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Abstract
Growing evidence suggests that docosahexaenoic acid (DHA) exerts neuroprotective effects, although the mechanism(s) under-
lying these beneficial effects are not fully understood. Here we demonstrate that DHA, but not arachidonic acid (ARA),
suppressed oligomeric amyloid-β peptide (oAβ)–induced reactive oxygen species (ROS) production in primarymousemicroglia
and immortalized mouse microglia (BV2). Similarly, DHA but not ARA suppressed oAβ-induced increases in phosphorylated
cytosolic phospholipase A2 (p-cPLA2), inducible nitric oxide synthase (iNOS), and tumor necrosis factor-α (TNF-α) in BV2
cells. LC-MS/MS assay indicated the ability for DHA to cause an increase in 4-hydroxyhexenal (4-HHE) and suppress oAβ-
induced increase in 4-hydroxynonenal (4-HNE). Although oAβ did not alter the nuclear factor erythroid 2–related factor 2 (Nrf2)
pathway, exogenous DHA, ARA as well as low concentrations of 4-HHE and 4-HNE upregulated this pathway and increased
production of heme oxygenase-1 (HO-1) in microglial cells. These results suggest that DHA modulates ARA metabolism in
oAβ-stimulated microglia through suppressing oxidative and inflammatory pathways and upregulating the antioxidative stress
pathway involving Nrf2/HO-1. Understanding the mechanism(s) underlying the beneficial effects of DHA on microglia should
shed light into nutraceutical therapy for the prevention and treatment of Alzheimer’s disease (AD).
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Introduction

Docosahexaenoic acid (DHA) is one of the most abundant
polyunsaturated fatty acids (PUFAs) in the central nervous
system [1]. Reduction of DHA in brains and low dietary
DHA intake have been found associated with Alzheimer’s
disease (AD) [1–5], whereas DHA-enriched diet is associated

with a lower AD risk [2–4]. Thus, there is substantial interest
to examine whether DHA exerts neuroprotective effects to
alleviate the pathological events of AD. Studies with AD
mouse models indicated a high-DHA diet to reduce
amyloid-β plaque burden [5, 6], and cerebral amyloid
angiopathy, including cerebrovascular amyloid-β (Aβ) depo-
sition and microhemorrhages [7]. Given the evidence showing
transport of plasma-derived DHA across the blood-brain bar-
rier [8, 9], it is of interest to examine the beneficial and/or
detrimental effects arising from the interactions of different
neuronal cells with DHA and its peroxidation products. For
example, oxidized DHA has been reported to increase
amyloidogenic amyloid precursor protein (APP) processing
in neurons [10]. DHA enhanced non-amyloidogenic APP pro-
cessing in differentiated human neuroblastoma cells, possibly
due to its ability to fluidize the plasma membranes [11, 12]. In
addition, DHAwas shown to enhance phagocytosis of Aβ and
decrease inflammatory markers in microglia [13].

Besides DHA, arachidonic acid (ARA) is another abundant
PUFAwith similar concentrations to DHA in the brain. DHA
and ARA in membrane phospholipids are released through
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hydrolytic reactions mediated by phospholipases A2 (PLA2).
While the release of DHA has been attributed to the action of
Ca2+-independent PLA2 (iPLA2) [14–17], the release of ARA
is largely mediated by the Ca2+-dependent cytosolic phospho-
lipase A2 (cPLA2) [18]. Unlike DHA, ARA is a lipid mediator
for triggering a wide range of inflammatory responses through
the synthesis of eicosanoids and prostanoids catalyzed by
cyclooxygenases and lipoxygenases [18, 19]. In contrast,
DHA is shown to impose pro-resolving and pro-homeostatic
effects through synthesis of oxylipins such as resolvin D and
neuroprotection D1 [20, 21].

PUFAs undergo lipid peroxidation due to a number of fac-
tors, and recent studies have focused on production of 4-
hydroxyhexenal (4-HHE) from DHA and 4-hydroxynonenal
(4-HNE) from ARA [22]. Consistent with oxidative stress–
induced cPLA2 activation and release of ARA in AD patients
[23], higher levels of protein-bound 4-HNE and free 4-HNE
have been found in plasma, urine, and cerebrospinal fluid in
AD and amnestic mild cognitive impairment patients [24–28].
Being reactive aldehydes and electrophiles, 4-HNE and 4-
HHE can form adducts with macromolecules such as DNA,
proteins, and enzymes to alter cell functions [29–31]. In fact,
4-HNE has been shown to covalently modify Aβ and accel-
erate the formation of more neurotoxic Aβ protofibrils while
inhibiting the production of the mature fibrils [32]. Aside from
the detrimental effects, these α,β-unsaturated aldehydes can
also elicit hormetic functions, in part, through promoting the
nuclear factor erythroid 2–related factor 2 (Nrf2)/heme
oxygenase-1 (HO-1) antioxidant pathway [33–40]. Our recent
in vitro study demonstrated that low concentrations of 4-HNE
and 4-HHE upregulated the Nrf2/HO-1 antioxidant pathway
in microglial cells [41].

