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Abstract
On the basis of the evidence that rapid intracellular Zn2+ dysregulation by amyloid β1–42 (Aβ1–42) in the normal hippocampus
transiently induces cognitive decline, here we report preferential neurodegeneration in the dentate gyrus by Aβ1–42-induced
intracellular Zn2+ dysregulation and its defense strategy. Neurodegeneration was preferentially observed in the dentate granule cell
layer in the hippocampus after a single Aβ1–42 injection into the lateral ventricle but not in the CA1 and CA3 pyramidal cell layers,
while intracellular Zn2+ dysregulation was extensively observed in the hippocampus in addition to the dentate gyrus.
Neurodegeneration in the dentate granule cell layer was rescued after co-injection of extracellular and intracellular Zn2+ chelators,
i.e., CaEDTA and ZnAF-2DA, respectively. Aβ1–42-induced cognitive impairment was also rescued by co-injection of CaEDTA
and ZnAF-2DA. Pretreatment with dexamethasone, an inducer of metalothioneins, Zn2+-binding proteins rescued neurodegenera-
tion in the dentate granule cell layer and cognitive impairment via blocking the intracellular Zn2+ dysregulation induced by Aβ1–42.
The present study indicates that intracellular Zn2+ dysregulation induced by Aβ1–42 preferentially causes neurodegeneration in the
dentate gyrus, resulting in hippocampus-dependent cognitive decline. It is likely that controlling intracellular Zn2+ dysregulation,
which is induced by the rapid uptake of Zn-Aβ1–42 complexes, is a defense strategy for Alzheimer’s disease pathogenesis.
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Introduction

Age-related cognitive decline is believed to be initially due to
changes in synaptic function rather than loss of neurons [1], while
substantial synaptic and neuronal losses are observed in the early
stage of Alzheimer’s disease (AD)when hippocampus-dependent
memory loss becomes detectable clinically [2, 3]. The dentate
gyrus and the entorhinal cortex are vulnerable to aging and AD,
respectively [4]. The perforant pathway from the entorhinal cortex
innervates dentate granule cells and is one of the earliest andmost
severely affected pathways in AD [2, 5], suggesting that the cel-
lular disconnection between the entorhinal cortex and the dentate

gyrus is involved in the AD pathogenesis. Elderly persons with
mild cognitive impairment (MCI), which is a prodromal state of
AD [6], have approximately 30% fewer neurons in the entorhinal
cortex, which correlate with hippocampus-dependent cognitive
decline [2, 5]. Therefore, dentate granule cell degeneration is a
target for defending the AD pathogenesis, and its defending strat-
egy may be useful for progressive cognitive decline.

The basal level of extracellular Zn2+ is in the range of low
nanomolar concentrations (~10 nM) in the hippocampus [7]
and probably increased age-dependently [8, 9]. Extracellular
Zn2+ dynamics, which is often linked with Zn2+ release from
zincergic terminals, a subclass of glutamatergic neurons, plays
a key role for not only synaptic plasticity, a cellular mechanism
of cognition but also synaptic dysfunction associated with cog-
nitive decline [10, 11]. The basal level of intracellular Zn2+ is
estimated to be less than 1 nM (~100 pM) [12, 13], and rapid
intracellular Zn2+ dysregulation is critical for not only cogni-
tive decline but also neurodegeneration. Weakened intracellu-
lar Zn2+-buffering is linked with age-related characteristic of
extracellular Zn2+ influx in the aged dentate gyrus followed by
cognitive decline [14, 15] and neurodegeneration [16].
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Rapid intracellular Zn2+ dysregulation is due to extracellular
Zn2+ influx via excess activation of glutamate receptors, gluta-
mate excitotoxicity, while amyloid-β (Aβ), a causative candi-
date for the AD pathogenesis [17, 18], also induces rapid intra-
cellular Zn2+ dysregulation. Aβ1–42 is dynamically released
from synaptic vesicles [19] and rapidly captures Zn2+ at 100–
500 picomolar concentration in the hippocampus extracellular
fluid. Both the levels of Zn2+ andAβ1–42 are increased in dentate
granule cells 5 min after injection of Aβ1–42 into the dentate
granule cell layer of rats, followed by transient Aβ1–42-induced
cognitive decline that is due to increase in intracellular Zn2+

released from Aβ1–42[20, 21]. Intracellular Zn
2+ dysregulation

via synaptic activity-independent mechanism occurs rapidly af-
ter injection of human Aβ1–42 into rat dentate granule cell layer
[22] but not after injection of humanAβ1–40 andmouse/rat Aβ1–

42 because affinity of humanAβ1–42 to Zn
2+ is much higher than

human Aβ1–40[21] and mouse/rat Aβ1–42[23, 24], which cannot
capture extracellular Zn2+ at low nanomolar concentration.

