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Abstract
The current study was performed to establish the actions of nanomolar concentrations of cocaine, not blocking the dopamine
transporter, on dopamine D2 receptor (D2R)-sigma 1 receptor (δ1R) heteroreceptor complexes and the D2R protomer recogni-
tion, signaling and internalization in cellular models. We report the existence of D2R-δ1R heteroreceptor complexes in subcor-
tical limbic areas as well as the dorsal striatum, with different distribution patterns using the in situ proximity ligation assay. Also,
through BRET, these heteromers were demonstrated in HEK293 cells. Furthermore, saturation binding assay demonstrated that
in membrane preparations of HEK293 cells coexpressing D2R and δ1R, cocaine (1 nM) significantly increased the D2R Bmax

values over cells singly expressing D2R. CREB reporter luc-gene assay indicated that coexpressed δ1R significantly reduced the
potency of the D2R-like agonist quinpirole to inhibit via D2R activation the forskolin induced increase of the CREB signal. In
contrast, the addition of 100 nM cocaine was found to markedly increase the quinpirole potency to inhibit the forskolin-induced
increase of the CREB signal in the D2R-δ1R cells. These events were associated with a marked reduction of cocaine-induced
internalization of D2R protomers in D2R-δ1R heteromer-containing cells vs D2R singly expressing cells as studied by means of
confocal analysis of D2R-δ1R trafficking and internalization. Overall, the formation of D2R-δ1R heteromers enhanced the ability
of cocaine to increase the D2R protomer function associated with a marked reduction of its internalization. The existence of
D2R-δ1R heteromers opens up a new understanding of the acute actions of cocaine.
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Introduction

It recently became clear that cocaine in the nanomolar range
can enhance dopamine D2 receptor (D2R) functions without
blocking the dopamine uptake mechanism as found in neuro-
chemical and behavioral work [1, 2]. These results indicated
that cocaine can exert a direct or indirect positive allosteric
modulation of the striatal D2R in line with the demonstration
of a cocaine-induced enhancement of Gi/o coupling at striatal
D2R [2]. Such actions are likely of relevance for the rewarding
and relapse-induced effects of cocaine in view of the major
role of accumbal D2R inmediating these actions of cocaine [3,
4]. The inhibitory D2R are enriched in the dorsal and ventral
striato-pallidal GABA neurons, the ventral component of
which is an anti-reward system [5] which becomes inhibited
by D2R activation [6].

It is known that sigma 1 receptors (δ1R) exist in substantial
densities in large numbers of central neurons including
accumbal neurons [7, 8]. Cocaine was found to interact with
δ1R and δ1R antagonists diminished cocaine actions [9–11].
Instead, reinforcing effects of cocaine self-administration
were observed with δ1R agonists [12]. The molecular mech-
anism of cocaine actions in the brain can probably involve
δ1R-D1R and δ1R-D2R heteromerization [13–15]. Using
BRET, δ1R-D1R heteroreceptor complexes were demonstrat-
ed in cotransfected cells [13]. The evidence suggested a direct
involvement of δ1R in mediating the cocaine-induced
(150 μM) enhancement of D1R signaling over the Gs-AC-
PKA signaling pathway.

δ1R-D2R heteroreceptor complexes were also demonstrat-
ed both in cotransfected cells and in striatum [14]. In
cotransfected cells, cocaine in the micromolar range
(30 μM) was able to partially counteract the activation by
the D2R agonist quinpirole of the Gi/o-mediated signaling of
the D2R. This inhibitory action of cocaine on D2R-mediated
Gi/o signaling was mediated via the δ1R protomer [14]. These
results were in sharp contrast to results obtained with 100 nM
of cocaine which demonstrated that cocaine enhanced the
quinpirole-induced D2R signaling as studied on accumbal ex-
tracellular dopamine levels and on the efficacy of dopamine to
stimulate binding of GTPγS to striatal D2-like receptors [2].
Furthermore, the locomotor actions of quinpirole were en-
hanced by sub-threshold doses of cocaine. Recently, indica-
tions were obtained that D2R-δ1R complexes exist on striatal
dopamine and glutamate nerve terminals. Nanomolar concen-
trations of cocaine were found to enhance the Gi/o-mediated
D2R signaling in such complexes [16]. The possible existence
of D2R-δ1R-N-type calcium channel heteroreceptor com-
plexes was proposed [16].