Microglia are resident macrophage cells in the brain
and are responsible for scavenging cell debris, plaques,
and damaged neurons and synapses [42]. A recent tran-
scriptome study reported that microglial cell–enriched
genes overlapped significantly with genes associated with
neurodegenerative diseases and psychiatric disorders, and
more than half of the genes associated with AD were
preferentially expressed in microglia [43]. These findings
suggest that microglia play crucial roles in neurodegener-
ative diseases, including AD. Therefore, investigating the
mechanisms underlying microglial functions has been a
major line of AD research. For example, the microglial
cell–mediated clearance of Aβ has been shown to be
governed by a range of receptors [44–57], and cPLA2 in
microglia can facilitate Aβ uptake through its action to
regulate membrane-cytoskeleton connectivity [58]. Due to
the relatively high expression of nicotinamide adenine di-
nucleotide phosphate (NADPH) oxidase in microglia, ac-
tivation of microglial NADPH oxidase is the primary
source of Aβ-induced ROS [59]. In addition, Aβ-
induced ac t iva t ion of microgl ia cont r ibu tes to

neuroinflammation by upregulating reactive nitrogen in-
termediates and TNF-α [60].

To further understand the effects of DHA onADpathology,
this study examined whether DHA and its peroxidation prod-
uct, 4-HHE, modulate oxidative stress, cPLA2 activation, the
4-HNE level, inflammatory responses, and the Nrf2/HO-1
pathway in oligomeric amyloid-β peptide (oAβ)–stimulated
microglia. Results from this study should help unveil mecha-
nisms underlying the beneficial effects of DHA and shed light
into nutraceutical therapy for the prevention and treatment of
AD.

Materials and Methods

Materials

Dulbecco’s modified Eagle’s medium (DMEM), Fluo-4-AM,
A23187, and penicillin/streptomycin (P/S, 10,000 units/ml)
were obtained from Life Technologies (Grand Island, NY).
Fetal bovine albumin (FBS), bovine serum albumin (BSA),
and Ham’s F-12 media were from GE Healthcare Life
Sciences (Logan, UT). 4-HHE (1 mg in 0.1 ml of ethanol),
4-HNE (1 mg in 0.1 ml of ethanol), DHA (50 mg in 0.2 ml of
ethanol), ARA (50 mg in 0.2 ml of ethanol), and lipopolysac-
charide (LPS) were purchased from Cayman Chemical (Ann
Arbor, MI). BSA (fatty acid free), cell proliferation reagent
WST-1, 1,3-cyclohexanedione (CHD, 97%), ammonium ace-
tate (HPLC grade), acetic acid (ACS grade) and formic acid
(mass spectrometry grade), dimethyl sulfoxide (DMSO),
1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), cOmplete™ prote-
ase inhibitor cocktail, and PhosSTOP™ phosphatase inhibitor
cocktail were purchased from Sigma-Aldrich (St. Louis, MO).
Human Aβ1–42 was purchased from California Peptide (Salt
Lake City, UT), and scramble human Aβ1–42 was purchased
from AnaSpec (Fremont, CA). Radioimmunoprecipitation as-
say (RIPA) buffer, the bicinchoninic acid (BCA) protein assay
kit, SuperSignal™ West Pico plus chemiluminescent sub-
strate, Restore™ PLUS Western blot stripping buffer, and
TNF-α mouse uncoated ELISA kit were purchased from
Thermo Scientific (Waltham, MA). CM-H2DCFDA (DCF)
was purchased from Invitrogen, Inc. (Eugene, OR). Primary
antibodies against HO-1, phosphorylated cytosolic phospho-
lipase A2 (p-cPLA2), and cPLA2 were from Cell Signaling
(Beverly, MA); monoclonal anti-β-actin peroxidase antibody
was from Sigma-Aldrich (St. Louis,MO); anti-inducible nitric
oxide synthase (iNOS) antibody was from Abcam
(Cambridge, MA); and anti-Nrf2 antibody was from
GeneTex (Irvine, CA). C18 Sep-Pak cartridges (1 ml, 100
mg) were obtained from Waters Corporation (Milford, MA).
Phospholipid removal cartridges (Phree™, 1 ml) were pur-
chased from Phenomenex, Inc. (Torrance, CA). All solvents
(HPLC grade) used for LC and MS analysis were obtained
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from Thermo Fisher Scientific, Inc. (Fair Lawn, NJ). Neural
Tissue Dissociation kit (P), gentleMACS Dissociator, MACS
buffer, and CD11b microbeads were from Miltenyi Biotec
(Bergisch Gladbach, Germany).

Primary Mouse Microglial Isolation

Timed pregnant C57BL/6 mice were purchased from Charles
River (Wilmington, MA). All animal care and experimental
protocols were carried out with permission from the
Institutional Animal Care and Use Committee (IACUC) at
the University of Illinois at Chicago. Cerebral cortices and
hippocampi were dissected from mouse pups (P1–P5). After
removal of meninges, brain tissues were subjected to a mag-
netic cell sorting protocol [61]. Briefly, brain tissue was ho-
mogenized using the Neural Tissue Dissociation kit (P) and
the gentleMACSDissociator. Cells were pelleted at 300×g for
10 min at 4 °C, resuspended in ice-cold MACS buffer con-
taining CD11b microbeads, and further incubated at 4 °C for
15 min. After incubation with microbeads, cells were washed,
resuspended in ice-cold MACS buffer, and passed through the
magnetized LS columns (Miltenyi Biotec) and microglia were
collected according to the manufacturer’s protocol.
Experiments with primary mouse microglia were carried out
immediately after microglial isolation.

