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Abstract
The collapsin response mediator protein 2 (CRMP2) has emerged as a central node in assembling nociceptive signaling com-
plexes involving voltage-gated ion channels. Concerted actions of post-translational modifications, phosphorylation and
SUMOylation, of CRMP2 contribute to regulation of pathological pain states. In the present study, we demonstrate a novel role
for CRMP2 in spinal nociceptive transmission. We found that, of six possible post-translational modifications, three phosphor-
ylation sites on CRMP2 were critical for regulating calcium influx in dorsal root ganglion sensory neurons. Of these, only
CRMP2 phosphorylated at serine 522 by cyclin-dependent kinase 5 (Cdk5) contributed to spinal neurotransmission in a bidi-
rectional manner. Accordingly, expression of a non-phosphorylatable CRMP2 (S522A) decreased the frequency of spontaneous
excitatory postsynaptic currents (sEPSCs), whereas expression of a constitutively phosphorylated CRMP2 (S522D) increased the
frequency of sEPSCs. The presynaptic nature of CRMP2’s actions was further confirmed by pharmacological antagonism of
Cdk5-mediated CRMP2 phosphorylation with S-N-benzy-2-acetamido-3-methoxypropionamide ((S)-lacosamide; (S)-LCM)
which (i) decreased sEPSC frequency, (ii) increased paired-pulse ratio, and (iii) reduced the presynaptic distribution of
CaV2.2 and NaV1.7, two voltage-gated ion channels implicated in nociceptive signaling. (S)-LCM also inhibited
depolarization-evoked release of the pro-nociceptive neurotransmitter calcitonin gene-related peptide (CGRP) in the spinal cord.
Increased CRMP2 phosphorylation in rats with spared nerve injury (SNI) was decreased by intrathecal administration of (S)-
LCM resulting in a loss of presynaptic localization of CaV2.2 and NaV1.7. Together, these findings indicate that CRMP2
regulates presynaptic excitatory neurotransmission in spinal cord and may play an important role in regulating pathological pain.
Novel targeting strategies to inhibit CRMP2 phosphorylation by Cdk5 may have great potential for the treatment of chronic pain.
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Introduction

Pain serves a crucial protective role by alerting the body to
potentially harmful stimuli. However, pain that persists

months or years after an injury has healed is viewed as path-
ological chronic pain [1–3]. In this state, pain occurs sponta-
neously and responses to noxious and innocuous stimuli are
pathologically magnified. Ineffective treatment of chronic
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pain results from our incomplete understanding of mecha-
nisms underlying abnormal neuronal circuits along nocicep-
tive pathways.

Sensory signals are transmitted by primary afferent fibers
into the superficial layers of the dorsal horn of the spinal cord,
where the first sensory synapse formed by central terminals of
primary afferent neurons and spinal second order neurons is
critically involved in nociceptive transmission and regulation
[4, 5]. An increase of synaptic transmission, efficacy, and
plasticity are key components in central sensitization, which
is needed for pain chronification [6]. Throughout the central
nervous circuits, high voltage-gated calcium channels, includ-
ing the N-type (CaV2.2) channel, are dominant in controlling
release of neurotransmitters release such as glutamate [7, 8].

In studying regulators of CaV2.2 channels, a proteomic
approach identified the axonally expressed collapsin response
mediator protein 2 (CRMP2) as a biochemical and functional
regulator of CaV2.2 channels in hippocampal and sensory
neurons [9–11]. Uncoupling CRMP2 from CaV2.2 complex
suppressed inflammatory and neuropathic pain [12–16].
Although CRMP2 was initially identified as a protein in-
volved in axon specification/guidance within the developing
central nervous system [17, 18], it is now known that
CRMP2’s cellular functions include ion channel trafficking
[12, 19–21]. These functions appear to be under the control
of SUMOylation [20, 22–26] or a multiplicity of phosphory-
lation events triggered by kinases including cyclin-dependent
kinase 5 (Cdk5) [27], glycogen synthase kinase 3β (GSK3β)
[28], Rho-associated protein kinase (ROCK) [29], and the Src
family kinases Yes [30] and Fyn [31].

It is now recognized that protein kinases are involved in the
physiopathology of acute and chronic pain [32].
Phosphorylation of CRMP2 by kinases is balanced by its de-
phosphorylation by phosphatases. Cdk5 is the Bpriming^ ki-
nase responsible for first phosphorylating CRMP2 at Serine
522 [33], which then makes CRMP2-T514 (as well as of
CRMP2-T518 and CRMP2-T509) available for phosphoryla-
tion by GSK3β [27]. We reported enhanced interaction of
Cdk5-phosphorylated CRMP2 with presynaptic CaV2.2
which lead to enhanced calcium entry following membrane
depolarization in DRG neurons [34]. Further, we demonstrat-
ed that CRMP2 phosphorylation by Cdk5 appears to be nec-
essary and sufficient for peripheral neuropathic pain of vary-
ing etiologies [26, 35, 36]. Increased circulating CRMP2 au-
toantibodies were found in the acute stage of spinal cord inju-
ry, which predicts the subsequent development of neuropathic
pain [37]. Hijacking CRMP2 phosphorylation resulted in nor-
malization of ion channel current densities and excitability of
dorsal root ganglion (DRG) neurons [22], as well as of
hyperalgesia in a gene editing model of Neurofibromatosis
type 1-related pain [38]. Pharmacological antagonism of
Cdk5-mediated CRMP2 phosphorylation by S-N-benzy-2-
acetamido-3-methoxypropionamide ((S)-lacosamide; (S)-

LCM) inhibited calcium influx in sensory neurons [39] and
reversed post-operative surgical and neuropathic pain behav-
iors [39].

Our studies have thus far established CRMP2 phosphory-
lation by Cdk5 to be an intrinsic pathological event participat-
ing in the establishment of chronic neuropathic pain.
However, the precise role of CRMP2 (and its phosphorylated
forms) within the sensory nervous circuitry, especially in the
nociceptive central nervous system, remains unclear.
Therefore, here we investigated the potential role of phosphor-
ylation of CRMP2 on the interaction with presynaptic
CaV2.2, and how that contributes to spinal nociceptive syn-
aptic transmission.