On the basis of the idea that more Zn2+ ferried by Aβ1–42

into dentate granule cells leads to degeneration in addition to
cognitive decline, here, we examined whether Aβ1–42-in-
duced intracellular Zn2+ dysregulation causes neurodegenera-
tion in the hippocampus and also whether blocking the intra-
cellular Zn2+ dysregulation is a useful defense strategy against
Aβ1–42-induced neurodegeneration.

Materials and Methods

Animals and Chemicals

Male ddY mice (10 weeks of age) were purchased from Japan
SLC (Hamamatsu, Japan). All the experiments were per-
formed in accordance with the Guidelines for the Care and
Use of Laboratory Animals of the University of Shizuoka that
refer to the American Association for Laboratory Animals
Science and the guidelines laid down by the NIH (NIH
Guide for the Care and Use of Laboratory Animals) in the
USA. The Ethics Committee for Experimental Animals in
the University of Shizuoka has approved this work.

Synthetic human Aβ1–42 was purchased from ChinaPeptides
(Shanghai, China). Aβ1–42 was dissolved in saline and used
immediately when the experiments were performed. SDS-
PAGE showed that Aβ1–42 prepared in saline wasmainlymono-
mers with a small fraction of low order oligomers [20]. ZnAF-
2DA, amembrane-permeable zinc indicatorwas kindly supplied
from Sekisui Medical Co., LTD (Hachimantai, Japan). ZnAF-
2DA is taken up into the cells through the cell membrane and is
hydrolyzed by esterase in the cytosol to yield ZnAF-2 (Kd =
2.7 × 10−9 M for Zn2+), which cannot permeate the cell mem-
brane [25, 26]. The fluorescence indicator was dissolved in di-
methyl sulfoxide (DMSO) and then diluted with Ringer solution
containing 119 mM NaCl, 2.5 mM KCl, 1.3 mM MgSO4,

1.0 mM NaH2PO4, 2.5 mM CaCl2, 26.2 mM NaHCO3, and
11 mM D-glucose (pH 7.3).

Intracerebroventricular (ICV) Injection of Aβ

Mice (11–13 weeks of age) were anesthetized with chloral
hydrate (30 mg/kg) and placed in a stereotaxic apparatus. A
microinjection canula (CXG-6, Eicom Co., Kyoto) was posi-
tioned 0.5 mm posterior to the bregma, 1.0 mm lateral, 2.2–
2.4 mm inferior to the dura for ICV injection. Aβ1-42 in saline
(25 μM) was injected via the microinjection canula at the rate
of 0.5 μl/min for 40 min (500 pmol/mouse). Tenminutes later,
the microinjection canula was slowly pulled up from the brain.
The mice were individual housed for the experiments□.

Object Recognition Test

Twelve days after ICV injection of Aβ1-42, mice were placed
for 10 min into an open field, which was a 56 × 67.5 cm arena
surrounded by 60 cm high walls, made of a black-colored
plastic. Twenty-four hours after open field exploration, mice
were trained and tested in a novel object recognition task.
Training in the object recognition task took place in the same
area used for the open field exploration. The open field explo-
ration was thus used as a context habituation trial for the rec-
ognition memory task. The object recognition test requires that
the mice recall which of two earthenware objects they had been
previously familiarized with. Twenty-four hours after arena
exploration, training was conducted by placing individual mice
into the field, in which two identical objects (objects A1 and
A2) were positioned in two adjacent corners, 13 cm from the
walls. Mice were left to explore the objects for 5 min. Mice
were not used for the test when the total of the object explora-
tion time was less than 10 s. In the test given 1 h after training,
the mice explored the open field for 3 min in the presence of
one familiar (A) and one novel (B) object. Behavior of mice
was recorded with a video camera during the training and the
test, and then two persons independently measured exploratory
time and the averaged time was used. All objects presented
similar textures, colors, and sizes but distinctive shapes. A
recognition index calculated for each mouse was expressed
by the ratio TB/(TA + TB) [TA = time spent to explore the
familiar object A; TB = time spent to explore the novel object
B]. Between trials the objects were washed with 70% ethanol
solution. Exploration was defined as sniffing or touching the
object with the nose and/or forepaws. We confirmed that there
was no preference for the objects used.