BV2 Cell Culture

BV2 cells were provided by Dr. Grace Sun (University of
Missouri, MO) who originally obtained from Dr. Rosario
Donato (University of Perugia, Italy). BV2 cells were cultured
in DMEM supplied with 5% FBS and 1% P/S.Morphology of
BV2 cells was routinely examined under a Nikon Eclipse Ti
microscope before experiment. For measuring ROS and cal-
cium flux, BV2 cells were seeded into 96-well plates. For
Western blot analysis, BV2 cells were seeded into 6-well
plates. For LC-MS/MS analysis, BV2 cells were seeded into
60-mm dishes. Experiments were conducted when cells
reached 80–90% confluency. BV2 cells were serum starved
for 3 h followed by oAβ treatment with different treatment
times: 30 min for studying ROS production and calcium flux;
6 h for LC-MS/MS analysis of 4-HHE and 4-HNE; 6 h for
Western blot analysis of p-cPLA2/cPLA2, iNOS, Nrf2, and
HO-1; and 23 h for TNF-α ELISA assay. DHA and ARA
were dissolved in 2% fatty acid–free BSA, and 4-HHE and
4-HNE were dissolved in DMSO.

Preparation of oAβ

oAβ was prepared according to the protocol described
by Dahlgren et al. (2002) cited in Ref. [58]. Briefly,
10 mg Aβ was dissolved in 2.2 ml HFIP and incubated
for 60 min at room temperature. The Aβ-HFIP mixture

was then aliquoted into 0.5-ml microcentrifuge tubes.
The tube was then opened, set in fume hood overnight,
and placed in a speed vacuum system (Thermo
Scientific) for HFIP evaporation. A clear film of Aβ
appeared at the bottom of each tube, and the tube was
stored in a − 80 °C freezer until use. For preparation of
oAβ, the peptide was first resuspended in DMSO, di-
luted in ice-cold phenol red–free Ham’s F12 medium to
a final concentration of 100 μM, and aged at 4 °C for
24 h before use.

Measurement of ROS Production

For measuring ROS production in primary mouse microglia,
freshly collected primary mouse microglia were suspended in
96-well plates and pretreated with 10 μMDHA or ARA for 2
h, followed by 2.5 μM oAβ treatment for 30 min. For ROS
production measurement in BV2 cells, cells were starved for
3 h prior to pretreatment with 10 μM DHA or ARA for 24 h
and incubated in fresh medium for 1 h before treating with
2.5 μM oAβ for 30 min; 5 μM DCF was then added to each
well and incubated with cells for 1 h. The fluorescent intensity
of DCF was measured using a Synergy H1 Plate Reader
(BioTek Instruments, Inc., St. Louis, MO) with an excitation
wavelength of 490 nm and an emission wavelength of 520
nm.

Western Blot Analysis

BV2 cells were seeded into 6-well plates and serum starved
for 3 h before incubation with DHA, ARA, 4-HHE, or 4-HNE
for 1 h. This was followed by treating cells with 2.5 μM oAβ
and further incubation for 6 h. Cells were then lysed in RIPA
buffer with protease and phosphatase inhibitors. Cell lysates
were collected and centrifuged at 14,000×g for 15min at 4 °C,
and supernatants were collected. Protein concentration was
determined by BCA assay. Equal amount of samples was
loaded onto SDS-PAGE for electrophoresis. Then, proteins
were transferred to 0.2-μm PVDF membranes at 100 V for
1 h at 4 °C. Membranes were then blocked with 5% non-fat
milk in Tris-buffered saline with 0.1% Tween 20 (TBS-T) for
1 h at room temperature. The blots were incubated with anti-
bodies against HO-1 (1:1000 dilution), p-cPLA2 (1:1000 di-
lution) or cPLA2 (1:1000 dilution), iNOS (1:200 dilution),
Nrf2 (1:800 dilution), and β-actin (1:50,000 dilution) over-
night at 4 °C. After washing with TBS-T, blots were incubated
with HRP-conjugated anti-rabbit IgG antibody (1:1000 dilu-
tion) for 1 h at room temperature. Signals were developed
using SuperSignal™ West Pico plus chemiluminescent sub-
strate and captured with a myECL imager (Thermo
Scientific). The optical density of bands was measured with
the Image Studio Lite 5.2 (LI-COR Biotechnology, Lincoln,
NE).
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TNF-α ELISA Assay

The concentration of TNF-α in medium was determined by
sandwich ELISA. Briefly, cells were treated as described
above, and medium was collected and centrifuged at 4000×g
for 5 min. The levels of TNF-α were assessed using a TNF-α
ELISA kit following the manufacturer’s instruction. The re-
maining cells were lysed with RIPA buffer and used for total
protein determination with BCA assay.

