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Abstract
Ferroptosis is a recently identified, iron-regulated, non-apoptotic form of cell death. It is characterized by cellular accumulation of
lipid reactive oxygen species that ultimately leads to oxidative stress and cell death. Although first identified in cancer cells,
ferroptosis has been shown to have significant implications in several neurologic diseases, such as ischemic and hemorrhagic
stroke, Alzheimer’s disease, and Parkinson’s disease. This review summarizes current research on ferroptosis, its underlying
mechanisms, and its role in the progression of different neurologic diseases. Understanding the role of ferroptosis could provide
valuable information regarding treatment and prevention of these devastating diseases.
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Introduction

Ferroptosis, first described byDixon et al. in 2012, is a form of
cell death characterized by accumulation of intracellular iron
[1]. It is defined by depletion of plasmamembrane unsaturated
fatty acids and accumulation of iron-induced lipid reactive
oxygen species (ROS) [2]. The over-accumulation of lipid
ROS leads to an oxidative stress response in cells that causes
lethal damage to proteins, nucleic acids, and lipids [3] and
eventually to cell death. Thus, ferroptosis requires the coinci-
dent depletion of glutathione (GSH) or inactivation of
glutathione-dependent antioxidant enzyme glutathione perox-
idase 4 (GPX4) and the incorporation of oxidizable polyun-
saturated fatty acids into phospholipids [4].

Ferroptosis differs from apoptosis, necrosis, and autophagy
morphologically, biochemically, and genetically [1]. Under

electron microscopy, ferroptotic cells exhibit shrunken mito-
chondria, whereas mitochondria are usually swollen in other
forms of cell death [1]. Initially, Dixon et al. identified a dis-
tinct set of genes that regulate the ferroptotic mechanism, in-
cluding ribosomal protein L8 (RPL8), iron response element
binding protein 2 (IREB2), and ATP synthase F0 complex
subunit C3 (ATP5G3) [1]. Later studies showed that numerous
genes/proteins participate in this unique cell death process,
including cyclooxygenase-2 (PTGS2) [5], p53 [6], nuclear
factor E2-related factor 2 (Nrf2) [7], PEBP1 [8], and more.
In addition to those key regulators, ferroptosis can be induced
by excessive glutamate, intracellular iron accumulation, or
treatment with small molecules—for example, erastin,
RSL3, and others listed in Table 1. The first ferroptosis-
inducing compounds, erastin (which inhibits system xc

−, the
glutamate/cystine antiporter) and Ras selective lethal 3
(RSL3, which directly inhibits GPX4), were discovered sev-
eral years before identification of the ferroptosis concept [65,
66]. Stockwell’s group was surprised to find that cells treated
with thosecompoundswereneither apoptoticnornecroptotic
[1, 57, 65, 66], and that cell death could be inhibited by lipo-
philic antioxidants (α-tocopherol, butylated hydroxytolu-
ene, and β-carotene), indicating that lipoxygenase activity
and lipophilic ROS were involved in this cell death process
[61, 67, 68].

Known inducers of ferroptosis can be divided into several
categories: system xc

− inhibitors (glutamate, erastin,
sulfasalazine, and sorafenib), GSH depletion compounds
(buthioninesulfoximine and acetaminophen), and GPX4 di-
rect inhibitors (RSL3 and FIN56) [1, 68, 69]. Additionally,
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several molecules have been identified as inhibitors of
ferroptosis, including ferrostatin-1 (Fer-1, which inhibits
lipid ROS) [1], deferoxamine (DFO, which chelates iron)
[1], zileuton (which inhibits 5-lipoxygenase) [53], and recent-
ly identified FINO2 (which oxidizes iron) [70], depending on
the mechanism of ferroptosis. In this review, we focus on
ferroptosis in different brain diseases and summarize the pri-
mary inducers, regulators, and inhibitors of ferroptosis-
associated brain disorders, as shown in Table 1.

Ferroptosis has been identified in various cancer cells, in-
cluding breast [71], lung [1], lymphoma [72], kidney [73], and
brain [10]. Strikingly, the inducers of ferroptosis have been
shown to target and kill cancerous cells [74]. In 2015, Jiang
et al. reported that ferroptosis also contributes to embryo de-
velopment and that p53 plays a vital role in ferroptosis regu-
lation [6]. More importantly, research in organotypic hippo-
campal slice cultures has shown that ferroptosis also contrib-
utes to neuronal death [1]. Indeed, we and others have shown a
connection between ferroptosis and neurodegeneration in ex-
perimental intracerebral hemorrhage [35, 75], Parkinson’s dis-
ease [15], and periventricular leukomalacia [18]. In this arti-
cle, we will systematically review the role of ferroptosis in
different brain diseases, discuss our current understanding of
the underlying mechanism, and describe the possible thera-
peutic strategies (Figs. 1 and 2).