The current study was performed to establish the actions of
nanomolar concentrations of cocaine, not blocking the dopa-
mine transporter, on δ1R-D2LR and δ1R-D2SR heteroreceptor
complexes and the D2R protomer recognition, signaling, and

internalization in cellular models. Furthermore, the distribu-
tion of the δ1R-D2R complexes in the ventral and dorsal stri-
atum was evaluated using the in situ proximity ligation assay.

Materials and Methods

Animals

All experiments were performed using male Sprague-Dawley
rats (SD) (Scanbur, Sweden). The animals were group-housed
under standard laboratory conditions (20–22 °C, 50–60% hu-
midity). Food and water available ad libitum. All studies in-
volving animals were performed in accordance with the
Stockholm North Committee on Ethics of Animal
Experimentation, the Swedish National Board for
Laboratory Animal and European Communities Council
Directive (2010/63/EU) guidelines for accommodation and
care of Laboratory Animals.

Plasmid Constructs, Cell Culture, and Transfection

The constructs presented herein were made using standard
molecular biology as described previously [17–19].
HEK293T cells were grown and transiently transfected as
depicted in Borroto-Escuela et al. [20].

Brain Tissue Samples and their Preparation

First, animals were deeply anesthetized by an intraperitoneal
(i.p.) injection of a high dose of pentobarbital (60 mg/ml,
[0.1 ml/100 g]) and then perfused intracardially with 30–
50 mL ice-cold 4% paraformaldehyde (PFA) in 0.1 M
phosphate-buffered saline (PBS, pH 7.4) solution. After per-
fusion, brains were collected and transferred into well-labeled
glass vials filled with 4% PFA fixative solution for 6–12 h.
Then, the brains were placed in 10% and 30% sucrose (0.1 M
PBS, pH 7.4) and incubated for 1 day (10% sucrose) and a
number of days (30% sucrose) at 4 °C with several sucrose
buffer changes, until freezing the brain. The brains were fro-
zen with isopentane and then sectioned (10–30 μm-thick)
using a cryostat. The brain’s slices were stored at − 20 °C on
Hoffman solution.

In Situ Proximity Ligation Assay

To study the formation of the D2R-δ1R heteroreceptor com-
plexes, the in situ proximity ligation assay (in situ PLA) was
performed as described previously [20–23]. Free-floating for-
malin-fixed brain sections (30 μm) at Bregma level (1.0 mm)
from untreated Sprague–Dawley rats were employed using the
following primary antibodies: mouse monoclonal anti-D2R
(MABN53, 1:600, Millipore, Sweden) and rabbit monoclonal
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anti-sigma1R (ab53852, 1:500, Abcam, Sweden). Control ex-
periments employed only one primary antibody. The PLA sig-
nal was visualized and quantified by using a confocal micro-
scope Leica TCS-SL confocal microscope (Leica, USA) and
the Duolink Image Tool software. Briefly, fixed free-floating rat
brain sections (storage at − 20 °C in Hoffman solution) were
washed four timeswith PBS and quenchedwith 10mMglycine
buffer (0.75 g glycine in 100 ml PBS), for 20 min at room
temperature. Glycine buffer is used to reduce unspecific anti-
bodies binding and brain tissue autofluorescence. Then, after
three PBS washes, incubation took place with a perme-
abilization buffer (10% fetal bovine serum (FBS) and 0.5%
Triton X-100 or Tween 20 in Tris buffer saline (TBS),
pH 7.4) for 30 min at room temperature. Again, the sections
were washed twice, 5 min each, with PBS at room temperature
and incubated with the blocking buffer (0.2% BSA in PBS) for
30 min at room temperature. The brain sections were then in-
cubated with the primary antibodies diluted in a suitable con-
centration in the blocking solution for 1–2 h at 37 °C or at 4 °C
overnight. The day after, the sections were washed twice, and
the proximity probe mixture was applied to the sample and
incubated for 1 h at 37 °C in a humidity chamber. The unbound
proximity probes were removed by washing the slides twice,
5 min each time, with blocking solution at room temperature
under gentle agitation, and the sections were incubated with the
hybridization-ligation solution (BSA (250 g/ml), T4 DNA li-
gase (final concentration of 0.05 U/μl), Tween-20 (0.05%),
NaCl 250mM, ATP 1mM, and the circularization or connector
oligonucleotides (125–250 nM)) and incubated in a humidity
chamber at 37 °C for 30 min. The excess of connector oligo-
nucleotides was removed by washing twice, for 5 min each,
with the washing buffer A (Sigma-Aldrich) Duolink Buffer A
(8.8 g NaCl, 1.2 g Tris Base, 0.5 ml Tween 20 dissolved in
800 ml high purity water, pH to 7.4) at room temperature under
gentle agitation, and the rolling circle amplificationmixture was
added to the slices and incubated in a humidity chamber for
100 min at 37 °C. Then, the sections were incubated with the
detection solution in a humidity chamber at 37 °C for 30min. In
a last step, the sections were washed twice in the dark, for
10 min each, with the washing buffer B (Sigma-Aldrich,
Duolink Buffer B (5.84 g NaCl, 4.24 g Tris Base, 26.0 g Tris-
HCl. Dissolved in 500 ml high purity water, pH 7.5) at room
temperature under gentle agitation. The free-floating sections
were put on a microscope slide and a drop of appropriate
mounting medium (e.g., VectaShield or Dako) was applied.
The cover slip was placed on the section and sealed with nail
polish. The sections were protected against light and stored for
several days at − 20 °C before confocal microscope analysis.