LC-MS/MS Analysis of 4-HHE and 4-HNE in BV2 Cells

LC-MS/MS analysis was carried out as described earlier [41,
62, 63]. Briefly, cells were subcultured in 60-mm dishes, and
after different treatment conditions, the culture medium was
removed and 0.5 ml of phosphate-buffered saline-methanol
(1:1, v/v) was added. An aliquot of cell suspension was added
to an equal volume of internal standard (4-HHE-d3), and ace-
tonitrile containing 1% formic acid was added to the mixture.
Solid-phase extraction (SPE) was carried out using a Phree™
cartridge. 4-HHE, 4-HNE, and 4-HHE-d3 were derivatized by
adding freshly prepared acidified 1,3-cyclohexanedione re-
agent at 60 °C for 1 h. After the tubes were cooled to room
temperature, the derivatized 4-HHE and 4-HNEwere desalted
using a C18 SPE cartridge. The eluate from the C18 SPE
cartridge was evaporated to dryness under a stream of nitrogen
gas. An aliquot of the reconstituted solution was injected into
a Waters Xevo TQ-S triple quadrupole mass spectrometer
(Proteomics Center, University of Missouri, Columbia, MO).
The multiple reaction monitoring transitions m/z 326.3 >
216.1 Da, 284.2 > 216.1 Da, and 287.2 > 216.1 Da were
chosen for simultaneous monitoring of 4-HNE, 4-HHE, and
4-HHE-d3 derivatives, respectively. MassLynx software
(v4.1, Waters) was used for all data acquisitions.

Calcium Measurement in BV2 Cells

BV2 cells were seeded into 96-well plates and starved for 3 h
before the addition of 2 μM Fluo-4-AM for 30 min. Cells
were then pretreated with 50 μM DHA or ARA for 1 h,
followed by stimulation with 2.5 μM oAβ or treatment with
1 μM A23187 as positive control for 30 min. Cells were read
with an excitation wavelength of 492 nm and an emission
wavelength of 520 nm using a BioTek Synergy H1 Plate
Reader.

Statistical Analysis

Data are expressed as mean ± standard deviation (SD)
from at least three independent experiments with single
lane. An unpaired two-tailed Student’s t test was used
for statistical analysis between two groups. Statistical
analysis between multiple groups was carried out using

one-way ANOVA followed by Tukey’s post hoc HSD
test in GraphPad Prism (version 8.10). A p value < 0.05
was considered statistically significant.

Results

Effects of DHA on oAβ-Induced ROS Production
in Primary Mouse Microglia and BV2 Cells

To study mechanisms underlying the beneficial effects
of DHA, we began to test if DHA can suppress ROS
production induced by oAβ in freshly isolated primary
mouse microglia (i.e., ex vivo condition) and in immor-
talized microglia (BV2). We found that pretreatment
with 10 μM DHA for 2 h suppressed oAβ (2.5 μM
for 30 min)–induced ROS production in primary mouse
microglia (Fig. 1a). In contrary, pretreatment with
10 μM ARA did not alter ROS induced by oAβ (Fig.
1b). Similar results were obtained with BV2 cells upon
pretreatment of cells with DHA or ARA for 24 h,
followed by treatment with 2.5 μM oAβ for 30 min
(Fig. 1a, b). In this study with BV2 cells, we tested
the specificity of oAβ to induce ROS production by
using scrambled Aβ. As shown in Fig. 1 a, scrambled
Aβ did not induce ROS production under similar con-
ditions. Our previous studies demonstrated ability for
LPS to induce ROS in microglial cells [61]. Using
LPS as a positive control, results from this study dem-
onstrated ability for LPS to induce a large increase in
ROS in BV2 cells (Fig. 1a). Since we obtained similar
results on the effects of DHA on ROS production be-
tween BV2 cells and primary mouse microglia, we fur-
thered our cell signaling studies using BV2 cells.

Modulations of 4-HHE and 4-HNE by DHA and ARA
in Microglia

In addition to the ability of DHA to suppress oAβ-
induced ROS production in microglia, LC-MS/MS ex-
periment was used to examine the effects of DHA and
ARA on levels of their peroxidation products, 4-HHE
and 4-HNE, respectively. Results showed that treatment
with 2.5 μM oAβ for 6 h did not impose any effect on
the 4-HHE level (Fig. 2a) but instead significantly in-
creased the 4-HNE level (Fig. 2b, e). Treatment with
50 μM DHA for 7 h resulted in a significant increase
in 4-HHE level, and this level was further increased
when cells were treated with DHA for 1 h and followed
by treatment with oAβ for 6 h (Fig. 2a). The addition
of DHA alone appeared to lower (not significant) the 4-
HNE level, and DHA suppressed the increase in 4-HNE
induced by oAβ (Fig. 2b). Subsequently, oAβ increased
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the ratio of the 4-HNE to 4-HHE level (i.e., 4-HNE/4-
HHE), which was dramatically decreased by the

pretreatment of DHA (Fig. 2c). In contrast, oAβ, pre-
treatment with ARA prior to oAβ treatment, and ARA
alone did not impose any effect on the 4-HHE level
(Fig. 2d). While oAβ increased 4-HNE, pretreatment
with ARA further increased 4-HNE (Fig. 2e) .
Subsequently, the increase in 4-HNE/4-HHE ratio in-
duced by oAβ was enhanced by the pretreatment with
ARA (Fig. 2f). It is also interesting to note that DHA
modulated the peroxidation product of ARA (Fig. 2b),
but ARA did not modulate the peroxidation product of
DHA (Fig. 2d).