Propidium Iodide (PI) Staining

Neurodegeneration was determined by PI staining after the ob-
ject recognition test was finished. Fourteen days after ICV in-
jection of Aβ1-42, the brain was quickly removed from the mice
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under anesthesia and immersed in ice-cold choline-Ringer con-
taining 124 mM choline chloride, 2.5 mM KCl, 2.5 mM
MgCl2, 1.25 mM NaH2PO4, 0.5 mM CaCl2, 26 mM
NaHCO3, and 10 mM glucose (pH 7.3) to suppress excessive
neuronal excitation. Coronal brain slices (400 μm) were pre-
pared using a vibratome ZERO-1 (Dosaka Kyoto, Japan) in ice-

cold choline-Ringer, which were continuously bubbled with
95% O2 and 5% CO2. The brain slices were bathed in PI in
Ringer solution (7 μg/ml) for 30 min, bathed in Ringer solution
for 30 min, and transferred to a recording chamber filled with
Ringer solution. PI fluorescence (Ex/Em: 535 nm/617 nm) was
captured with a confocal laser-scanning microscopic system.

Fig. 1 A single ICVinjection of Aβ1–42 induces neurodegeneration in the
dentate gyrus. a Fourteen days after ICV injection of Aβ1-42, PI
fluorescence was measured in the dentate granule cell layer (DGCL),
the CA1 pyramidal cell layer (CA1 PCL), and the CA3 pyramidal cell
layer (CA3 PCL) surrounded by the dotted line (upper). Bar, 50 μm. b

Each bar and line (mean ± SEM) represent the rate (%) of PI fluorescence
after Aβ1–42 injection to that after saline (vehicle) injection, which was
represented as 100% (lower). ***p < 0.001 vs. saline (t test). DGCL;
saline, n = 17, Aβ1–42 = 23; CA1, saline, n = 21, Aβ1–42 = 30; CA3, sa-
line, n = 13, Aβ1–42 = 28
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The region of interest was set in the dentate granule cell layer
and the CA1 and CA3 pyramidal cell layers.

Fluoro-Jade B (FJB) Staining

Neurodegeneration was also determined by FJB staining
after the object recognition test was finished. Fourteen
days after ICV injection of Aβ1-42, the mice were anesthe-
tized with chloral hydrate and perfused with ice-cold 4%
paraformaldehyde in PBS, followed by removal of the
brain and overnight fixation in 4% paraformaldehyde in

PBS at 4 °C. Fixed brains were cryopreserved in 30% su-
crose in PBS for 2 days and frozen in Tissue-Tek Optimal
Cutting Temperature embedding medium. Coronal brain
slices (30 μm) were prepared at − 20 °C in a cryostat,
picked up on slides, adhered at 50 °C for 60 min, and
stored at − 20 °C. The slides were first immersed in a so-
lution containing 1% sodium hydroxide in 80% alcohol
(20 ml of 5% NaOH added to 80 ml ethanol) for 5 min.
This was followed by 2 min in 70% ethanol and 2 min in
distilled water. The slides were then transferred to a solu-
tion of 0.06% potassium permanganate for 15 min,

a

b

c

Fig. 2 A single ICVinjection of Aβ1–42 induces neurodegeneration in the
dentate gyrus. a Fourteen days after ICV injection of Aβ1-42, FJB
fluorescence was measured in the dentate granule cell layer (DGCL),
the CA1 pyramidal cell layer (CA1 PCL), and the CA3 pyramidal cell
layer (CA3 PCL) surrounded by the dotted line. Bar, 50 μm. b The area