Materials and Methods

Animals

Pathogen-free, male Sprague-Dawley rat pups (12–21 days
old; Envigo) were used for electrophysiological experiments
and adult male Sprague-Dawley rats (100 g; Envigo) were
used for all other experiments. All animals were housed in a
temperature- (23 ± 3 °C) and light-controlled (12-h light/12-h
dark cycle; lights on 08:00–20:00) rooms with chow and wa-
ter available ad libitum. The Institutional Animal Care and
Use Committee of the College of Medicine at the University
of Arizona approved all experiments. All procedures were
conducted in accordance with the Guide for Care and Use of
Laboratory Animals published by the National Institutes of
Health and the ethical guidelines of the International
Association for the Study of Pain. All electrophysiology and
calcium imaging experiments were performed by experi-
menters who were blinded to the experimental groups and
treatments.

Preparation of Spinal Cord Slices

As described previously [40], young (postnatal 12–21 days)
rats were deeply anesthetized with isoflurane (4% for induc-
tion and 2% for maintaining). For spinal nerve block, 0.3 mL
of 2% lidocaine was injected to both sides of L4 to 5 lumbar
vertebrae. Laminectomy was performed from mid-thoracic to
low lumbar levels, and the spinal cord was quickly removed to
cold modified ACSF oxygenated with 95% O2 and 5% CO2.
The ACSF for dissection contained the following (in millimo-
lar): 80 NaCl, 2.5 KCl, 1.25 NaH2PO4, 0.5 CaCl2, 3.5 MgCl2,
25 NaHCO3, 75 sucrose, 1.3 ascorbate, 3.0 sodium pyruvate,
with pH at 7.4 and osmolarity at 310 mOsm. Transverse 350-
mm thick slices were obtained by a vibratome (VT1200S;
Leica, Nussloch, Germany). Slices were then incubated for
at least 1 h at RT in an oxygenated recording solution contain-
ing the following (in millimolar): 125 NaCl, 2.5 KCl, 2 CaCl2,
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1 MgCl2, 1.25 NaH2PO4, 26 NaHCO3, 25 D-glucose, 1.3
ascorbate, 3.0 sodium pyruvate, with pH at 7.4 and osmolarity
at 320 mOsm. The slices were then positioned in a recording
chamber and continuously perfused with oxygenated record-
ing solution at a rate of 3 to 4 mL/min before electrophysio-
logical recordings at RT.

Electrophysiological Recordings in Spinal Cord Slices
by Whole-Cell Patch Clamp

Whole-cell recording experiments were performed as de-
scribed previously [41]. Substantia gelatinosa neurons (lamina
I/II) were visualized and identified in the slices by means of
infrared differential interference contrast video microscopy on
an upright microscope (FN1; Nikon, Tokyo, Japan) equipped
with a 3.40/0.80 water-immersion objective and a charge-
coupled device camera. Patch pipettes with resistance at 6 to
10MΩwere made from borosilicate glass (Sutter Instruments,
Novato, CA) on a four-step micropipette puller (P-90; Sutter
Instruments, Novato, CA). The pipette solution contained the
following (in millimolar): 120 potassium gluconate, 20 KCl, 2
MgCl2, 2 Na2-ATP, 0.5 Na-GTP, 20 HEPES, 0.5 EGTA, with
pH at 7.28 and osmolarity at 310 mOsm. The membrane po-
tential was held at − 60 mV using a PATCHMASTER soft-
ware in combination with a patch clamp amplifier (EPC10;
HEKA Elektronik, Lambrecht, Germany).

The whole-cell configuration was obtained in voltage-
clamp mode. To record spontaneous excitatory postsynaptic
currents (sEPSCs), bicuculline methiodide (10 μM) and
strychnine (2 μM) were added to the recording solution to
block γ-aminobutyric acid-activated (GABA) and glycine-
activated currents. Tetrodotoxin (TTX; 1 μM, Cat#
ab120054, Abcam) was added to block action potentials when
we were recording miniature excitatory postsynaptic currents
(mEPSCs). Hyperpolarizing step pulses (5 mV in intensity, 50
milliseconds in duration) were periodically delivered to mon-
itor the access resistance (15–25 MΩ), and recordings were

discontinued if the access resistance changed by more than
20%. For each neuron, sEPSCs or mEPSCs were recorded
for a total duration of 2 min. Currents were filtered at 3 kHz
and digitized at 5 kHz. Data were further analyzed by the
Mini-Analysis Program (Synatosoft Inc., NJ) to provide
spreadsheets for the generation of cumulative probability
plots. The amplitude and frequency of sEPSCs were com-
pared between neurons from animals in control and the indi-
cated groups.

Confocal Imaging of Spinal Cord Slices After
Electrophysiological Recording

Following electrophysiological recordings and filling of re-
corded neurons with Biocytin (Millipore-Sigma, B4261),
slices were fixed in 4% PFA for 20 min at room temperature.
Non-specific staining was blocked in 3% BSA, 0.1% Triton
X-100 in PBS for 1 h at room temperature and slices were
incubated with Streptavidin-AlexaFluor488 (Cat# S32354,
Invitrogen) and a primary antibody anti-dsRed (Table 1) over-
night at + 4 °C. After thorough washing, slices were incubated
with a secondary antibody (Goat anti-Mouse AlexaFluor 660,
Cat# A21054 Invitrogen, or Goat anti-MouseAlexaFluor 594,
Cat# A11032, Invitrogen) for 4 h at room temperature,
washed, and counterstained with DAPI. Images were obtained
using a Zeiss LSM880 confocal microscope equipped with an
EC Plan-Apochromat ×40 (NA = 1.3) lens.