BRET2 Saturation Assay

The BRET2 saturation experiment was performed as de-
scribed previously, see [17, 24]. Forty-eight hours after

transfection, HEK293Tcells, transiently transfected with con-
stant (1 μg) or increasing amounts (0.12–5 μg) of plasmids
encoding for D2RRluc and δ1RGFP2, respectively, were rapidly
washed twice in PBS, detached, and resuspended in the same
buffer. Cell suspensions (20 μg protein) were put in duplicates
into the 96-well microplate black plates with a transparent
bottom (Corning 3651) (Corning, Stockholm, Sweden) for
fluorescencemeasurement or white plates with a white bottom
(Corning 3600) for BRET determination. For BRET2 mea-
surements, coelenterazine-400a also calledDeepBlue™C sub-
strate (VWR, Sweden) was used at a final concentration of
5 μM. The readings were made 1 min after using the
POLARstar Optima plate-reader (BMG Labtechnologies,
Offenburg, Germany) that allows the sequential integration
of the signals observed with two filter settings [410 nm
(80 nm bandwidth) and 515 nm (30 nm bandwidth)]. The
BRET2 ratio is defined as previously described by Borroto-
Escuela et al. [25]. Briefly, data are represented as a normal-
ized BRET2 ratio, which is defined as the BRET ratio for
coexpressed Rluc and GFP2 constructs normalized against
the BRET ratio found for the Rluc expression construct alone
in the same experiment: BRET2 ratio = [(GFP2 emission at
515 ± 30 nm)/(Rluc emission 410 ± 80 nm)] – cf. The correc-
tion factor, cf., corresponds to (emission at 515 ± 30 nm)/
(emission at 410 ± 80 nm) found with the Receptor-Rluc con-
struct expressed alone in the same experiment.

BRET2 Competition Assay

Forty-eight hours after transfection, HEK293T cells transient-
ly transfected with constant amounts (1 μg) of plasmids
encoding for D2LR

Rluc and δ1RGFP2 and increasing amounts
(0.1–8 μg) of plasmids encoding for wild-type D2LR, D2SR or
δ1R and the mock pcDNA3.1+, respectively. The energy
transfer was determined as described for the BRET2 saturation
assay.

[3H]-Raclopride Competition Binding Experiments

Competition experiments of quinpirole (0.3 nM-3mM) versus
the D2-likeR antagonist [3H]-raclopride (2 nM; specific activ-
ity 78.1 Ci/mmol, PerkinElmer Life Sciences, Stockholm,
Sweden) were carried out by membrane (20 μg per well)
incubation at 30 °C for 90 min. Non-specific binding was
defined by radioligand binding in the presence of 10 μM
(+)-butaclamol (Sigma-Aldrich, Stockholm, Sweden). The in-
cubation was terminated by rapid filtration through hydrophil-
ic (LPB) Durapore ®Membrane (Millipore, Stockholm,
Sweden) using a MultiScreen™ Vacuum Manifold 96-well
(Millipore Corp, Bedford, MA), followed by five washes
(200 μl per wash) with ice-cold washing buffer (50 mM
Tris–HCl pH 7.4). The filters were dried, 4 ml of scintillation
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cocktail was added, and the bound ligand was determined
after 12 h by liquid scintillation spectrometry.