surrounded by the white line, which was shown in a, was magnified. c
Each bar and line (mean ± SEM) represent FJB-positive cells in the unit
area after injection of vehicle and Aβ1-42. ***p < 0.001 vs. saline (t test).
DGCL; saline, n = 16, Aβ1–42 = 16; CA1, saline, n = 16, Aβ1–42 = 16;
CA3, saline, n = 16, Aβ1–42 = 16
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preferably on a shaker table to insure consistent back-
ground suppression between slices. The slides were then
rinsed in distilled water for 2 min. The staining solution
was prepared from a 0.01% stock solution of FJB that was
made by adding 10 mg of the dye powder to 100 ml of
distilled water. The stock solution and 0.1% 4 ′,6-
Diamidino-2-phenylindole (DAPI) in distilled water were
diluted with 0.1% acetic acid vehicle, resulting in a final
dye concentration of 0.0004% FJB and 0.0001% DAPI in
the staining solution. The staining solution was prepared
within 10 min of use. The slides were bathed in the staining
solution for 30 min and were rinsed for 2 min in each of
three distilled water washes. Excess water was briefly re-
moved by using a paper towel. The slides were placed at
50 °C for drying. The dry slides were twice immersed in
xylene for 2 min twice before coverslipping with DPX, a
non-aqueous, non-fluorescent plastic mounting media.
FJB-positive cells in the unit area were measured with a
confocal laser-scanning microscopic system (Ex/Em:
480 nm/525 nm). The region of interest was set in the

dentate granule cell layer and the CA1 and CA3 pyramidal
cell layers.

In Vivo Aβ1-42-Mediated Zn2+Dynamics

Aβ1–42 (25 μM) in saline containing 100 μMZnAF-2DAwas
intracerebroventricularly injected via a microinjection canula
at the rate of 0.5 μL/min for 40 min (500 pmol/mouse) into
anesthetized mice as described above. One hour after the start
of injection, coronal brain slices (400 μm) were prepared in
ice-cold choline-Ringer solution in the same manner and
transferred to a recording chamber filled with Ringer solution.
The fluorescence of ZnAF-2 (laser, 488 nm; emission, 505–
530 nm) was captured with a confocal laser-scanning micro-
scopic system.

In another experiment, saline and dexamethasone sodium
phosphate (10 mg/kg) in saline were intraperitoneally (i.p.)
injected into mice once a day for two days. Twenty-four hours
later, Aβ1–42 (25 μM) in saline containing 100 μM ZnAF-

Fig. 3 A single ICV injection of Aβ1–42 increases intracellular Zn
2+ level

in the hippocampus. a Fourteen days after ICV injection of Aβ1-42,
ZnAF-2 fluorescence was measured in the dentate granule cell layer
(DGCL), the CA1 pyramidal cell layer (CA1 PCL), and the CA3 pyra-
midal cell layer (CA3 PCL) surrounded by the dotted line (upper). Bar,

50 μm. b Each bar and line (mean ± SEM) represent the rate (%) of
ZnAF-2 fluorescence after Aβ1–42 injection to that in the DGCL after
saline (vehicle) injection, which was represented as 100% (lower).
*p < 0.05; **p < 0.001 vs. saline (t test). DGCL; saline, n = 7, Aβ1–42 =
6; CA1, saline, n = 7, Aβ1–42 = 6; CA3, saline, n = 6, Aβ1–42 = 6
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2DA was intracerebroventricularly injected, and the fluores-
cence of ZnAF-2 was captured in the same manner.

Data Analysis

Student’s paired t test was used for comparison of the means
of paired data. For multiple comparisons, differences between
treatments were assessed by one-way ANOVA followed by
post hoc testing using the Tukey’s test (the statistical software,
GraphPad Prism 5). A value of p < 0.05 was considered sig-
nificant. Data were expressed as means ± standard error. The
results of statistical analysis are described in each figure
legend.

Results

Preferential Neurodegeneration in the Dentate Gyrus
by Aβ1–42

To assess hippocampal neurodegeneration, we used PI, a fluo-
rescent intercalating agent, which binds to DNA by intercalat-
ing between the bases with little or no sequence preference in
dead cells, and FJB, an anionic fluorescein derivative, which
is used for the histological staining of neurons undergoing
degeneration [27, 28].