Preparation of Acutely Dissociated Dorsal Root
Ganglion Neurons

Dorsal root ganglia from all levels were acutely dissociated
from 100 g Sprague-Dawley rats and DRG neurons were iso-
lated as we described previously [13, 14, 22–24, 35, 38, 39,
42–44]. In brief, removing dorsal skin and muscle and cutting
the vertebral bone processes parallel to the dissection stage-
exposed DRG. Dorsal root ganglia were then collected,

Table 1 Antibodies used in this
study Antibody Species Catalog number Company

CRMP2 Rabbit C2993 Sigma, St. Louis, MO

CRMP2 pS522 Rabbit CP2191 ECM Biosciences, Versailles, KY

CaV2.2 Rabbit TA308673 Origene, Rockville, MD

NaV1.7 Mouse 75-103 NeuroMab, Davis, CA

Synaptophysin Mouse MAB5258 Thermofisher scientific, San Diego, CA

PSD95 Mouse MA1-045 Thermofisher scientific, San Diego, CA

CaV2.3 Rabbit ACC-006 Alomone, Jerusalem, Israel

CB1R Rabbit ab137410 Abcam, Cambridge, UK

Actin Rabbit A2066 Sigma, St. Louis, MO

Flotilin Rabbit F1180 Sigma, St. Louis, MO

DsRed Mouse 51-8115GR BD Pharmingen, San Jose, CA
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trimmed at their roots, and enzymatically digested in 3 mL
bicarbonate-free, serum-free, sterile DMEM (Cat# 11965,
Thermo Fisher Scientific) solution containing neutral protease
(3.125 mg.mL−1, Cat# LS02104; Worthington, Lakewood,
NJ) and collagenase type I (5 mg.mL−1, Cat# LS004194,
Worthington, Lakewood, NJ) and incubated for 60 min at
37 °C under gentle agitation. Dissociated DRG neurons (~
1.5 × 106) were then gently centrifuged to collect cells and
washed with DRG media DMEM containing 1% penicillin/
streptomycin sulfate from 10,000 μg/mL stock, 30 ng/mL
nerve growth factor, and 10% fetal bovine serum (Hyclone)
before plating onto poly-D-lysine- and laminin-coated glass
12- or 15-mm coverslips. All cultures were used within 48 h.

Dorsal Root Ganglia Neuron Transfection

Collected cells were re-suspended in Nucleofector transfec-
tion reagent containing 4 μg of the indicated pdsRed-N2 plas-
mids described earlier [22]. Then, cells were subjected to elec-
troporation protocol O-003 in an Amaxa Biosystem (Lonza,
Basel, Switzerland) and plated onto poly-d-lysine-coated
glass 15 mm glass coverslips. Transfection efficiencies were
routinely between 20 and 30% with about ~ 10% cell death.
Successfully transfected cells were identified by dsRed
fluorescence.

Calcium Imaging in Acutely Dissociated Dorsal Root
Ganglion Neurons

Dorsal root ganglion neurons were loaded for 30 min at 37 °C
with 3 μM Fura-2AM (Cat# F1221, Thermo Fisher, stock
solution prepared at 1 mM in DMSO, 0.02% pluronic acid,
Cat# P-3000MP, Life technologies) to follow changes in in-
tracellular calcium([Ca2+]c) in a standard bath solution con-
taining 139 mM NaCl, 3 mM KCl, 0.8 mM MgCl2, 1.8 mM
CaCl2, 10 mM Na HEPES, pH 7.4, 5 mM glucose exactly as
previously described [13, 14, 19, 43, 45–47]. Fluorescence
imaging was performed with an inverted microscope,
NikonEclipseTi-U (Nikon Instruments Inc., Melville, NY),
using objective Nikon Fluor 4X and a Photometrics cooled
CCD camera Cool SNAP ES2 (Roper Scientific, Tucson, AZ)
controlled by Nis Elements software (version 4.20, Nikon
Instruments). The excitation light was delivered by a
Lambda-LS system (Sutter Instruments, Novato, CA). The
excitation filters (340 ± 5 and 380 ± 7) were controlled by a
Lambda 10 to 2 optical filter change (Sutter Instruments).
Fluorescence was recorded through a 505-nm dichroic mirror
at 535 ± 25 nm. To minimize photobleaching and phototoxic-
ity, the images were taken every ~ 10 s during the time-course
of the experiment using the minimal exposure time that pro-
vided acceptable image quality. The changes in [Ca2+]c were
monitored by following a ratio of F340/F380, calculated after
subtracting the background from both channels. For analysis,

only transfected DRG neurons, identified by dsRed flores-
cence, were used. Our analysis included all transfected
DRGs based on our previous reports demonstrating that inhi-
bition of CRMP2 with (i) either a knockdown strategy
(CRMP2-siRNA), (ii) peptide-based interference strategies
(TAT-CBD3, TAT-CBD3-A6K, TAT-CBD3-L5M, TAT-
CNRP1), or (iii) pharmacological antagonism ((S)-LCM)
blunted depolarization-evoked calcium influx in all DRG neu-
rons tested independently of their size [12, 14, 15, 39, 43, 48].

Calcitonin Gene-Related Peptide Release
from Lumbar Slices

Rats were deeply anesthetized with 5% isofluorane and then
decapitated. Two vertebral incisions (cervical and lumbar)
were made in order to expose the spinal cord. Pressure was
applied to a saline-filled syringe inserted into the lumbar ver-
tebral foramen, and the spinal cord was extracted. Only the
lumbar region of the spinal cord was used for the calcitonin
gene-related peptide (CGRP) release assay. Baseline treat-
ments (#1 and #2) involved bathing the spinal cord in
Tyrode’s solution. The excitatory solution consisting of
90 mM KCl was paired with the treatment for fraction #4.
These fractions (10 min, 400 μL each) were collected for
measurement of CGRP release. Samples were immediately
flash frozen and stored in a − 20 °C freezer. (S)-LCM
(10 μM) or vehicle (0.9% saline) was added to the pretreat-
ment and co-treatment fractions (#3 and #4). The concentra-
tion of CGRP released into the buffer was measured by
enzyme-linked immunospecific assay (Cat# 589001,
Cayman Chemical, Ann Arbor, MI).

