observed in
APP/PS1 mouse plasma than in brain extracts [47], which is
not unexpected as brain is the immediate site of AD.
Moreover, metabolic flux occurring in the brain was found
to precede that of the peripheral plasma [43]. Higher plasma
level of L-threonine had also been reported in AD patients
before [48], but no clear explanation was given to explain this
observation. While the GC-MS-based approach employed in
our study tend to focus on lower molecular weight metabo-
lites, lipid-based biomarkers had also been identified in the
plasma of this animal model using liquid chromatography-
mass spectrometry (LC-MS) analytical platform [49].

When sampling and analysing brain tissues harvested from
APP/PS1 mice, we made the additional effort to look into
metabolic profiles in different brain regions separately, as it
had been reported that different brain regions exhibit distinct
metabolic signals of their own when placed under stresses of
APP-induced or age-induced toxicities [50, 51]. In this study,
we investigated the metabolic alterations in four brain regions
of APP/PS1 mice, namely cortex, hippocampus, cerebellum

and midbrain. As expected, we observed different metabolic
alterations in these four brain parts, with cortex tissue being
the most informational among these four as judged by the
highest number of discriminant metabolites observed in cortex
tissue (citric acid, glycine, inosine, L-threonine, lactic acid, L-
tyrosine, L-valine, glucose, L-aspartic acid and glucose-6-
phosphate). Cerebellum and midbrain sample matrices also
yielded considerable metabolic information, with cerebellum
giving 5 discriminant metabolites (ribose-5-phosphate, glu-
cose-6-phosphate, L-glutamic acid, N-acetyl-L-aspartic acid
and L-aspartic acid) and midbrain giving three discriminant
metabolites (urea, uracil and L-tyrosine). Another brain part
that we have investigated is the hippocampus, but this partic-
ular sample matrix only produced one discriminant metabolite
(lactic acid) in our analysis, suggesting that the metabolic
alterations in this particular brain region may not be extensive
in this mouse model at the sampling time point employed in
this study (20 weeks of age). Another study that looked into
metabolic changes in hippocampus tissue of APP/PS1 mice
(16 weeks old) reported the P values for their top 30 discrim-
inant metabolites they detected using univariate analysis [34].
However, none of them achieved significance if Bonferroni
correction for multiple testing was applied on this set of 30
metabolites, suggesting that the metabolic changes were very
limited in the hippocampus tissue of APP/PS1 mice, which is
in agreement with our observations. Moreover, the extent of
alterations in metabolic signatures revealed by PLS-DA was
smaller in male APP/PS1 mice compared to female mice [34],
suggesting that metabolic alterations in the hippocampus may
be more obvious if female mice were used for our study in-
stead. Although hippocampus was one of the main brain re-
gions affected in AD, this was not reflected in APP/PS1 trans-
genic mice sampled at the time point used in this study.
Studies which employed APP/PS1 mice at 6 months of age
were able to detect lower molecular weight metabolites as
potential markers for discrimination between transgenic mice
and non-transgenic controls [52, 53], although it should be
noted that both male and female animals were used in these
studies. This highlights the caveats of employing a disease
model to understand a disease, and caution should be
exercised when interpreting the data generated based on this
disease model.

Impaired Energy Metabolism in Cortex
and Cerebellum of APP/PS1 Mice

Analyses of metabolic data harvested from cortex, cerebellum
and midbrain tissues generated some interesting findings.
Among the discriminant metabolites that described cortex tis-
sue of APP/PS1 mice, compounds that are closely linked in
the energy metabolism and glycolysis pathway (KEGG,
map00010), namely lactic acid, glucose and glucose-6-
phosphate were observed to have increased considerably. In
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cerebellum of APP/PS1 mice, glucose-6-phosphate and
ribose-5-phosphate also shot up significantly. The higher
levels of monosaccharides observed in cortex and cerebellum
of APP/PS1mice were strikingly similar to the observations in
our previously published in vitro study, whereby an excessive-
ly high level of extracellular glucose was detected for an AD
cell model [37]. On the other hand, citric acid, another com-
ponent closely associated with energy metabolism, was found
to have dropped by as much as 35% in the cortex tissue of
APP/PS1 mice when compared against wildtype control. An
opposite trend was observed for citric acid in in vitro metabol-
ic profiling experiments [37], but this could be due to the very
dissimilar physiological conditions between interstitial fluid
and culture medium. This illustrates clearly the differences
between in vitro and in vivo experiments, highlighting the
caveats when carrying out data interpretation for such exper-
iments. Increased lactic acid in cortex of APP/PS1 mice could
be explained by the reduction in their cortical LDH activities,
which was measured in this study using LDH assay that
assessed their rates of converting NAD+ to NADH. This ob-
servation was well-corroborated by another study which re-
ported increased lactic acid in cortex of APP/PS1 mice which
were harvested at 9 months of age [54], and by another study
which reported high brain lactic acid as a biomarker for ageing
[55]. Taken altogether, there is a clear signal of impaired en-
ergy metabolism in cortex tissue of 20-week-old APP/PS1
mice, making them a good model for therapeutic intervention
which focuses on these particular brain region and disease
mechanism.