PI fluorescence was enhanced in the dentate granule cell
layer 14 days after ICV injection of Aβ1-42 but not in the CA1
and CA3 pyramidal cell layers (Fig. 1). FJB-positive cells

Fig. 4 Zn2+ chelators rescue Aβ1–42-induced neurodegeneration.
Fourteen days after ICV injection of Aβ1-42 and Zn2+ chelators, PI
fluorescence was measured in the dentate granule cell layer (DGCL)
surrounded by the dotted line (upper). Bar, 50 μm. Each bar and line
(mean ± SEM) represent the rate (%) of PI fluorescence after Aβ1–42

injection to that after saline (vehicle) injection, which was represented
as 100% (lower). ***p < 0.001 vs. saline; #p < 0.05, ##p < 0.01 vs. Aβ1–42

(Tukey’s test). Saline, n = 17, Aβ1–42, n = 23; Aβ1–42 + CaEDTA, n = 16,
Aβ1–42 + ZnAF-2DA, n = 18
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Fig. 5 Zn2+ chelators rescue Aβ1–42-induced neurodegeneration.
Fourteen days after ICV injection of Aβ1-42 and Zn2+ chelators, FJB
fluorescence was measured in the dentate granule cell layer (DGCL)
surrounded by the dotted line (upper). Bar, 50 μm. Each bar and line

(mean ± SEM) represent FJB-positive cells in the unit area after injection
of vehicle and Aβ1-42 (lower). ***p < 0.001 vs. saline; ###p < 0.001 vs.
Aβ1–42 (Tukey’s test). Saline, n = 16, Aβ1–42, n = 19; Aβ1–42 + CaEDTA,
n = 16, Aβ1–42 + ZnAF-2DA, n = 16
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were also increased in the dentate granule cell layer but not in
the CA1 and CA3 pyramidal cell layers (Fig. 2). On the other
hand, intracellular Zn2+ level, which was determined with
intracellular ZnAF-2 fluorescence, was extensively increased
in the hippocampal CA1 and CA3, in addition to the dentate
gyrus (Fig. 3).

Rescue of Neurodegeneration by Reducing
Aβ1–42-Induced Increase in Intracellular Zn2+

in the Dentate Gyrus

The enhanced PI fluorescence and FJB-positive cells were
reduced in the dentate granule cell layer after co-injection of
extracellular and intracellular Zn2+ chelators, i.e., CaEDTA

and ZnAF-2DA, respectively (Figs. 4 and 5). CaEDTA com-
petes with Aβ1–42 for binding to Zn

2+ and reduces the forma-
tion of Zn-Aβ1–42 complexes, resulting in reducing both the
uptake of Zn2+ and Aβ1–42[21]. Extracellular ZnAF-2DA also
competes with Aβ1–42 for binding to Zn2+ and reduces the
formation of Zn-Aβ1–42 complexes, while intracellular
ZnAF-2 taken up into cells chelates Zn2+ released from
Aβ1–42[20, 21].

Newly synthesized metalothioneins (MTs), Zn2+-binding
proteins can capture Zn2+ released from intracellular Aβ1–42

without modifying intracellular Aβ1–42 level followed by res-
cuing Aβ1–42 neurotoxicity [29], indicating that Zn

2+ released
from Aβ1–42 is more neurotoxic than Aβ1–42 itself.
Pretreatment with dexamethasone, an inducer of MTs reduced

Fig. 6 Dexamethasone rescues Aβ1–42-induced neurodegeneration.
Saline and dexamethasone (DEX, 10 mg/kg) in saline were i.p. injected
into mice once a day for two days. Twenty-four hours later, Aβ1–42

(25 μM) in saline was intracerebroventricularly injected and PI fluores-
cence was measured in the dentate granule cell layer (DGCL) surrounded
by the dotted line after 14 days after ICV injection (upper). Bar, 50 μm.