[3H]-Raclopride Saturation Binding Experiments

Saturation binding experiments with the D2-likeR antagonist
[3H]-raclopride (specific activity 82.8 Ci/mmol, PerkinElmer
Life Sciences, Sweden) were performed in membrane prepa-
rations from single and cotransfected HEK cells (100 μg pro-
tein/ml) incubated with increasing concentrations of [3H]-
raclopride (ranging from 0.1 nM to 12 nM) in 250 μl of incu-
bation buffer (50 mM Tris–HCl, 100 mM NaCl, 7 mM
MgCl2, 1 mM EDTA, 0.05% BSA and 1 mM dithiothreitol)
for 60 min at 30 °C in the presence or absence of cocaine
(1 nM, 10 nM, and 100 nM) and the high affinity sigma 1
receptor antagonist PD144418 [26]. Non-specific binding was
defined by radioligand binding in the presence of 10 μM (+)
butaclamol (Sigma Aldrich, Sweden). The incubation was ter-
minated by rapid filtration Whatman GF/B filters (Millipore
Corp, Sweden) using a MultiScreen™ Vacuum Manifold 96-
well followed by three washes (~ 250 μl per wash) with ice-
cold washing buffer (50 mM Tris–HCl pH 7.4). The filters
were dried, 5 ml of scintillation cocktail was added, and the
bound ligand was determined after 12 h by liquid scintillation
spectrometry.

CREB Luciferase Reporter Gene Assay

A dual luciferase reporter assay has been used to indirectly
detect variations of cAMP levels in transiently transfected cell
lines treated with different compounds in a range of concen-
trations (typically 0.1 nM to 1 μM). For luciferase assays, 24 h
before transfection, cells were seeded at a density of 1 ×
106 cells/well in 6-well dishes and transfected with Fugene
(Promega, Stockholm, Sweden). Cells were co-transfected
with plasmids corresponding to the four constructs as follows
(per 6-well): 2 μg firefly luciferase-encoding experimental
plasmid (pGL4-CRE-luc2p; Promega, Stockholm, Sweden),
1 μg of D2R plus σ1R expression vectors, and 0.5 μg Rluc-
encoding internal control plasmid (phRG-B; Promega).
Approximately, 46 h post-transfection, cells were incubated
with appropriate ligands and harvested with passive lysis buff-
er (Promega, Stockholm, Sweden). The luciferase activity of
cell extracts was determined using the Dual-Luciferase®
Reporter (DLR™) Assay System according to the manufac-
turer’s protocol Promega, Stockholm, Sweden) in a POLAR
star Optima plate reader (BMG Labtechnologies, Offenburg,
Germany) using a 535-nm filter with a 30-nm bandwidth.
Firefly luciferase was measured as firefly luciferase lumines-
cence over a 15-s reaction period. The luciferase values were
normalized against Rluc luminescence values (Luc/Rluc ra-
tio). Chemicals used for the gene reporter assays

(Raclopride, quinpirole, forskolin) were purchased from
Tocris (UK) and (cocaine-HCL) Sigma Aldrich (Germany).

Receptor Internalization Analysis by Fluorescence
Confocal Microscopy

Internalization of D2R were evaluated by fluorescence confo-
cal microscopy using transiently single or cotransfected
HEK293T cells with constant (1 μg) amounts of plasmids
encoding for Sigma1R and D2LR

YFP. Cells were incubated
with cocaine (100 nM) at different interval times or with a
range of cocaine concentrations (1 nM–10 μM) during
30 min. Then, cells were fixed in 4% paraformaldehyde for
10 min, washed with PBS containing 20 mM glycine, and
mounted in a Vectashield immunofluorescence medium
(Vector Laboratories, UK). Microscope observations were
performed with a × 63 oil immersion objective in a Leica
TCS-SL confocal microscope (Leica, USA). The amounts of
internalized D2R

YFP are shown as a single z-scan image. The
rate of internalization was measured as the ratios (IntROI/
membROI). The memROI is obtained by measuring the
D2R

YFP fluorescence area detected at the cell surface mem-
brane depicted by phase contrast). The IntROI is instead ob-
tained by measuring the entire D2R

YFP fluorescence area de-
tected in the cytoplasm of the entire cell. The basal value is
obtained from cells not exposed to cocaine.