Dysregulated Amino Acid Metabolism in Cortex
and Cerebellum of APP/PS1 Mice

Looking at amino acids (glycine, L-threonine, L-tyrosine, L-
valine and L-aspartic acid) that discriminated cortex tissue of
APP/PS1 mice against wildtype control, we noticed that they
were all lowered in APP/PS1 mice. This trend was similar to
the observations in our previous in vitro metabolic profiling
experiments [37]. Both could be similarly explained by the
possibility of brain cells (or AD cell model) using up amino
acids as compensatory fuel to sustain growth, since they all
suffered from impaired energymetabolism. Among these ami-
no acids, glycine and L-threonine are closely linked in the
glycine, serine and threonine metabolism pathway (KEGG,
map00260). Reduction in both glycine and L-threonine indi-
cates that this pathway was severely affected by the APP and
PS1 transgenes. It should be noted that L-serine was detected
in this study, but their levels were not significantly different
between cortex tissue of APP/PS1 and wildtype mice.
Interestingly, we observed an inverse relation between L-
aspartic acid and N-acetyl-L-aspartic acid, two discriminant
metabolites detected in cerebellum tissue of APP/PS1 mice.
L-aspartic acid was observed to have decreased in cerebellum

of APP/PS1 mice, while the opposite is true for N-acetyl-L-
aspartic acid. The relation between these two discriminant
metabolites suggests that the enzyme that link them both, as-
partate N-acetyltransferase (KEGG, K18309), could have
been affected by the APP or PS1 transgene insertion. In agree-
ment with what we had observed, lower levels of N-acetyl-
aspartic acid in cerebellum of APP transgenic mice had been
reported before [56]. Similar trend was observed in cortex
tissue of APP/PS1 mice in our study as well, although N-
acetyl-L-aspartic acid did not achieve significance after
Bonferroni’s correction was applied. However, since N-ace-
tyl-L-aspartic acid was frequently reported to be reduced in
brains of AD patients [57, 58], the interpretability for
our observations is limited. The differences between ob-
servations in disease models and clinical cases help to
highlight the limitations of APP/PS1 mice as AD model,
which should be employed with careful considerations
for such differences.

PIO Exerted Treatment Effects in Cortex
and Cerebellum Tissues

One interesting discovery in this study was the specificity of
PIO’s treatment effects to cortex and cerebellum of APP/PS1
mice. In the cortex tissue of APP/PS1 mice, PIO administra-
tion for 14 days completely rescued the metabolic alterations
related to impaired energy metabolism, namely lactic acid,
glucose, and glucose-6-phosphate. Similar effects were also
observed in cerebellum of APP/PS1 mice, where pathological
changes in ribose-5-phosphate and glucose-6-phosphate were
completely reversed by treatment of APP/PS1 mice with PIO.
Treatment effect of PIO on cortical lactic acid could be ex-
plained by PIO’s therapeutic efficacy in rescuing LDH activ-
ities on cortex tissue of APP/PS1 mice. These findings were
also supported by previous reports, where one reported nor-
malisation of glucose metabolism with PIO treatment [24],
and another study reported PIO’s therapeutic benefits on glu-
cose metabolism and LDH activities [59]. More importantly,
this is the first study to demonstrate specificity of PIO’s treat-
ment effects on metabolic alterations in two particular brain
regions, namely the cortex and cerebellum. PIO exerted
no treatment effects in hippocampus and midbrain tissue
of APP/PS1 mice used in this study, but this could be
due to the occurrence of limited metabolic alterations in
these two brain regions when mice were 20 weeks old.
PIO’s treatment effects on metabolic fluctuations in cor-
tex and cerebellum of APP/PS1 mice shed light on ther-
apeutic mechanisms of PIO and one such example in
this study was PIO’s reversing effect on the impaired
cortical LDH in APP/PS1 mice. This information could prove
to be useful for interpretation of PIO’s treatment effects ob-
served in other studies and contribute to the field of therapeu-
tic research for PPARγ agonist in AD.
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Measurements of Amyloid-β40, Amyloid-β42, Cortical
APP and Mitochondrial APP

At 20 weeks of age, amyloid-β40 and amyloid-β42 levels in
plasma of APP/PS1 mice did not increase significantly as
compared to their wildtype counterparts. On the other hand,
both amyloid-β peptides, in particular amyloid-β42, had in-
creased considerably in their cortex tissue. This has an impor-
tant implication as the soluble form of amyloid-β40 and
amyloid-β42 had been discussed to better correlate with se-
verity of cognitive symptoms in AD [60], making APP/PS1
transgenic mice a suitable model for researching on these sol-
uble amyloid-β peptides. PIO administration was observed to
have successfully treated the pathological increase in
amyloid-β40 and amyloid-β42 levels in the cortex of APP/
PS1 mice. This amyloid-lowering effect of PIO had been re-
ported before [61], which lends support to our findings in this
study.