Synapse Enrichment and Fractionation

Adult rats were killed by isofluorane overdose and decapita-
tion, the spinal cords dissected and the lumbar dorsal horn
collected. Only the dorsal horn of the spinal cord was used
as this structure contains the synapses arising from the DRG.
Synaptosomes were isolated as described previously [49].
Fresh tissues were homogenized in ice-cold sucrose 0.32 M,
HEPES 10 mM, pH 7.4 buffer. The homogenates were cen-
trifuged at 1000×g for 10 min at 4 °C to pellet the insoluble
material. The supernatant was harvested and centrifuged at
12,000×g for 20 min at 4 °C to pellet a crude membrane
fraction. The pellet was then re-suspended in a hypotonic
buffer (4 mMHEPES, 1 mMEDTA, pH 7.4) and the resulting
synaptosomes pelleted by centrifugation at 12,000×g for
20 min at 4 °C. The synaptosomes were then incubated in
20 mM HEPES, 100 mM NaCl, 0.5% Triton X, pH = 7.2)
for 15 min on ice and centrifuged at 12,000×g for 20 min at
4 °C. The supernatant was considered as the non-postsynaptic
density (non-PSD) membrane fraction, sometimes referred to
as the triton soluble fraction. The pellet containing the
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postsynaptic density fraction (PSD) was then solubilized
(20 mM HEPES, 0.15 mM NaCl, 1% Triton X-100, 1%
deoxycholic acid, 1% SDS, pH = 7.5). The integrity of non-
PSD and PSD fractions was verified by immunoblotting for
PSD95, which was enriched in PSD fraction, and
synaptophysin which was enriched in non-PSD fraction (see
Fig. 3a). All buffers were supplemented with protease and
phosphatase inhibitor cocktails. Protein concentrations were
determined using the BCA protein assay.

Immunoblot Preparation and Analysis

Tissue lysates prepared from adult Sprague-Dawley rats were
generated by homogenization and sonication in RIPA buffer
(50 mM Tris-HCl, pH 7.4, 50 mM NaCl, 2 mM MgCl2, 1%
[vol/vol] NP40, 0.5% [mass/vol] sodium deoxycholate, 0.1%
[mass/vol] SDS) as described previously [13]. Protease inhib-
itors (Cat# B14002; Bimake, Houston, TX), phosphatase in-
hibitors (Cat# B15002, Bimake), and benzonase (Cat#71206,
Millipore, Billerica, MA). Protein concentrations were deter-
mined using the BCA protein assay (Cat# PI23225, Thermo
Fisher Scientific, Waltham, MA). Indicated samples were
loaded on 4–20% Novex® gels (Cat# EC60285BOX,
Thermo Fisher Scientific,Waltham,MA). Proteins were trans-
ferred for 1 h at 120 V using TGS (25 mM Tris pH = 8.5,
192 mM glycine, 0.1% (mass/vol) SDS), 20% (vol/vol) meth-
anol as transfer buffer to polyvinylidene difluoride (PVDF)
membranes 0.45 μm (Cat# IPVH00010, Millipore, Billerica,
MA), pre-activated in pure methanol. After transfer, the mem-
branes were blocked at room temperature for 1 h with TBST
(50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 0.1% Tween 20),
5% (mass/vol) non-fat dry milk, then incubated separately
with the indicated primary antibodies (Table 1) in TBST, 5%
(mass/vol) BSA, overnight at 4 °C. Following incubation in
horseradish peroxidase-conjugated secondary antibodies from
Jackson immunoresearch, blots were revealed by enhanced
luminescence (WBKLS0500, Millipore, Billerica, MA) be-
fore exposure to photographic film. Films were scanned, dig-
itized, and quantified using Un-Scan-It gel version 6.1 scan-
ning software by Silk Scientific Inc. For all experiments,
CRMP2 phosphorylation levels were always normalized to
total CRMP2 levels in the same sample.

Statistics

Statistical analyses were performed using GraphPad Prism 7
(GraphPad, La Jolla, CA). Data were sourced from a mini-
mum of three independent biological replicates unless indicat-
ed otherwise. All data represent the mean ± S.E.M. All data
was first tested for a Gaussian distribution using a D’agostino-
Pearson test (GraphPad Prism 7 Software). The statistical sig-
nificance of differences between means was determined by
either parametric or non-parametric Student’s t test, analysis

of variance (ANOVA) followed by post hoc comparisons
(Tukey) using Prism 7. Statistical significance was set at α
< 0.05.

Results

CRMP2 Phosphorylation Status Controls
Depolarization-Evoked Calcium Influx

CRMP2 expression levels and phosphorylation by Cdk5 alter
depolarization-evoked calcium influx and calcium currents in
cortical neurons [11, 34]. As a first step to study the function
of CRMP2 in spinal synaptic transmission from DRG sensory
neurons, we explored how CRMP2 post-translational modifi-
cations could regulate the function of sensory neuronal
voltage-gated calcium channels. DRG neurons were
transfected with plasmids expressing wildtype CRMP2 with
a dsRed tag (to detect the transfected neurons with red fluo-
rescence, Fig. 1a) or CRMP2 harboring inactivatingmutations
(change of the phosphorylated amino acid to an alanine) of
known CRMP2 phosphorylation sites [36]. N-type (CaV2.2)
channels have been reported to account for ~ 30–50% of the
total calcium current given that there is considerable hetero-
geneity of the neuronal population comprising the DRG [50,
51]. The transfected DRGs were challenged with 90 mMKCl
(a concentration known to activate mostly CaV2.x channels
[52]) and measured the evoked calcium influx in the
transfected neurons (Fig. 1a). Expressing wildtype CRMP2
in DRG neurons did not affect depolarization-evoked calcium
influx (peak or area under the curve, AUC) compared to
dsRed- t r ans fec t ed con t ro l s DRGs (F ig . 1b–d) .
Depolarization-evoked calcium influx was also unaffected in
DRGs expressing CRMP2 mutations of the Fyn (Y32F) or
Rho (T555A) kinase sites but expressing a CRMP2 deficient
for the Cdk5 (S522A) kinase site resulted in decreased evoked
calcium influx (Fig. 1b–d). To confirm that this phosphoryla-
tion site was important for CRMP2 regulation of
depolarization-evoked calcium influx, we used CRMP2 mu-
tations that mimic the presence of a phosphorylated residue
(mutation from serine/threonine to an aspartate). With the
phosphomimetic CRMP2 mutants, we observed that the
depolarization-evoked calcium influx in DRGs expressing
S522D (Cdk5) CRMP2 mutant was statistically similar to
control DRGs, whereas DRGs expressing the T555D
(RhoK) CRMP2 mutant exhibited decreased depolarization-
evoked calcium influx compared to control DRGs (Fig. 1e–g).
Finally, we also tested the effect of the loss of CRMP2
SUMOylation on depolarization-evoked calcium influx and
found that preventing CRMP2 SUMOylation (K374A) had
no effect (Fig. 1e–g).