Statistical Analysis

The number of samples (n) in each experimental condition is
indicated in figure legends. Data from competition experi-
ments were analyzed by nonlinear regression analysis using
GraphPad Prism 5.0 (GraphPad Software Inc., San Diego,
CA). The inhibition constants of the high and low affinity state
of the receptor (pKiH, pKiL) from several independent replica-
tions were averaged allowing statistical comparisons using a
one-way analysis of variance (ANOVA). Group differences
after ANOVAs were measured by post hoc Turkey’s multiple
comparison test. The P value 0.05 and lower was considered
significant. BRET2 isotherms were fitted using a nonlinear
regression equation assuming a single binding site, which
provided BRETmax and BRET50 values.

Results

BRET2 Experiments on sigma1R and D2R
Cotransfected in HEK293 Cells

Saturation measurements were made with increasing amounts
of δ1RGFP2 and a constant amount of D2LR and D2SR fused to
Renilla luciferase (Rluc). Similar saturable BRET2 curves
were obtained with both D2R isoforms (Fig. 1a). The
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BRETmax and BRET50 values did not differ between D2LR
and D2SR. Instead, a linear relationship was found between
acceptor and donor constructs in negative controls which
consisted of a mixture of cells singly transfected with δ1R
GFP2 or D2LR

RLuc (Fig. 1a).
In competition experiments using increasing amounts of

D2LR and D2SR cDNAs, similar displacement curves were
observed as seen from a 70% disappearance of the BRET2

signal in the δ1RGFP2-D2LR
Rluc heteroreceptor complex

using equal amounts of the two protomers (Fig. 1b). In
contrast, increasing amounts of the δ1R cDNA only caused
a maximal 30% disappearance of the BRET2 signal
(Fig. 1b).

In Situ PLA Experiments on Distribution of D2R-δ1R
Heteroreceptor Complexes in Parts of the Rat
Forebrain

An overall high density of PLA-positive clusters was
found in the dorsal striatum (Fig. 2) based on the average
number clusters per nucleus (in blue) per sample field. It
was highly significantly increased vs values in negative
controls and the myelinated bundles of the crus cerebri
(CC) and the anterior limb of the anterior commissure
(aca). In the nucleus accumbens shell, a medium density

of PLA-positive D2R-δ1R heteroreceptor complexes was
found and in the nucleus accumbens core a low density
(Fig. 2). They were both significantly different from the
number of PLA-positive clusters in cc, aca, and negative
controls regarded as background values.

Binding Experiments Using the D2 like Antagonist
3H-Raclopride in δ1R and D2LR Cotransfected
and D2LR Singly Transfected HEK293 Cells

In competition experiments, the effects of quinpirole and co-
caine were examined in δ1R and D2LR cotransfected HEK293
cells and in singly D2LR transfected cells. Quinpirole pro-
duced similar competition curves in the absence or presence
of δ1R (Fig. 3a). The log values for the high affinity and low
affinity D2 agonist binding sites (KiH and KiL) are found
below Fig. 3a. In saturation experiments, the effects of cocaine
(1 nM, 10 nM, and 100 nM) were studied in cotransfected
cells expressing both D2LR and δ1R and in singly transfected
cells only expressing D2LR. Cocaine 1 nM produced a signif-
icant increase in the Bmax values of the 3H-Raclopride bind-
ing sites in the cotransfected cells but not in the D2LR singly
transfected cells (Fig. 3b, c). Similar effects were also ob-
served with cocaine 10 nM and 100 nM (data not shown).
The Sigma-1R antagonist PD144418 (50 nM) blocked the
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cDNAs. The data represent the means ± S.E.M. of three independent
experiments performed in triplicate. Statistical analysis was performed
by TWO-WAYANOVA
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action of cocaine in the cotransfected cells on the Bmax
values. The KD values were not significantly altered by co-
caine (1 nM) neither in the absence or presence of δ1R
(Fig. 3b, c).

Signaling Experiments Using CREB Luciferase
Reporter Gene Assay

In δ1R and D2LR cotransfected HEK cells quinpirole had a
reduced potency to inhibit the CREB signal versus D2LR sin-
gly transfected cells as seen from the right shift of the compe-
tition curve (Fig. 4a).

However, the presence of cocaine (100 nM and 1 μM)
enhanced the potency of the D2R-like agonist to inhibit the
CREB signal in the cotransfected cells (Fig. 4d). Furthermore,
in the cotransfected cells, cocaine alone lacked effects on the
forskolin-induced increase in the CREB signal and were sig-
nificantly different from the quinpirole-treated groups with or
without combined treatment with cocaine (Fig. 4d).