Effects of DHA, ARA, 4-HHE, and 4-HNE
on oAβ-Triggered cPLA2 Activation

It has been reported that aggregated Aβ activated cPLA2

in microglia [64]. Therefore, we examined if DHA,
ARA, 4-HHE, and 4-HNE can alter oAβ-triggered
cPLA2 activation, as indicated by phosphorylation of
cPLA2 (i.e., p-cPLA2). Results showed that oAβ-
triggered cPLA2 activation and this activation were sup-
pressed by DHA (Fig. 3a), 4-HHE, and 4-HNE (Fig. 3c),
but not by ARA (Fig. 3b).

Effects of DHA, ARA, 4-HHE, and 4-HNE
on oAβ-Induced iNOS and TNF-α

We also explored the effects of DHA, ARA, and their
peroxidation products on oAβ-induced inflammatory re-
sponses in microglia. Results showed that oAβ-induced
iNOS and TNF-α were suppressed by pretreatments with
DHA (Fig. 4a, d), 4-HHE, and 4-HNE (Fig. 4c, f).
However, pretreatment with ARA enhanced iNOS expres-
sion as compared with control but did not alter iNOS
further with oAβ (Fig. 4b). Pretreatment with ARA did
not alter the TNF-α level as compared with control, and
oAβ together with ARA did not alter TNF-α as compared
with oAβ alone (Fig. 4e). Interestingly, neither 4-HHE
nor 4-HNE (at 5 μM) enhanced expression of iNOS or
TNF-α as compared with control, but both 4-HHE and 4-
HNE suppressed the increase in iNOS and TNF-α due to
oAβ (Fig. 4c, f).

DHA, ARA, 4-HHE, and 4-HNE Upregulated
the Nrf2/HO-1 Antioxidant Pathway
in oAβ-Stimulated Microglia

Our previous study demonstrated that exogenously added
DHA, 4-HHE, and 4-HNE upregulated the antioxidant Nrf2/
HO-1 pathway in microglia [41]. In this study, we examined
whether DHA, ARA, 4-HHE, and 4-HNE also upregulated
the Nrf2/HO-1 pathway in oAβ-stimulated microglia.
Results showed that stimulation of microglia with oAβ alone

Fig. 1 Effects of DHA and ARA on oAβ-induced reactive oxygen spe-
cies (ROS) production in primary mouse microglia and BV2 cells.
Primary microglia cells were pretreated with 10 μM DHA (a) or ARA
(b) for 2 h, followed by treatment with 2.5 μMoAβ for 30min. BV2 cells
were incubated with 10 μMDHA (a) or ARA (b) for 24 h and with fresh
medium for 1 h, followed by 2.5 μM oAβ stimulation for 30 min. BV2
cells were also treated with 2.5 μM scramble Aβ1–42 for 30 min as a
negative control or 100 ng/ml LPS for 11 h as a positive control. Data
are represented as mean ± SD from three independent experiments (n =
3). (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, compared with
the control group; #p < 0.05, ###p < 0.001, compared with the oAβ
treatment group.) From the left to the right bar (mean ± SD): a 1 ±
0.09, 1.59 ± 0.07, 1.28 ± 0.13, 1.25 ± 0.09, 1 ± 0.05, 0.9 ± 0.11, 2.59 ±
0.31, 1.62 ± 0.16, 1.01 ± 0.11, 1.25 ± 0.05; b 1 ± 0.09, 1.46 ± 0.12, 1.63 ±
0.1, 1.31 ± 0.09, 1 ± 0.05, 1.44 ± 0.08, 1.51 ± 0.07, 1.2 ± 0.05
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Fig. 2 DHA and ARA modulated the levels of 4-HHE and 4-HNE in
BV2 cells. BV2 cells were treated with 50 μM DHA (a–c) or 50 μM
ARA (d–f) for 1 h, followed by stimulationwith 2.5 μMoAβ for 6 h. The
levels of 4-HHE and 4-HNE were measured by LC-MS/MS. Data are
represented as mean ± SD from three or four independent experiments (n
= 3 or 4). (**p < 0.01, ***p < 0.001, ****p < 0.0001, compared with the
control group; #p < 0.05, ##p < 0.01, ####p < 0.0001, compared with the

oAβ treatment group.) From the left to the right bar (mean ± SD): a
465.65 ± 66.1, 447.48 ± 86.16, 1254.83 ± 217.46, 922.35 ± 102.17; b
768.43 ± 48.87, 1187.2 ± 141.11, 764.08 ± 194.69, 599.38 ± 109.52; c
1.67 ± 0.17, 2.7 ± 0.42, 0.61 ± 0.14, 0.65 ± 0.09; d 523.49 ± 17.31,
507.73 ± 4.18, 539.14 ± 21.63, 528.88 ± 12.45; e 723.6 ± 27.41,
1049.67 ± 124.69, 1409.5 ± 50.82, 1164.7 ± 86.51; f 1.38 ± 0.09, 2.07
± 0.23, 2.62 ± 0.2, 2.2 ± 0.11

Fig. 3 Effects of DHA, ARA, 4-HHE, and 4-HNE on oAβ-induced p-
cPLA2 activation in BV2 cells. BV2 cells were pretreated with 50 μM
DHA (a), 50 μMARA (b), and 5 μM4-HHE or 5 μM4-HNE (c) for 1 h,
followed by 2.5 μM oAβ treatment for 6 h. Data are represented as mean
± SD from three independent experiments (n = 3). (*p < 0.05, **p < 0.01,