CRMP2 controls calcium influx by regulating CaV2.2
function [11, 12]. So, we next tested whether the inhibition
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of calcium influx observed with the CRMP2 mutants S522A
and T555D was due to CaV2.2 loss of function. Using ω-
conotoxin GVIA to block all CaV2.2 channels [53], we asked
if CRMP2 mutat ions could fur ther decrease the
depolarization-evoked calcium influx. Treatment with
500 nM ω-conotoxin GVIA efficiently inhibited calcium in-
flux in DRG neurons (Fig. 1h–j). Expressing CRMP2 muta-
tions did not result in further inhibition of the KCl-evoked
calcium influx (Fig. 1h–j). This suggests that the inhibition
of the calcium influx observed with the CRMP2 mutants
S522A and T555D (Fig. 1a–g) is entirely due to inhibition
of CaV2.2. These results highlight two phosphorylation sites
on CRMP2 that are important for depolarization-evoked cal-
cium influx. However, CRMP2 phosphorylation by RhoK
was not detected in rat dorsal horn of the spinal cord [36]
and is therefore unlikely to participate in spinal

neurotransmission. Cdk5 phosphorylation is a priming event
for subsequent GSK3βmediated phosphorylation of CRMP2
[27]. Thus, we hypothesized that CRMP2 phosphorylation by
Cdk5 und e r l i e s CRMP2 ’s f u n c t i o n i n s p i n a l
neurotransmission.

Phosphorylation of CRMP2 Changes the Frequency
of Spontaneous Excitatory Postsynaptic Currentin
Lumbar Dorsal Horn

To determine whether the function of neurons transfected with
CRMP2 and its phosphorylation by Cdk5 are changed, we
performed electrophysiological analyses in whole-cell config-
uration to measure sEPSCs of neurons in the substantia gela-
tinosa (SG) region of the lumbar dorsal horn. We used in vivo
transfection of the plasmids to interrogate the role of CRMP2
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Fig. 1 CRMP2 post-translational modifications affect depolarization-
evoked calcium influx. Dorsal root ganglion neurons were transfected
during plating with a dsRed fused CRMP2 plasmids. a Representative
experiment (dsRed fluorescence and pseudocolored fluorescent images
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expression and phosphorylation by Cdk5 in spinal neurotrans-
mission. At 24 h after in vivo transfection, dsRed fluorescence
could be visualized in the dorsal horn of the spinal cord
(Fig. 2a–c). Only postsynaptic cells adjacent to dsRed fluores-
cence (i.e., presynaptic, white spots in Fig. 2c) were selected
for analysis (Fig. 3a). Inter-event interval and amplitude

cumulative distribution curves for sEPSCs are shown in Fig.
3b, c. We found that both the amplitude and frequency of
sEPSCs were not different between dsRed- (control) and
wildtype-CRMP2-transfected neurons (Fig. 3d, e). In contrast,
overexpression of the CRMP2 S522A mutant resulted in a
decrease in the frequency of sEPSCs compared with dsRed-
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2 days

recording

b c

10 µm50 µm

10 µm 10 µm

Fig. 2 Location of biocytin-filled recorded neurons. a (left)
Photomicrograph of the slice preparation showing that the substantia
gelatinosa (SG) can be identified as a translucent pale band in the super-
ficial dorsal horn (lamina I/II) enabling positioning of the recording elec-
trode to this region. a (middle) Infrared differential interference contrast
image, and a (right) image of the same cell (indicated by a dashed red box

in middle panel) with part of the recording electrode after whole-cell
configuration. b Schematic diagram of the intrathecal (i.th.) transfected
experiment schedule. c Identification of SG neurons (green, biocytin)
recorded and the transduced presynapses (red spots, dsRed) in the trans-
verse spinal cord slices
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or wildtype-CRMP2-transfected cells (Fig. 3d, e). Moreover,
neurons transfected with the constitutively active (i.e.,
phosphomimetic) CRMP2 S522D mutant showed an increase
in the frequency of sEPSCs in comparison with dsRed- or
wildtype-CRMP2-transfected cells (Fig. 3d, e). Collectively,
these data demonstrate that dephosphorylated CRMP2 sup-
presses, while phosphorylated CRMP2 increases, spinal excit-
atory synaptic transmission.

CRMP2 Phosphorylation by Cdk5 Impacts
the Presynaptic Localization of Voltage-Gated Ion
Channels

The findings that CRMP2 phosphorylation by Cdk5 regulates
the frequency but not the amplitude of spinal sEPSCs suggest
a presynaptic origin of CRMP2’s effect on spinal neurotrans-
mission. Along these lines, it is well known that frequency of
sEPSC is governed by DRG neuron action potential firing
which is dependent on voltage-gated Na+ channels function
and on neurotransmitter release which is dependent on
voltage-gated calcium channel activation. We previously
demonstrated that CRMP2 can regulate the membrane local-
ization and function of two voltage-gated ion channels impor-
tant in nociceptive signaling, CaV2.2 and NaV1.7 [12, 20,
22]. Thus, here we asked if inhibiting CRMP2 phosphoryla-
tion affects its presynaptic provenance and causes a resulting
change in localization of CaV2.2 and NaV1.7. We have been
characterizing a small molecule (S)-LCM as a specific antag-
onist of CRMP2 phosphorylation (S522). (S)-LCM does not
affect slow inactivation of the sodium channels, thus differen-
tiating from its (R) enantiomer, sold clinically as Vimpat ®
[54]. We first extracted synaptosomes from the dorsal horn of
the spinal cord of rats 1 h after injection with (S)-LCM (20 μg
in 5 μL, i.th.) and isolated pre- and postsynaptic fractions
(Fig. 4a). Synaptosomes had higher levels of the marker

synaptophysin while the PSDwas enriched in the prototypical
protein postsynaptic density 95 (PSD95) (Fig. 4a). We next
focused on the presynaptic fraction because CRMP2 expres-
sion is mostly presynaptic in the dorsal horn of the spinal cord
[36]. By western blot analysis, we found that (S)-LCM de-
creased the level of CRMP2 phosphorylation in the presynap-
tic fraction (Fig. 4b, c). Notably, there was a concomitant
decrease in the levels of CaV2.2 and NaV1.7 in the presynap-
tic fraction (Fig. 4b, c). These results demonstrate that
CRMP2 phosphorylation by Cdk5 controls the presynaptic
localization of both CaV2.2 and Nav1.7 in the dorsal horn
of the spinal cord.