Each bar and line (mean ± SEM) represent the rate (%) of PI fluorescence
after Aβ1–42 injection to that after saline (vehicle) injection, which was
represented as 100% (lower). **p < 0.01 vs. saline/saline; #p < 0.05,
##p < 0.01 vs. saline/Aβ1–42 (Tukey’s test). Saline/saline, n = 12, saline/
Aβ1–42, n = 9; DEX/saline, n = 15, DEX/Aβ1–42, n = 16
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Fig. 7 Dexamethasone rescues Aβ1–42-induced neurodegeneration.
Saline and dexamethasone (DEX, 10 mg/kg) in saline were i.p. injected
into mice once a day for two days. Twenty-four hours later, Aβ1–42

(25 μM) in saline was intracerebroventricularly injected and FJB fluores-
cence was measured in the dentate granule cell layer (DGCL) surrounded

by the dotted line 14 days after ICV injection (upper). Bar, 50 μm. Each
bar and line (mean ± SEM) represent FJB-positive cells in the unit area
after injection of vehicle and Aβ1-42 (lower). **p < 0.01 vs. saline/saline;
#p < 0.05 vs. saline/Aβ1–42 (Tukey’s test). Saline/saline, n = 20, saline/
Aβ1–42, n = 23, DEX/saline, n = 12, DEX/Aβ1–42, n = 14
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not only the enhanced PI fluorescence and FJB-positive cells
in the dentate granule cell layer (Figs. 6 and 7) but also Aβ1–

42-induced increase in intracellular Zn2+ in the dentate gyrus
(Fig. 8).

Rescue of Cognitive Decline by Zn2+Chelators
and Dexamethasone

Object recognition memory was impaired after ICV injection
of Aβ1-42, while the impairment was rescued by co-injection
of CaEDTA and ZnAF-2DA (Recognition index: saline/train-
ing, 49.1 ± 1.5%, saline/test, 64.3 ± 2.9, p < 0.01; Aβ1–42/

training, 49.6 ± 3.6%, Aβ1–42/test, 48.6 ± 2.2%; Aβ1–42 +
CaEDTA/training, 49.6 ± 2.4%, Aβ1–42 + CaEDTA/test,
68.3 ± 3.5%, p < 0.01; Aβ1–42 + ZnAF-2DA/training, 50.0 ±
2.5%, Aβ1–42 + ZnAF-2DA/test, 67.6 ± 3.1%, p < 0.01)
(Fig. 9a). The impairment was also rescued by pretreatment
with dexamethasone (Recognition index: saline/saline/train-
ing, 49.1 ± 1.3%, saline/saline/test, 64.1 ± 2.8, p < 0.01; sa-
line/Aβ1–42/training, 49.6 ± 2.6%, saline/Aβ1–42/test, 49.6 ±
1.8%; dexamethasone (DEX)/saline/training, 45.3 ± 3.7%,
DEX/saline/test, 63.9 ± 3.5%, p < 0.01; DEX/Aβ1–42/training,
50.2 ± 1.2%, DEX/Aβ1–42/test, 62.0 ± 2.2%, p < 0.05) (Fig.
9b).

Fig. 8 Dexamethasone reduces Aβ1–42-induced increase in intracellular
Zn2+. Saline and dexamethasone (DEX, 10 mg/kg) in saline were i.p.
injected into mice once a day for two days. Twenty-four hours later,
Aβ1–42 (25 μM) in saline was intracerebroventricularly injected and
ZnAF-2 fluorescence was measured in the dentate granule cell layer
(DGCL) surrounded by the dotted line 1 h after the start of ICV injection

(upper). Bar, 50 μm. Each bar and line (mean ± SEM) represent the rate
(%) of ZnAF-2 fluorescence after Aβ1–42 injection to that in the DGCL
after saline (vehicle) injection, which was represented as 100% (lower).
***p < 0.001 vs. saline/saline; ###p < 0.001 vs. saline/Aβ1–42 (Tukey’s
test). Saline/saline, n = 7, saline/Aβ1–42, n = 6; DEX/saline, n = 8, DEX/
Aβ1–42, n = 7
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Discussion

On the basis of the rapid oligomerization of Aβ, the toxic
action of soluble low-molecular-weight Aβ oligomers has
been emphasized in the AD pathogenesis. Aβ1–40 and Aβ1–

42 are the two most abundant isoforms, and the former is more
than 10 times as abundant as the latter in the cerebrospinal fluid
[30]. Importantly, Aβ1–42 far more rapidly forms aggregates
and is more neurotoxic than Aβ1–40[31–34]. The neurotoxic
action of low-molecular-weight Aβ oligomers has been tested
in not only primary neuronal cultures or brain slices but also
animal models. To determine the action of Aβ1–42 in cognitive
decline and neurodegeneration in vivo, Aβ1–42 oligomers have
been exclusively prepared in vitro [35, 36] and injected into
experimental animals to test the neurotoxicity in vivo [37–40].