In D2LR singly transfected HEK cells cocaine at 100 nM
and 10 μM exerted no modulatory effects on the inhibitory
actions of quinpirole to bring down the CREB signal (Fig. 4b).
Furthermore, in the D2LR singly transfected HEK cells co-
caine alone at 100 nM and 1 μM again lacked effects on the
increase of the CREB signal induced by forskolin 2 μM
(Fig. 4b). Nor did cocaine in these concentrations modulate
the inhibitory effects of quinpirole (100 nM) on the CREB
signal.

In δ1R singly transfected HEK cells cocaine alone at
100 nM and 1 μM again failed to influence the increase in
the CREB signal induced by forskolin 2 μM (Fig. 4c).

D2LR
YFP Trafficking Experiments in δ1R and D2LR

Cotransfected and D2LR Singly Transfected HEK293
Cells

The internalization of D2LR
YFP was studied in the confocal

laser microscope after incubation for 30 min with different
concentrations of cocaine from 1 nM to 10 μM. The inter-
nalization of D2LR

YFP was measured by determining the
ratio of the total area of D2LR

YFP fluorescence in the cyto-
plasm, and the total area of fluorescence in the plasma
membrane taken in % of this ratio in the basal state. The
images obtained with different cocaine concentrations
(1 nM to 10uM) of cocaine are illustrated in Fig. 5 in which
the D2LR

YFP fluorescence is found in the plasma mem-
brane, and the cytosol at different ratios between δ1R and
D2LR cotransfected and D2LR singly transfected HEK293
cells.

A highly significant reduction of the D2LR
YFP inter-

nal izat ion was observed in the δ1R and D2LR
cotransfected versus D2LR singly transfected HEK293
cells after cocaine incubation. The inhibitory effects of
cocaine started already at 10 nM and were clear-cut at
100 nM (Fig. 5).

The time-course of cocaine action over 90 min was also
evaluated using a cocaine concentration of 100 nM with
comparisons between D2LR

YFP singly expressing cells and
D2LR

YFP and δ1R coexpressing cells as illustrated (Fig. 5).
The cocaine-induced reduction of D2LR

YFP internalization
in the D2LR and Sigma 1R coexpressing cells was ob-
served during the first 60 min which was marked and high-
ly significant.
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shell (AcbSh) and nucleus caudatus putamen (CPu), crus cerebri (cc) and
anterior limb of the anterior commissure (aca). The few PLA clusters
found in aca and negative controls are regarded as unspecific. Arrows
point to some of the red PLA positive clusters. The length of the bar is

30 μm. b The density (per nucleus per sampled field) of the PLA positive
complexes in AcbC, AcbSh and CPu are highly significantly different
from the density found in crus cerebri and aca (***P < 0.001). The
density is also significantly higher in the AcbSh and CPu versus Acb
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Discussion

Previous work demonstrated that cocaine in the nanomolar
range (10 and 100 nM) can enhance the D2-like receptor
function in the brain independent of its effects on the dopa-
mine transporter and be related to direct and/or indirect allo-
steric actions at the D2like receptor [1, 2]. The current results
in cellular models indicate that these enhancing actions of
cocaine at the D2R in the nanomolar range are dependent on
the presence of D2R-δ1R heteroreceptor complexes which
were previously demonstrated [14, 27, 28]. The δ1R protomer
appears to mediate the enhancing actions of nanomolar con-
centrations of cocaine onD2R recognition and signaling found
in the present article. The latter action involves also a clear-cut
counteraction of cocaine-induced D2R internalization. These
observations underline the existence of an indirect positive
allosteric modulation of D2R via the δ1R. The reported

cocaine-induced inhibition of D2R signaling over Gi/o-AC
in D2R-δ1R heteroreceptor complexes found in high micro-
molar concentrations [14] could not be observed with the cur-
rent low concentrations used of cocaine.