(S)-LCM Decreased the Frequency of Spontaneous,
but Not Miniature, Excitatory Postsynaptic Current
in Lumbar Dorsal Horn

So far, our results have established that pharmacological an-
tagonism of Cdk5-mediated CRMP2 phosphorylation can
control the presynaptic localization of key nociceptive ion
channels. Whether this antagonism has a presynaptic or post-
synaptic effect is not known. Therefore, we recorded, in the
whole-cell configuration, sEPSCs and mEPSCs of neurons in
the SG region of lumbar dorsal horn. No change was observed
in the amplitude of both sEPSCs (Fig. 5a–c) and mEPSCs
(Fig. 5f–h) between slices treated with 10 μM (S)-
Lacosamide versus control. There was no change in the fre-
quency of mEPSCs (Fig. 5i, j), sIPSC or mIPSC (data not
shown); however, the frequency of sEPSCs was significantly
decreased with perfusion of 10 μM (S)-lacosamide (1.96 ±
0.21 vs 1.26 ± 0.17 Hz, P < 0.01, vs control) (Fig. 5d, e).
These observations indicate that CRMP2 is involved in gluta-
matergic transmission in the spinal cord and are suggestive of
presynaptic suppression of (S)-LCM in lumbar dorsal horn
glutamatergic transmission.
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(S)-LCM Increased the Paired-Pulse Ratio of Excitatory
Postsynaptic Current in Lumbar Dorsal Horn

To determine whether (S)-LCM alters glutamate release, we
measured paired-pulse ratios (PPRs) of eEPSCs in SG neu-
rons in response to two consecutive stimulations (with a 50-
ms interval). PPR is a measure related to synaptic neurotrans-
mitter release that is commonly used to assess changes in
presynaptic function [55, 56]. At excitatory synapses, the sec-
ond stimulation generates a larger eEPSC than the first, be-
cause of high residual calcium concentrations in the neuron
induced by the first stimulation (Fig. 6a). PPRs were increased
by perfusion with (S)-LCM compared with control slices (Fig.
6a, b). From this data, we infer that (S)-LCM modulates

glutamatergic transmission by a presynaptic mechanism.
Notably, (S)-LCM also decreased the first eEPSC amplitude,
further corroborating its role on of calcium channels by mod-
ulating CRMP2 phosphorylation.

CRMP2 Phosphorylation Regulates Nociceptive
Neurotransmitter Release from Spinal Cord

Presynaptic CGRP release from sensory neurons is a known
mediator of pro-nociceptive neuronal signaling [57–59].
Therefore, we tested if the decrease sEPSC frequency caused
by (S)-LCM could in turn inhibit depolarization-evoked
CGRP release from rat spinal cord. To test this, we used an
ex vivo method for evoked CGRP release from the lumbar
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region of the rat spinal cord. An enzyme-linked immunosor-
bent assay (ELISA) was used to measure CGRP content; sam-
ples were collected every 10 min. Basal CGRP levels were
0.64 ± 0.13 pg/mL/mg of tissue (Fig. 7, fractions #1 and #2).
Vehicle (0.1% DMSO) or a 10 μM concentration of (S)-LCM
was added (Fig. 7, fraction #3) 10 min prior to stimulation
with 90 mM KCl (Fig. 7, fraction #4). Treatment with (S)-
LCM did not elicit any CGRP release from the spinal cords
(Fig. 7, fraction #3). Under depolarization, treatment with (S)-
lacosamide resulted in a ~ 56% decrease (CGRP level for
vehicle was 10.26 ± 0.71 and for (S)-LCM 4.47 ± 0.54 pg/
mL/mg of tissue) of the depolarization-evoked increase in
CGRP release seen in vehicle-treated tissue (Fig. 7, fraction
#4). These results show that inhibiting CRMP2 phosphoryla-
t ion by Cdk5 with (S)-LCM results in decreased
depolarization-evoked CGRP release.

CRMP2 Phosphorylation Controls Nociceptive Ion
Channels Presynaptic Localization in Neuropathic
Pain

Thus far, the results show that CRMP2 phosphorylation on
S522 controls depolarization-evoked calcium influx and
sEPSC frequency through a presynaptic mechanism. We pre-
viously reported that in a model of neuropathic pain—spared
nerve injury (SNI) [60]—, CRMP2 phosphorylation level on
S522 is increased [36]. Inhibiting CRMP2 phosphorylation
in vivo using (S)-LCM reversed allodynia in rats with SNI
[39]. Thus, we asked if this (S)-LCM mediated inhibition of
sEPSC, neurotransmitter release and allodynia could be relat-
ed to decreased presynaptic localization of the nociceptive ion
channels CaV2.2 and NaV1.7. Adult rats were injured follow-
ing the SNI protocol and the development of allodynia veri-
fied 10 days after the surgery (data not shown). These animals
were injected with (S)-LCM (20 μg in 5 μL, i.th.) and spinal
cords were harvested 1 h later to isolate pre- and postsynaptic
fractions as described before (Fig. 4). By western blot analy-
sis, we measured the presynaptic levels of CRMP2, CRMP2
pS522, CaV2.2, and NaV1.7 in contralateral (non-injured)
compared to ipsilateral (injured) sides from the same animal,
treated as indicated with (S)-LCM (Fig. 8). In accordance with
previous findings [36, 61], presynaptic CRMP2 phosphoryla-
tion and CaV2.2 levels were increased in the ipsilateral side in
SNI. We found that (S)-LCM decreased presynaptic CRMP2
phosphorylation levels in both the contra- and ipsilateral sides
of SNI rats (Fig. 8). This was accompanied by a concomitant
decrease of CaV2.2 and NaV1.7 presynaptic levels in both the
contra- and ipsilateral sides of the SNI (Fig. 8). To control if
this decreased presynaptic localization for CaV2.2 and
NaV1.7 could be a consequence of decreased synaptic activity
induced by (S)-LCM (Fig. 5), we tested if presynaptic locali-
zation of the R-type voltage-gated calcium (CaV2.3) channel
or cannabinoid receptor 1 (CB1R) was also be altered by (S)-
LCM. We did not observe any difference in presynaptic con-
tent for CaV2.3 and CB1R after treatment with (S)-LCM (Fig.
8). To confirm that these effects were presynaptic, we exam-
ined if the DRG expression levels of CRMP2, CaV2.2, or
NaV1.7 could be altered by (S)-LCM. We did not detect any
changes (Supplementary Fig. 1). These results show that
CRMP2 phosphorylation level controls the presynaptic levels
of the nociceptive ion channels CaV2.2 and NaV1.7.