On the other hand, Zn2+ has been implicated in the AD
pathogenesis because Zn2+ readily accelerates Aβ oligomeri-
zation [41, 42]. The trial for drug therapy targeting metal ions,
e.g., Zn2+ has been reported for AD [43]. As a matter of fact,
Zn2+ has remarkable impacts on Aβ1–42 aggregation in the
range of physiological pH [44]. Zn2+ shifts the self-
association of Aβ1–42 toward a non-fibrillary pathway by in-
terfering with the aggregation process at multiple levels [45].
Judging from these findings, it is important to evaluate neuro-
toxicity of soluble Aβ1–42 oligomers, which is rapidly formed
in the presence of extracellular Zn2+ in vivo. It is estimated
that chemical structures of soluble Aβ1–42 oligomers with
Zn2+ are different from those of soluble Aβ1–42 oligomers
prepared without Zn2+ in vitro, which might lead to

misunderstanding of Aβ1–42 neurotoxicity in vivo. On the
basis of rapid intracellular Zn2+ dysregulation in dentate gran-
ule cells induced by Aβ1–42 in vivo [21], we tested the idea
that rapid intracellular Zn2+ dysregulation induced by Aβ1–42

causes neurodegeneration in the hippocampus after a single
injection of Aβ1–42 into the lateral ventricle.

Rapid increase in intracellular Zn2+ induced by Aβ1–42 was
extensively observed in the hippocampus 20 min after
finishing a single Aβ1–42 injection into the lateral ventricle.
In contrast, neurodegeneration was preferentially observed in
the dentate gryrus 14 days after ICV injection but not in the
CA1 and CA3. When Aβ1–42 concentration reaches 100–500
pM, Aβ1–42 is taken up into dentate granule cells extracellular
Zn2+-dependently. The formation of Zn-Aβ1–42 complexes in
the extracellular compartment is critical for Aβ1–42 uptake
[21], which is the highest in dentate gyrus neurons in hippo-
campal slices in vitro [22], consistent with the highest level of
intracellular Zn2+ in the dentate gyrus in the present study.
These data suggest that the preferential uptake of Aβ1–42 into
dentate gyrus neurons causes the preferential neurodegenera-
tion. The perforant pathway from the entorhinal cortex inner-
vates dentate granule cells and is one of the earliest and most
severely affected pathways in AD [2, 5]. Therefore, vulnera-
bility of dentate granule cells in the AD pathogenesis is prob-
ably due to the preferential uptake of Aβ1–42, which might be
linked with Aβ1–42 degradation and its elimination from the
dentate gyrus [46]. However, the relationship between the
preferential Aβ1–42 uptake and Aβ1–42 metabolism in the den-
tate gyrus remains to be clarified.

a

b

Fig. 9 Zn2+ chelators and
dexamethasone rescue Aβ1–42-
induced cognitive decline. a
Thirteen days after ICV injection
of Aβ1-42, object recognition test
was performed. Each bar and line
(mean ± SEM) represent the
recognition index (%) in the test
1 h after training. *p < 0.05 vs.
saline, ##p < 0.01 vs. Aβ1–42

(Tukey’s test). Saline, n = 6, Aβ1–

42, n = 6; Aβ1–42 + CaEDTA, n =
7, Aβ1–42 + ZnAF-2DA, n = 7. b
Saline and dexamethasone (DEX,
10 mg/kg) in saline were i.p.
injected into mice once a day for
two days. Twenty-four hours lat-
er, Aβ1–42 (25 μM) in saline was
intracerebroventricularly injected
and object recognition test was
performed 13 days after ICV in-
jection. **p < 0.01 vs. saline/
saline; #p < 0.05, ##p < 0.01 vs.
saline/Aβ1–42(Tukey’s test).
Saline/saline, n = 9, saline/Aβ1–