***p < 0.001, compared with the control group; ##p < 0.01, compared
with the oAβ treatment group.) From the left to the right bar (mean ± SD):
a 1 ± 0, 1.36 ± 0.08, 0.92 ± 0.19, 0.9 ± 0.07; b 1 ± 0, 1.21 ± 0.04, 1.16 ±
0.04, 1.01 ± 0.03; c 1 ± 0, 1.39 ± 0.07, 1.12 ± 0.05, 1.09 ± 0.1, 1.05 ±
0.04, 0.94 ± 0.08
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did not impose any effect on Nrf2 and HO-1 expression levels
(Fig. 5a–f), but both DHA and ARA (50 μM) upregulated
Nrf2 and HO-1 regardless of the presence or absence of
oAβ (Fig. 5a, b, d, e). Results also showed the ability for both
4-HHE and 4-HNE (5 μM) to upregulate Nrf2 and HO-1
regardless of the presence or absence of oAβ (Fig. 5c, f).

DHA and ARA Imposed No Significant Effect
on Calcium Influx in oAβ-Stimulated BV2 Cells

Since cPLA2 activity is calcium dependent, we examined the
effects of DHA, ARA, and oAβ on calcium influx in BV2
cells; 2.5 μM oAβ increased calcium in cells by ~ 20%, but
the increase was not statistically significant (Fig. 6).
Pretreatment of cells with 50 μM DHA or ARA for 1 h did
not impose any change in calcium in oAβ-stimulated cells
(Fig. 6). Treating cells with 1 μM A23187, calcium iono-
phore, for 30 min increased calcium in cells by ~ 40%, as a

positive control (Fig. 6). These results suggest that the chang-
es in cPLA2 activation driven by DHA, ARA, and oAβ did
not require changes in calcium influx.

Discussion

There is growing evidence that DHA exerts neuroprotective
effects on AD brains through multiple mechanisms, such as
anti-inflammatory, anti-amyloid, anti-tau, enhanced non-
amyloidogenesis activity, and preventing Aβ fibrillogenesis
[5, 11, 12, 65–69]. In addition, dietary supplementation of
DHA can directly impact microglial lipid content [70].
However, only few studies have addressed mechanism(s)
whereby DHA exerts neuroprotective effects in AD, in partic-
ular, through its ability to modulate microglial activity. DHA
has been found to enhance phagocytosis of Aβ and decrease
inflammatory markers in human microglia [13]. DHA

Fig. 4 Effects of DHA, ARA, 4-HHE, and 4-HNE on oAβ-induced
iNOS and TNF-α in BV2 cells. a–c For measuring iNOS expression,
BV2 cells were pretreated with 50 μM DHA (a), 50 μM ARA (b), and
5 μM 4-HHE or 5 μM 4-HNE (c) for 1 h, followed by treatment with
2.5 μM oAβ for 6 h. d, e For measuring TNF-α expression, BV2 cells
were pretreated with 10μMDHA (d), 10μMARA (e), and 5μM4-HHE
or 5 μM 4-HNE (f) for 1 h, followed by 1 μM oAβ treatment for 23 h.
Data are represented as mean ± SD from three independent experiments

(n = 3). (*p < 0.05, **p < 0.01, ***p < 0.001, compared with the control
group; #p < 0.05, ##p < 0.01, ###p < 0.001, compared with the oAβ
treatment group.) From the left to the right bar (mean ± SD): a 1 ± 0,
2.49 ± 0.3, 1.07 ± 0.15, 1.08 ± 0.27; b 1 ± 0, 1.26 ± 0.04, 1.57 ± 0.06, 1.43
± 0.19; c 1 ± 0, 1.61 ± 0.13, 1.22 ± 0.15, 1.23 ± 0.11, 1.03 ± 0.15, 0.97 ±
0.2; d 1 ± 0, 2.56 ± 0.41, 1.5 ± 0.23, 1.05 ± 0.11; e 1 ± 0, 2.08 ± 0.52, 2.44
± 0.61, 1.27 ± 0.19; f 1 ± 0, 2.56 ± 0.41, 1.42 ± 0.35, 1.29 ± 0.37, 1.05 ±
0.06, 1.03 ± 0.09
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modulated microglial cell number and morphology in re-
sponse to intracerebroventricular injection of Aβ40 in mice
[71]. As a major source of oxidative stress and neuroinflam-
mation, microglia can be activated by aggregated Aβ to pro-
duce superoxides through NADPH oxidase and trigger cPLA2

activity [72].
Although the mechanisms have yet to be fully elucidated,

DHA has been reported to reduce oxidative stress through
suppressing NADPH oxidase activity in various cell types,
including endothelial cells, pancreatic islets, hepatocytes,
keratinocytes, and monocytes/macrophages [73–78].
Consistent with our previous report on the ability of DHA to
suppress LPS-induced ROS production in microglial BV2
cells [41], our study here showed that pretreatment with
DHA suppressed oAβ-induced ROS production in both pri-
mary mouse microglia and microglial BV2 cells (Fig. 1a). It is
important to note that dramatic downregulation of genes relat-
ed to immune cell function and signaling as well as immune,

blood vessel, and brain development have been observed at
6 h after plating primary microglia in cell culture [43].
Therefore, to minimize these dramatic alterations of gene ex-
pression levels and tomaintain the expression levels of cells in
the ex vivo condition, our experiments used primary mouse
microglia immediately after cell isolation and purification.
The freshly plated cells were pretreated with DHA or ARA
for 2 h and then treatment with oAβ for 30 min prior to the
addition of DCF for 1 h so that the total experimental time of
cells in culture was between 3.5 and 6 h.