Discussion

The results reported here establish a role CRMP2 in regulating
central synaptic transmission to substantia gelatinosa neu-
rons. We found that, of several CRMP2 post-translational
modifications including SUMOylation and phosphorylation,
depolarization-evoked calcium influx in sensory neurons was

*Control

10 µM (S)-LCM

iC
G

R
P

 (
p

g
.m

l-
1
.m

g
-
1
)

1 2 3 4 5

Fraction # (10 min intervals)

1- Baseline 1

2- Baseline 2

3- Treatment

4- Treatment + 90 mM KCl

5- Wash 1

0

5

10

-56 %

Fig. 7 CGRP release from spinal cord is inhibited by (S)-lacosamide.
KCl depolarization-evoked CGRP release was measured from spinal cord
tissue isolated from naïve adult rats as a result of pre- and co-incubation
with 0.1% DMSO or a 10 μM concentration of (S)-lacosamide as indi-
cated. Bar graph shows immunoreactive CGRP levels observed in bath
solution normalized to the weight of each spinal cord tissue. Statistical
significance is indicated by asterisks for fraction 4 (*p < 0.05; two-way
ANOVA post hoc Sidak test, n = 6) in comparison with control tissue

0.0

0.5

1.0

1.5

2.0

2.5

3.0

P
a
ir
e
d
-
p
u
ls

e
 r

a
ti
o *

40pA

10ms

ba
Control

(S)-Lacosamide

Fig. 6 Paired-pulse ratio is increased by pharmacological antagonism of
CRMP2 phosphorylation by (S)-lacosamide. a, b Paired-pulse ratios of
eEPSCs are shown. (S)-LCM increased the PPR in SG neurons. Example
traces show the relative change in the second eEPSC before (black trace)
and during perfusion of drug (red trace). PPR was calculated by dividing
the second pulse by the first (PSC2/PSC1). Data are expressed as means ±
SEM. *p < 0.05 (versus control (0.1% DMSO) group); unpaired t test
with Welch’s correction

5250 Mol Neurobiol (2019) 56:5241–5255



contingent on CRMP2 modification by Cdk5 at Serine 522.
As a consequence, Cdk5-phosphorylated CRMP2 had a facil-
itatory effect on the frequency of sEPSCs in dorsal horn neu-
rons, implicating a presynaptic role for CRMP2 in spinal neu-
rotransmission. Pharmacological antagonism with a CRMP2
phosphorylation inhibitor ((S)-LCM) decreased CRMP2
phosphorylation, and consequently, lowered the presynaptic
localization of CaV2.2 and NaV1.7, two ion channels with
strong links to nociceptive signaling. (S)-LCM also decreased
the frequency of sEPSCs as well as spinal glutamatergic neu-
rotransmission. Finally, we found that decreasing CRMP2
phosphorylation inhibited depolarization-evoked CGRP re-
lease in spinal cord. Increased CRMP2 phosphorylation in rats
with SNI was decreased by intrathecal administration of (S)-
LCM resulting in a loss of presynaptic localization of CaV2.2
and NaV1.7, thus linking CRMP2 phosphorylation to conver-
gent regulation of nociceptive ion channels. Taken together,
our findings highlight a novel role for phosphorylated
CRMP2 in regulating presynaptic excitatory neurotransmis-
sion in the spinal cord.

While there is extensive literature on how phosphorylation
of CRMP2 controls its canonical functions of neurite
outgrowth/branching (see review by Khanna [17] and Ip
[62]), how post-translational modifications of CRMP2 control
ion channel trafficking are only now beginning to be under-
stood [10, 11, 20, 22, 23, 25, 34, 63]. While our recent work
has focused on Cdk5, a Bpriming^ kinase in the context of
CRMP2 [22, 34, 36, 46, 64], the current work suggests that
RhoK phosphorylation site may also be important in shaping
calcium influx. The decrease in calcium influx observed in the
presence of a CRMP2 mutated at its RhoK site may be linked
to kainate receptor activation [65]. As reported by Marques
and colleagues, Kainate (KA) receptors delay neuronal

maturation by downregulating the density of calcium channels
at the neuronal membrane through the phosphorylation of
CRMP2 at T555, thereby reducing overall calcium activity
[65]. While CRMP2 phosphorylation on T555 was not detect-
ed in the dorsal horn of the spinal cord and was not changed in
neuropathic pain [36], this phosphorylation site is also known
to participate in axonal degeneration observed in multiple
sclerosis [66]. This suggests that CaV2.2 could be inhibited
by increased CRMP2 phosphorylation on T555 in multiple
s c l e r o s i s a n d cou l d impa i r s p i n a l e x c i t a t o r y
neurotransmission.

Our data also provide new insights into the regulation of
CaV2.2 and NaV1.7 by CRMP2 in primary sensory neurons.
We previously reported that CRMP2 phosphorylation by
Cdk5 and SUMOylation are required for NaV1.7 function
while CRMP2 phosphorylation by the Src family kinase Fyn
(at Y32) inhibits NaV1.7 [22]. The results here show that
CRMP2 phosphorylation on S522 is required for CaV2.2
function and CRMP2 phosphorylation on T555 inhibits
CaV2 .2 . CRMP2 phospho ry l a t i on on Y32 and
SUMOylation (on K374) had no effect on CaV2.2 function
thus showing that these modifications have an exclusive func-
tion in regulating NaV1.7. Conversely, the phosphorylation of
CRMP2 on T555 has an exclusive regulatory function for
CaV2.2. Thus, while CRMP2 is important for the physiolog-
ical and pathological function of both channels, differential
manipulation of CRMP2’s post-translational modification
state may offer a selective advantage in targeting neuronal
NaV1.7 versus CaV2.2 channels and how they affect spinal
neurotransmission and nociceptive plasticity. While a de-
crease in presynaptic Cav2.2 may underlie the (S)-LCM phe-
notype, our data shows that decreasing presynaptic NaV1.7 is
also of relevance here. CaV2.2’s role in neurotransmission is
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to trigger the release of synaptic vesicles but its activation
relies on a prior depolarization event, triggered by opening
of voltage-gated sodium channels, particularly NaV1.7 in
lamina I/II of the dorsal horn of the spinal cord. Along with
CaV2.2, NaV1.7 is another major determinant of synaptic
transmission that happens to be regulated by CRMP2 phos-
phorylation on the S522 site. Because (S)-LCM targets both
channels via convergent regulation of CRMP2, we cannot not
exclude the possibility of a concomitant decrease in the pre-
synaptic localization of NaV1.7 as contributing to the effect of
(S)-LCM.