Because one of the main findings based on our metabolic
profiling study of an in vitro AD model was the accumulation
of APP in mitochondria [37], in this in vivo study we also
measured the APP levels in cortex tissue and mitochondrial
extracts from cortex tissues harvested fromAPP/PS1mice and
compared them against wildtype control. Cortical APP was
observed to be higher in APP/PS1 transgenic mice, but this
increase did not achieve significance. Interestingly, PIO ad-
ministration appeared to have suppressed APP expression in
cortex tissue of APP/PS1 mice, an observation that had been
reported in previous study [61]. A higher level of mitochon-
drial APP was detected in cortex tissue of APP/PS1 mice,
although PIO treatment did not appear to have a significant
treatment effect on this increase. A western blot analysis was
carried out to confirm the purity of mitochondria in the isolat-
ed extracts, which gave satisfying results and showed that
there is little possibility of contamination from plasma APP
in mitochondrial APP readings. Therefore, findings for mito-
chondrial APP in this in vivo study validates our earlier
in vitro findings [37], suggesting that mitochondrial APP
could potentially be a marker for assessing AD in its early
disease stage.

Assessing the Oxidation State in APP/PS1 Mice

Neuroinflammation had been reported to be a common obser-
vation in several preclinical and clinical studies of AD [62,
63]. In this study, we assessed the oxidation state in cortex
tissue of APP/PS1 mice, by measuring the activities of two
major antioxidant enzymes in their cortical and plasma tissue
samples, namely SOD and catalase. SOD activities were
found to have decreased in cortex of APP/PS1 mice, though
it remained unchanged in their plasma. PIO treatment en-
hanced the activities of SOD in both cortex and plasma of
APP/PS1 mice, which could have given the APP/PS1 mice

more antioxidative power in these two tissue compartments to
resist the oxidative stress coming from all the destruc-
tive biochemical processes that occurred in this AD
mouse model. On the other hand, catalase activities in-
creased in both cortex and plasma of APP/PS1 mice,
although this increase did not achieve significance in
their cortex tissue. Once again, PIO treatment normal-
ised activities of catalase in plasma of APP/PS1 mice,
bringing catalase activities to a level similar to non-
transgenic wildtype mice. Although the data in this
study is insufficient to pinpoint the actual cause for
fluctuations in SOD and catalase activities, a previous
study had demonstrated the protective role of SOD and
cytotoxic role of catalase in a human cell model of
Parkinson’s disease [64]. All these observations indicate
that oxidative stress had already been exhibited in APP/
PS1 at 20 weeks of age, and PIO had effectively exerted its
treatment effects by regulating the activities of these two
major antioxidant enzymes.

Conclusion

In this study, we employed GC-TOF-MS-based metabolic
profiling in studying the metabolic alterations in plasma and
brain part samples (cortex, hippocampus, cerebellum andmid-
brain) of APP/PS1mice and compared their metabolic profiles
against wildtype control. At 20 weeks old, their plasma, hip-
pocampus and midbrain tissue do not yield a lot of useful
metabolic profiling data, indicating the limitation in using this
model to study the metabolic alterations in these particular
sample matrices and sampling time point. On the other hand,
their cortex and cerebellum samples displayed extensive met-
abolic changes, which were all closely associated with im-
paired energy metabolism and a perturbed amino acid metab-
olism in both brain regions. PIO was observed to have exerted
its treatment effects on metabolic alterations occurring in both
cortex and cerebellum of APP/PS1 mice. PIO administration
helped to normalise glucose metabolism, as well as their lactic
acid levels by enhancing LDH activities in cortex of APP/PS1
mice. Selected biochemical assays were also conducted to
assess other AD-related parameters in these mice. In brief,
we observed that amyloid-β40 and amyloid-β42 levels were
higher in cortex of APP/PS1 mice, which were both treated by
PIO administration. APP was also observed to have accumu-
lated in the cortical mitochondria of APP/PS1 mice, and PIO
treatment did not have any effect on accumulation of mito-
chondrial APP. SOD activities were also observed to have
been lowered in cortex of APP/PS1 mice, which were also
normalised by PIO treatment. Although the number of ani-
mals used was relatively modest in this pilot investigation
and a larger sample size would confer greater statistical power
for metabolite measurements, our results nonetheless suggest
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the potential of PIO administration to exert a range of thera-
peutic effects in this AD model and present this drug as a
promising therapeutic compound to be developed further for
AD therapy. In addition, our study serves as an informative
platform for planning of future experiments aimed at
pinpointing the affected metabolic pathways in early-stage
AD.
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