The existence of D2LR-δ1R heteroreceptor complexes after
cotransfection of the two receptors in cell lines could be val-
idated using BRET2. In addition, also D2SR-δ1R
heteroreceptor complexes were demonstrated after
cotransfections with this technique. In addition, it was found
in competition experiments that increasing amounts of δ1R
cDNA could only reduce the BRET2 signal from the
D2R-δ1R heteroreceptor complex to a minor degree. These
observations can be explained by the assumption that the
δ1R can interact with several domains of the D2R and not
only with the D2R-δ1R interface. Thus, the δ1R may have
multiple interactions with the D2R regions, increasing its im-
pact on D2R signaling.

a

b

c

*

Fig. 3 a 3H Raclopride competition curves with the D2likeR agonist
quinpirole in D2R cDNA transfected HEK cells with or without
cotransfection with δ1R cDNA. The KiH and KiL values obtained were
similar and not significantly different. b, c In saturation binding
experiments with 3H Raclopride, 1 nM of cocaine lacked effects on the
Bmax and KD values in the absence of δ1R cotransfection (b), while a

significant increase of the Bmax values (*P < 0.05) was found with
cocaine (1 nM) upon cotransfection with δ1R (c). The action by
cocaine was significantly counteracted by the sigma 1R antagonist
PD144418 (50 nM) (c). Data are presented as the mean ± s.e.m. from
five independent experiments performed in triplicate. *P < 0.05 by
Student t test
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The involvement of δ1Rs in the cocaine action is also sup-
ported by the observation that cocaine at 1 nM could signifi-
cantly increase the Bmax values of the D2R antagonist

binding sites only in the presence of D2R-δ1R heteroreceptor
complexes. Furthermore, this action was blocked by the δ1R
antagonist PD144418. It seems possible that this action of
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Fig. 4 CREB signaling experiments. a In HEK cells cotransfected with
D2LR and δ1R cDNAs vs cells singly transfected with D2LR cDNA, the
inhibition of CREB signaling obtained with increasing concentrations of
quinpirole was shifted to the right upon cotransfection (D2R (LogIC50 =
−9.87 ± 0.17), D2R-δ1R (LogIC50 = −8.95 ± 0.22)). b In singly D2R
cDNA-transfected cells the inhibition of CREB by quinpirole after
forskolin-induced activation of CREB was unaffected by cocaine
(100 nM and 1 μM) and cocaine alone in these concentrations lacked
effects on the forskolin-induced increase in CREB signaling. The data
represent the means ± S.E.M. of three independent experiments
performed in triplicate. Statistical analysis was performed by one-way
analysis of variance (ANOVA) followed by Tukey’s multiple
comparison post-test. The P value 0.05 and lower was considered
significant. ***Significantly different compared to Forskolin 2 μM
(P < 0.001); +++Significantly different compared to quinpirole 100 nM
(P < 0.001); &&Significantly different compared to cocaine 100 nM
(P < 0.01); @@@Significantly different compared to cocaine 1 μM,
(P < 0.001); ^^Significantly different compared to quinpirole 100 nM
(P < 0.01); ###Significantly different compared to quinpirole 100 nM+
cocaine 1 μM (P < 0.001). c In cells singly transfected cells with
Sigma1R, cocaine (100 nM and 1uM) again lacked effects on the
forskolin (2 μM) induced activation of CREB signaling. The data

represent the means ± S.E.M. of three independent experiments
performed in triplicate. Statistical analysis was performed by one-way
analysis of variance (ANOVA) followed by Tukey’s multiple
comparison post-test. d In cells cotransfected with D2LR and δ1R
cDNAs, cocaine at 100 nM and 1 μM was instead able to significantly
enhance the inhibitory actions of quinpirole on forskolin-induced increase
in CREB activity. By itself, cocaine in these concentrations failed to
significantly influence the forskolin-induced activation of CREB
activity. The data represent the means ± S.E.M. of three independent
experiments performed in triplicate. Statistical analysis was performed
by one-way analysis of variance (ANOVA) followed by Tukey’s
multiple comparison post-test. The P value 0.05 and lower was
considered significant. ***Significantly different compared to Forskolin
2 μM (P < 0.001); +++Significantly different compared to quinpirole
100 nM (P < 0.001); &&&Significantly different compared to cocaine
100 nM (P < 0.001); @@@Significantly different compared to cocaine
1 μM (P < 0.001). Δ and ΔΔΔSignificantly different compared to
quinpirole 100 nM (P < 0.05 and P < 0.001); ^^Significantly different
compared to quinpirole 100 nM (P < 0.0^01); ###Significantly different
compared to quinpirole 100 nM + cocaine 1 μM (P < 0.001).
Abbreviations; raclop: raclopride, coc: cocaine, quin: quinpirole
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cocaine may be linked to the D2R-δ1R heteroreceptor com-
plex and involve counteraction of cocaine-induced D2R
protomer internalization (see below).