In this study, the effects of DHA on microglia were com-
pared with ARA, another PUFA abundant in brain tissue. We
found that pretreatment with ARA moderately enhanced
oAβ-induced ROS production in both primarymouse microg-
lia and BV2 cells (Fig. 1b). In fact, activation of cPLA2 is
required for NADPH oxidase activity to produce ROS [64,
79], and NADPH oxidase activity can be restored by exoge-
nous ARA in cPLA2-deficient human myeloid cells [79]. Our

Fig. 5 Effects of DHA, ARA, 4-HHE, and 4-HNE on oAβ-induced Nrf2
and HO-1 in BV2 cells. BV2 cells were pretreated with 50 μMDHA (a,
d), 50 μM ARA (b, e), and 5 μM 4-HHE or 5 μM 4-HNE (c, f) for 1 h,
followed by treatment with 2.5 μM oAβ for 6 h. Data are represented as
mean ± SD from four independent experiments (n = 4). (*p < 0.05, **p <
0.01, ***p < 0.001, ****p < 0.0001, compared with the control group.)

From the left to the right bar (mean ± SD): a 1 ± 0, 1.06 ± 0.03, 2.41 ±
0.54, 3.42 ± 0.65; b 1 ± 0, 1.06 ± 0.03, 3.74 ± 0.37, 3.08 ± 0.97; c 1 ± 0,
1.08 ± 0.08, 1.84 ± 0.31, 2.04 ± 0.67, 2.07 ± 0.53, 2.43 ± 0.26; d 1 ± 0,
1.16 ± 0.16, 5.84 ± 0.94, 7.53 ± 1.43; e 1 ± 0, 1.16 ± 0.16, 7.88 ± 0.98,
6.72 ± 1.15; f 1 ± 0, 1.16 ± 0.27, 2.64 ± 0.17, 2.75 ± 0.65, 2.66 ± 0.5, 3.72
± 0.88
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observations of ARA-enhanced ROS production induced by
oAβ in microglia are consistent with previous findings regard-
ing the role of ARA in NADPH oxidase activity.

In addition to the effects of DHA on NADPH oxidase
activity, there is evidence that ω-3 fatty acids exert anti-
inflammatory effects in various types of cells through stimu-
lation of G protein–coupled receptor 120 (GPR120) [80–82].
ω-3 fatty acid–enriched diets have also been reported to acti-
vate GRP120-Nrf2 cross-talk to maintain balanced energy
metabolism in mice overexpressing catalase [83]. Most re-
cently, GPR120 was found to play a role in DHA-mediated
inhibition of oxygen-glucose deprivation (OGD)–induced in-
flammation in primary microglia and BV2 cells [84]. In addi-
tion, inflammation is intimately related to peroxisome
proliferator–activated receptors (PPARs) (see review from
[85]). DHA has been reported as a ligand for PPARα,
PPARβ/δ, and PPARγ [86–88] and inhibits advanced
glycation end product (AGE)–induced inflammation in retinal
microglia via suppression of the PPARγ/NF-κB pathway
[89]. In turn, PPARγ regulates Nrf2 pathway and acts syner-
gistically to suppress oxidative stress [90–93] and exert anti-
inflammatory effects by inhibition of the NF-κB pathway [94,
95].

PUFAs are susceptible to free oxygen radical attacks and
generate peroxidation products [1]. Our previous study dem-
onstrated an increase in 4-HNE levels in LPS-stimulated
microglial cells, an event known to link to cPLA2 activation
and ARA production [41]. In the present study, an oAβ-

induced increase in 4-HNE was similarly due to an increase
in p-cPLA2 and ARA. Therefore, treatment of cells with DHA
resulted in an increase in 4-HHE (Fig. 2a), whereas treating
cells with ARA caused the increase in 4-HNE instead (Fig.
2e). These results suggest the endogenous and exogenous
pools of free DHA and ARA are subject to peroxidation
[23]. An interesting finding here is that DHA suppressed 4-
HNE generation induced by oAβ (Fig. 2b), whereas ARA
imposed no effect on the 4-HHE level (Fig. 2d). These find-
ings are consistent with data in Fig. 1 demonstrating that DHA
suppressed oAβ-induced ROS production and, in turn, sup-
pressed downstream cellular processes, including cPLA2 acti-
vation (Fig. 3a) and ARA metabolism, thereby lowering the
oAβ-elevated 4-HNE level (Fig. 2b). Since cPLA2 hydrolyses
membrane phospholipids to produce lysophospholipids and
ARA, the results showing that DHA suppressed oAβ-
activated cPLA2 in Fig. 3a also help interpret recent in vivo
studies that dietary DHA increased the level of DHA but de-
creased that of ARA in mouse brains [34, 62]. Interestingly, in
the study with maternal DHA supplement, an increase in 4-
HHE level was observed in the cerebral cortex and hippocam-
pus but not in the cerebellum [62]. Despite of the increase in 4-
HHE, animals supplemented with the DHA diet did not show
changes in the 4-HNE levels in different brain regions [62].
These results are consistent with our in vitro study with BV2
cells that treatment with DHA increased 4-HHE levels but not
the 4-HNE level (Fig. 2b).