Central terminals of primary afferent fibers terminate in
thedorsal hornof spinal cord andmost nociceptiveAδ andC-
fibers terminate superficially in laminae I−II, with a smaller
number reaching the deeper laminae [4]. As a result, the spi-
nal cord is a crucial site for integration of sensory transmis-
sion, and it is here that the incoming nociceptive signals un-
dergo convergence and modulation. It is also known that the
majority of the primary afferents synapsing onto the dorsal
horn of the spinal cord, regardless of their diameters, utilize
glutamate as the excitatory neurotransmitter [67].Moreover,
as alluded to earlier, spinal presynaptic neurotransmission
relies onDRGneuron action potential firing,which is depen-
dent on voltage-gated Na+ channels function as well as on
neurotransmitter release which is dependent on voltage-
gated calcium channel activation. Although we cannot ex-
clude possible contribution from calcium-induced calcium
release from intracellular stores as inwardly rectifying Ca2+-
dependent I (CRAC) (Ca2+-release activated current),
representing store-operated calcium entry (SOCE),
that exist in sensory neurons and have been linked to injury
and neuronal excitability [68]. We further investigated
whether CRMP2 phosphorylation in primary afferent senso-
ry neurons could affect the spinal synaptic neurotransmis-
sion. The phosphomimetic CRMP2 (S522D) mutant did
not exhibit increased depolarization-mediated calcium entry
despite an increase in frequency of sEPSCs. A possible ex-
planation for this discrepancy may be the dependence on
synaptic activity for pathological function of CRMP2 phos-
phorylation. Synaptic activity decreases CRMP2 phosphor-
ylation and its interaction with CaV2.2 [11, 69]; thus, a lack
of synaptic activity in culture conditions might mask an ef-
fect on increased calcium influx when CRMP2 phosphory-
lation is forced (as in the S522D mutant); in other words,
CRMP2 phosphorylation may already be at its maximum.
Our data showed that preventing CRMP2 phosphorylation
on S522 resulted in a decrease, while increasing CRMP2
phosphorylation at S522 increased the frequency of
sEPSCs. These observations point to a regulatory function
of phosphorylated CRMP2 in altering glutamatergic trans-
mission. In line with this argument, pharmacological antag-
onism, with (S)-LCM, of CRMP2 phosphorylation by Cdk5
also decreased the frequency of sEPSCs.

Recently, Zhang and colleagues reported that both dephos-
phorylation of CRMP2 at T514 and deSUMOylation at K374
enhanced amplitude and frequency of mEPSCs in hippocam-
pal neurons, thereby promoting formation and maturation of
dendritic spines [70]. Here, our data provide new insight into
the regulation of central spinal synaptic neurotransmission by
CRMP2 in primary sensory neurons. Dephosphorylation of
CRMP2 at S522 decreased the frequency, but not the ampli-
tude, of sEPSCs, highlighting a presynaptic effect of CRMP2,
which may rely on the modulation of trafficking/localization
of CaV2.2 and NaV1.7 by CRMP2 in primary sensory neu-
rons. No change of the amplitude and frequency of mEPSCs is
consistent with an action potential-dependent inhibition,
which also relies on trafficking/localization of CaV2.2 and
NaV1.7, with dephosphorylation of CRMP2 at S522 on cen-
tral spinal presynaptic neurotransmission, rather than on basal
vesicle quantal release. These findings are also in line with a
recent report demonstrating that CaV2.2 enables voltage-
dependent neurotransmitter secretion [71]. Several factors
can account for reduced presynaptic neurotransmitter release,
including but not limited to vesicle depletion, inactivation of
release sites, and decreased presynaptic calcium influx [72].
The PPR protocol measures the short-term plasticity charac-
teristics of neurons, and is a widely used approach for
assessing the synaptic sites of drug action [73]. Because the
PPR is inversely related to synaptic neurotransmitter release
probability, our results indicate that (S)-LCM can, at least in
part, decrease presynaptic glutamate release. Moreover, we
observed a significant depression of the first EPSC in the
presence of (S)-LCM in all neurons tested (data not shown),
accompanied by a significant increase of PPR in the respon-
sive neurons, suggesting that the CRMP2 dephosphorylation
also causes a decrease in release probability at the first re-
sponse, which may be related to the effects of CRMP2 on
presynaptic CaV2.2 trafficking.

CGRP is found mainly in small DRG cells and unmyelin-
ated axons (C-fibers) but also in some medium-sized and a
few large DRG cells and in myelinated axons of Aδ- and even
Aβ-fibers. CGRP also coexists with glutamate in primary af-
ferent terminals [74]. Moreover, CGRP has long been served
as a molecular marker of peptidergic nociceptive neurons and
expected to play an important role in pathophysiological no-
ciceptive pain [75]. Our data showed that dephosphorylation
of CRMP2 by (S)-LCM inhibited depolarization-evoked
CGRP release in spinal cord, suggesting the analgesic modu-
lation of CRMP2 phosphorylation.

Conclusion

We conclude that gain of CRMP2 phosphorylation in neuro-
pathic pain increases sEPSC frequency dependent on CaV2.2
and NaV1.7. This facilitates excitatory neurotransmitter
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release and could underlie allodynia. This suggests that
CRMP2 phosphorylation is an important event regulating
pathological pain through the sensitization of nociceptive af-
ferents. (S)-LCM can be used to further study CRMP2 func-
tions but designing novel targeting strategies to inhibit
CRMP2 phosphorylation by Cdk5 will have great potential
for the treatment of chronic neuropathic pain.
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