An allosteric D2R-δ1R receptor–receptor interaction also
appears to exist in the control of D2LR protomer signaling.
In the analysis of the Gi/o-AC-PKA-CREB pathway using
the CREB luciferase reporter gene assay, the presence of a
D2R-δ1R heteroreceptor complex led to a reduced potency
of quinpirole to inhibit the CREB signal. However, this neg-
ative allosteric receptor–receptor interaction turned into a pos-
itive interaction upon incubation with 100 nM of cocaine and
restored the potency of the D2R agonist to inhibit this path-
way. These findings indicate that with these nanomolar con-
centrations of cocaine, the Gi/o-mediated inhibition of the
AC-PKA-CREB pathway is enhanced by cocaine not reduced
as found with high 30 μM concentrations of cocaine [14].

A remarkable new action of cocaine was discovered in
the current experiments on D2R-δ1R heteroreceptor com-
plexes vs D2LR mono-homoreceptor complexes regarding
effects of cocaine in nanomolar concentrations on D2LR
internalization. Already at 10 and 100 nM cocaine pro-
duced an increase in D2R internalization in singly D2LR
transfected cells, an action which saturated around 1–
10 μM. In D2R and δ1R cotransfected cells, this action
of cocaine was markedly counteracted at concentrations
tested from 10 nM to 10 μM at the 30 min time-interval
with a time course of inhibition lasting around 60 min.
These results strongly indicate that cocaine already at
nanomolar concentrations can reduce D2LR protomer inter-
nalization in D2R-δ1R heteroreceptor complexes. Through
the cocaine interaction with this receptor complex, alloste-
ric receptor–receptor interactions are altered. This may

0 20 40 60 80 100 120

0

20

40

60

80

100

D2LR-YFP D2LR-YFP + Sigma 1R

***

Time (minute)

D
2L

noitazilanretni 
PF

Y-
R

(In
t
R
O
I/
m
e
m
R
O
I,

)lasa
b rev

o 
%

-10 -9 -8 -7 -6 -5 -4

0

30

60

90

120

150

D
2L
R-YFP D

2L
R-YFP + Sigma 1R

Log [cocaine](M)

D
2L

noitazilanretni 
R

(In
t R

O
I/

m
e

m
ni

m 03 ,)lasab revo 
% ,I

O
R

Fig. 5 Effects of cocaine on internalization of D2R
YFP in HEK cells in the

absence or presence of coexpression of Sigma1R. In the upper part, a
cocaine concentration response curve on D2R

YFP internalization is
illustrated in red. To the right, quantitation of the D2R

YFP internalization
is found. With increasing concentrations, cocaine produces marked
internalization of D2R

YFP which is counteracted by expression of
Sigma1R (D2R (LogEC50 = −7.04 ± 0.09), D2R-δ1R (LogEC50 =
−6.63 ± 0.40)). In the lower part, the time-course of the action of
cocaine is found in the D2R cDNA-transfected cells in the absence or

presence of Sigma1R cDNA cotransfection. Cocaine (100 nM) induces a
marked internalization of D2R

YFP construct in the first hour. This action is
again counteracted by the coexpression of Sigma1R with a high
significance. These results are illustrated in the left lower panels, and
the quantitation is found in the right lower panel. The data represent the
means ± S.E.M. of three independent experiments performed with a total
of eight replicates each. Statistical analysis was performed by two-way
ANOVA (***P < 0.001)
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lead to reduced D2LR coupling to beta-arrestin which can
contribute to the markedly reduced internalization and pro-
longation of the D2R protomer signaling in the D2R-δ1R
heteroreceptor complex at the plasma membrane.

Taken together, the current results in cellular models give
evidence that the cocaine action at D2Rs in nanomolar con-
centrations is substantially altered by the D2R presence in
D2R-δ1R heteroreceptor complexes. The molecular mecha-
nisms still remain to be clarified, but cocaine actions by bind-
ing to this heteroreceptor complex may alter its allosteric
receptor–receptor interactions. This may lead to the demon-
strated increase in Bmax values of the D2LR protomer and
increased D2LR signaling over Gi/o inhibiting the AC-PKA
system which reduced CREB phosphorylation. It was associ-
ated with a markedly reduced D2LR protomer internalization
prolonging the duration of D2R activation. Such acute cocaine
actions in the nanomolar range at the D2R-δ1R heteroreceptor
complexes will likely contribute to understanding the role of
δ1R in acute effects of cocaine on reward and seeking.
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