Many neurologic dysfunctions including AD have demon-
strated the increase in 4-HNE, in agreement with the increase
in inflammatory cPLA2 and production of ARA [22].
Interestingly, a study by Bradley et al. [96] reported elevated
levels of extractable and protein-bound HHE in multiple re-
gions of AD brain. Recently, we have adopted a LC-MS/MS
protocol to simultaneous determine levels of soluble 4-HHE
and 4-HNE in cell and animal models [41, 62]. These studies
indicated differences in metabolic pathways for production of
4-HHE and 4-HNE. In our previous study with BV2
microglial cells, exogenous 4-HHE and 4-HNE at 1–10 μM
dose dependently suppressed LPS-induced inflammation and
upregulated the antioxidant Nrf2/HO-1 [41]. While 5 μM of
exogenous 4-HHE is reported to suppress Aβ-induced inflam-
mation and upregulate the antioxidant Nrf2/HO-1 pathway in
BV2 cells in this study, a dose greater than 25 μM significant-
ly lowered the survival of rat cortical neurons and glucose
uptake in primary cortical cultures [96], and 2.5 μM of 4-
HHE impaired glutamate uptake in primary rat astrocytes
[97].

Since DHA modulated the 4-HHE and 4-HNE levels in
oAβ-stimulated microglia (Fig. 2), both 4-HHE and 4-HNE
may also be involved in the effects of DHA on cell signaling.
We found that not only DHA (Fig. 3a) but also both 4-HHE
and 4-HNE suppressed oAβ-induced cPLA2 activation in
BV2 cells (Fig. 3c). In addition, DHA, 4-HHE, and 4-HNE

Fig. 6 No significant effect of DHA and ARA on calcium influx in oAβ-
stimulated BV2 cells. BV2 cells were incubated with 2 μM Fluo-4-AM
for 30 min, followed by 50 μM DHA or ARA for 1 h, and were stimu-
lated with 2.5 μM oAβ or 1 μM A23187 (positive control) for 30 min.
Data are represented as mean ± SD from at least four independent exper-
iments (n ≥ 4). (*p < 0.05, compared with the control group.) From the
left to the right bar (mean ± SD): 1 ± 0, 1.21 ± 0.09, 1.21 ± 0.14, 1.27 ±
0.19, 1.16 ± 0.26, 1.15 ± 0.14, 1.41 ± 0.19
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imposed anti-inflammatory activity to suppress oAβ-induced
iNOS (Fig. 4a, c) and TNF-α (Fig. 4d, f) and enhanced the
Nrf2/HO-1 pathway in both unstimulated and oAβ-stimulated
microglial cells (Fig. 5a, c, d, f). However, pretreatment of
DHA in a rat spinal cord injury (SCI) model has been found
to activate pro-survival/anti-apoptotic pathways at least partly
through AKt and cyclic AMP–responsive element binding
protein (CREB) to protect NG2+, APC+, and NeuN+ cells,
which may be independent of its anti-inflammatory effects
on glial cells [98].

While exogenous ARA upregulated the Nrf2/HO-1 path-
way (Fig. 5b, e), ARA did not suppress oAβ-induced ROS
production (Fig. 1), cPLA2 activation (Fig. 3b), and iNOS
(Fig. 4b) and TNF-α (Fig. 4e). In fact, the abilities of exoge-
nous 4-HHE and 4-HNE to impose anti-oxidative and anti-
inflammatory responses have been demonstrated in other cell
types, including smooth muscle and endothelial cells [36, 39,
99]. In addition, the electrophilic properties of 4-hydroxy-
alkenals to upregulate Nrf2, resulting in increases in synthesis
of HO-1 and other phase II enzymes, have contributed to the
neuroprotective effects observed in DHA metabolism [30, 34,
100–103].

In this study, we demonstrate that exogenous 4-HNE
upregulates the Nrf2/HO-1 antioxidant pathway. Study by
Pizzimenti et al. [104] showed that 4-HNE forms adduct with
HO-1 which results in the structural and functional impair-
ment of HO-1. In turn, such modification of HO-1 by 4-
HNE may impair HO-1/biliverdin reductase-A system, lead-
ing to increased oxidative stress and Tau hyper-
phosphorylation in the brain [105–109]. In fact, the interac-
tions of 4-HNE with various proteins to form 4-HNE-protein
adducts have been found harmful in diseased brains and in
body fluids of subjects affected by AD, Parkinson’s disease,
Huntington disease, and amyotrophic lateral sclerosis and of
animal models of these diseases (see review from [110]).
Particularly in the case of AD, HNE-modified Aβ inhibits
degradation of oxidized proteins by 20S proteasome [111].
HNE covalently modifies and induces cross-linking of neuro-
nal cytoskeletal proteins [112] and upregulates BACE-1 ex-
pression and Aβ production in neurons [113].

In summary, this study demonstrated the effects of
DHA on ROS production, cPLA2 activation, inflamma-
tory responses, and the neuroprotective Nrf2/HO-1 path-
way in oAβ-stimulated microglial cells, and the in-
volvements of 4-HHE and 4-HNE in these effects,
which should provide insights into the beneficial effects
of DHA on AD.
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