Ferroptosis in Stroke

Stroke ranks number 5 among all causes of death, behind
diseases of the heart, cancer, chronic lower respiratory disease,
and unintentional injuries/accidents [76]. Each year, approxi-
mately 795,000 people experience a new or recurrent stroke,
87% of which are ischemic strokes [76]. An ischemic stroke
occurs when the blood supply to certain parts of the brain is
restricted secondary to occlusion of the internal carotid, mid-
dle cerebral, or vertebral/basilar arteries [77]. The resulting
depletion of oxygen and nutrients may cause cells to activate
the ischemic cascade, which results in oxidative stress, mito-
chondrial impairment, and, ultimately, cell death [78]. Before
ferroptosis was identified, it was already known that iron ac-
cumulation exaggerates neuronal damage during reperfusion
both clinically and in animal models of ischemic stroke
[79–85]. It had been shown that iron chelation reduces reper-
fusion damage in animals after an ischemic event [86–89]. In
2013, Speer et al. hypothesized that ferroptosis might contrib-
ute to neuronal death induced by cerebral ischemia and that
hypoxia-inducible factor (HIF) prolyl hydroxylases might
serve as a target for the beneficial effects of metal chelators
[90]. They further postulated that the beneficial effects of iron
chelators in preventing ferroptosis were due to inhibition of 2-
oxoglutarate, oxygen-dependent dioxygenases, and the HIF
prolyl hydroxylases, but not to direct inhibition of Fenton
chemistry or ROS formation [90]. Then, in 2017, a study

showed that ferroptosis inhibition protected mice against
ischemia-reperfusion injury in a middle cerebral artery occlu-
sion (MCAO) model, indicating that ferroptosis contributes to
neuronal death after ischemic stroke [34]. Interestingly, the
authors found that tau knockout mice were protected from
ferroptotic cell death after ischemia-reperfusion injury and
introduced the tau–iron interaction as a pleiotropic modulator
of ferroptosis and ischemic stroke outcome [34].

Intracerebral hemorrhage (ICH) accounts for 10–30% of
all stroke cases and is associated with higher rates of mortal-
ity and morbidity than is ischemic stroke [76, 91]. Until re-
cently, apoptosis, necrosis, and autophagy were thought to be
the only contributors to neuronal death after ICH [92–97].
However, solid data have shown the presence of neuronal
ferroptosis after ICH in vitro and in vivo [35, 50, 98]. In
2014, we found that (−)-epicatechin, a brain-permeable
flavanol, reduced early brain injury after ICH, in part by
decreasing brain iron deposition and ferroptosis-related gene
expression [75]. In 2017, we found that Fer-1 prevented
hemoglobin-induced neuronal death and reduced GPX4 ac-
tivity deficiency in brain slice cultures, and it rescued
ferroptotic neurons and reduced cyclooxygenase-2 (Cox-2)
expression in collagenase- and blood injection-induced ICH
mouse models [35]. In addition, using transmission electron
microscopy, we showed that ferroptosis co-exists with necro-
sis and autophagy in vivo and that using a combination of
inhibitors to target these different forms of cell death rescued
neurons from hemoglobin-induced toxicity better than any
inhibitor alone [35, 98]. At the same time, Zille et al. found
that a number of ferroptosis inhibitors, including Fer-1, DFO,
N-acetylcysteine (which inhibits ROS and reactive lipid spe-
cies), and Trolox (a vitamin E analog that targets reactive
lipid species), were able to rescue mouse primary cortical
neurons from hemin- and hemoglobin-induced death
in vitro [50]. Additionally, they found that elevated
phospho-ERK1/2 levels were associated with enhanced neu-
ronal ferroptosis and that U0126, an MEK inhibitor, inhibited
this cell death mechanism [50]. Notably, in erastin- or amino
acid starvation-induced ferroptosis in cancer cells, the more
selective and potent MEK inhibitor PD0325901 failed to
block cell death [99]. The authors claimed that U0126 had
off-target effects and that the MEK-ERK1/2 signaling path-
way was not involved in the ferroptotic mechanism [99].
Interestingly, Zille et al. found that necroptosis inhibitor
necrostatin-1 also reduced hemin-induced cell death and that
the treated cells exhibited a necrotic phenotype with loss of
plasma membrane integrity and disintegration of organelles
in vitro, indicating that ferroptosis may be an early stage of
necrosis [50]. Recently, Zhang et al. showed that GPX4 ex-
pression level was dramatically reduced during the acute
phase of ICH and that increasing GPX4 level was able to
rescue neurons from secondary ferroptotic death and improve
ICH outcomes in rats [100].
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Ferroptosis in Parkinson’s Disease