42, n = 11; DEX/saline, n = 6,
DEX/Aβ1–42, n = 7
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Intracellular Zn2+ level was also considerably high in CA3
and CA1 neurons, while neurodegeneration was scarcely ob-
served in the CA3 and CA1. The high Zn2+ levels might be
linked with less Aβ1–42 uptake into CA3 and CA1 neurons
[22] followed by less vulnerability of CA3 and CA1 neurons
to neurodegeneration. On the other hand, it is estimated that
Zn2+ released from intracellular Zn-Aβ1–42 complexes taken
up into dentate gyrus neurons causes neurodegeneration. This
estimation was confirmed using Zn2+ chelators (Figs. 4 and 5).
Extracellular Zn2+ chelators reduce the formation of Zn-Aβ1–

42 complexes in the extracellular compartment and both the
uptake of Aβ1–42 and Zn2+ followed by reducing Aβ1–42

toxicity[20]. Intracellular Zn2+ chelators do not reduce the for-
mation of Zn-Aβ1–42 complexes in the extracellular compart-
ment, while they capture Zn2+ released from intracellular Zn-
Aβ1–42 complexes followed by reducing Aβ1–42 toxicity[20].
In the present study, neurodegeneration in the dentate gyrus
was rescued after co-injection of extracellular and intracellular
Zn2+ chelators, i.e., CaEDTA and ZnAF-2DA, respectively.
Aβ1–42-induced cognitive impairment was also rescued by
co-injection of CaEDTA and ZnAF-2DA. Intracellular Zn-
Aβ1–42 complexes taken up into dentate gyrus neurons release
toxic Zn2+, while Aβ1–42 may capture functional Zn2+ after the
release, followed by neurodegeneration via dysfunction of
Zn2+-requiring proteins such as a metabotropic Gq-coupled
Zn2+-sensing receptor, mZnR/GPR39[47].

Intracellular MTs buffer free Zn2+ based on its varying
affinities for Zn2+[48–50]. If intracellular Zn2+ concentration
reaches approximately 10 nM, which is the estimated concen-
tration of extracellular Zn2+[7], MTs bind up to 7 equivalents
of Zn2+ and become the holo-MTs, Zn7MTs [51]. When the
binding capacity of MTs is saturated by the rapid increase in
intracellular Zn2+, which is induced by extracellular Aβ1–42

influx, intracellular MTs lose the Zn2+-buffering ability.
Therefore, it is thought that an increase in intracellular MTs
is effective for buffering the rapid increase in intracellular
Zn2+ by Aβ1–42. In vivo Kd value of Zn

2+ to Aβ1–42 may be
in the range of ~3–30 nM [21], which is higher than that of
MTs (~1 pM) [52]. Pretreatment with dexamethasone, an in-
ducer of MT-I and MT-II, reduced neurodegeneration in the
dentate granule cell layer and rescued cognitive impairment
via blocking the rapid increase in intracellular Zn2+ induced
by Aβ1–42. Because intracellular MTs induced by dexameth-
asone does not reduce the uptake of Zn-Aβ1–42, the induced
MTs, which capture Zn2+ released from Aβ1–42, reduce intra-
cellular Zn2+ levels but not modify intracellular Aβ1–42 levels
[29]. In contrast, dexamethasone may reduce the increase in
intracellular Zn2+ induced by Aβ1–42 via another mechanism
because dexamethasone has a great many effects. In addition
to the effect of Zn2+ chelators, the effect of dexamethasone
indicates that neurodegeneration and cognitive decline in-
duced by Aβ1–42 are due to intracellular Zn

2+ toxicity, which
is caused by release from Aβ1–42.

The present study indicates that rapid intracellular Zn2+

dysregulation induced by Aβ1–42 preferentially causes neuro-
degeneration in the dentate gryrus, resulting in hippocampus-
dependent cognitive decline. It is likely that controlling intra-
cellular Zn2+ dysregulation, which is induced by the rapid
uptake of Zn-Aβ1–42 complexes, is a defense strategy for the
AD pathogenesis.
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