Parkinson’s disease (PD) is typified by death of neurons in the
substantia nigra pars compacta (SNpc), which regulates motor
function. PD causes rigidity, tremor, and other motor symp-
toms [101, 102]. Apoptosis is known to be a major contributor
to cell death during the progression of the disease [103].
Evidence also has shown that iron and dopamine levels in
the SNpc are elevated in patients with PD [104–106].
Notably, GSH depletion, lipid peroxidation, and elevated
ROS levels, which are commonly observed in patients with
PD, are also features of ferroptosis [107–109]. Consistent with
these findings, Ayton et al. reported that mice with a genetic
deletion for ceruloplasmin (an iron-export ferroxidase) devel-
oped parkinsonism that was rescued by iron chelation [110].
Additionally, iron chelators have been shown to improve

motor symptoms in animal models [106, 110–112] and in a
clinical trial [46].

Recently, ferroptosis has also been linked to PD [15].
Researchers found that ferroptosis is a key cell death pathway
for dopaminergic neurons and that Fer-1 administration reduces
neuronal death in vitro (SH-SY5Y cell line and differentiated
Lund human mesencephalic [LUHMES] cells), ex vivo
(organotypic slice cultures), and in vivo (1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine [MPTP] mouse model) [10, 15].
Importantly, Do Van et al. claimed that ferroptosis induced by
erastin in LUHMES cells was initiated by activation of MEK in
a RAS-independent manner [15]. This mechanism differed from
findings in other cell lines, in which the calcium chelator
BAPTA and PKC inhibitors (the bisindolylmaleimide analog
Bis-III and siRNA) were very effective at counteracting
erastin-induced cell death [15, 113]. The authors explained that

Fig. 1 Induction and inhibition of ferroptosis. Ferroptosis is induced by
lethal lipid peroxidation in the central nervous system. Dysregulation of
intracellular iron metabolism and/or glutathione peroxidation pathways
leads to accumulation of lipid reactive oxygen species (ROS) and
eventually causes cell death. Various inducers and inhibitors are shown.
Arrows indicate promotion; blunt-ended lines indicate inhibition. ATF4,
activating transcription factor 4; DFO, deferoxamine; FINO2, 1, 2-
dioxolane; FINs, ferroptosis-inducing agents; FtMt, mitochondrial

ferritin; GPX4, glutathione peroxidase 4; GSH, glutathione; HMOX1,
heme oxygenase-1; HpETE, hydroperoxyeicosatetraenoic acid; KEAP1,
Kelch-like ECH-associated protein 1; LOX, lipoxygenase; PE,
phosphatidylethanolamine; PEBP1, phosphatidylethanolamine-binding
protein 1; PUFA, polyunsaturated fatty acid; RSL3, Ras-selective lethal
3; TF, transferrin; TFR, transferrin receptor; VDAC2/3, voltage-
dependent anion channel 2/3; WA, withaferin A

Mol Neurobiol (2019) 56:4880–4893 4883



the distinctive mechanisms were due to the unique metabolic
feature of dopaminergic neurons [15]. A year later, Gouel et al.
found that human platelet lysates protected the LUHMES cell
line from erastin-induced ferroptosis [114]. However, they
found that AKT, but not MEK or RAS, participated in erastin-
induced cell death when they used U0126 and manumycin A to
inhibit MEK and RAS, respectively [114]. These controversial
results [15, 114] in erastin-treated LUHMES cells may stem
from the off-target effect ofMEK inhibitor U0126. Thus, wheth-
er erastin-induced ferroptosis is RAS-dependent needs further
investigation.

On the other hand, some studies have focused on how
astrocytes protect against neuronal ferroptotic cell death.
Astrocytes have a high capacity to store iron and prevent iron
overload in neurons [115]. Astrocytes provide neurons with
glutathione S-transferase Mu 2 and other antioxidants to pro-
tect them from oxidative damage. Therefore, dysregulation of
astrocyte-neuron interactions and inadequate Nrf2 activation
in astrocytes may lead to ferroptosis-like cell death in neurons,
especially dopaminergic neurons [47, 116].

Ferroptosis in Alzheimer’s Disease

Alzheimer’s disease (AD) is caused by the degeneration of
neurons required for learning and memory [16]. Postmortem
analysis of brains from AD patients shows evidence of apo-
ptosis, which is likely responsible for a large amount of the
neurodegeneration [117, 118]. However, new forms of cell

death are now considered to contribute to the neuronal de-
struction of AD because several of the degenerating processes
cannot be explained by apoptosis alone and drugs targeting
apoptosis are largely ineffective [119–122].

Lipid peroxidation and iron dysregulation, which are hall-
marks of ferroptosis, have long been noted in AD brains [123,
124]. In a recent study, mice with specific cerebral cortex and
hippocampal neuronal GPX4 knockout (GPX4 brain inducible
knockout, Gpx4BIKO) exhibited marked cognitive impairment
in a water maze test, as well as degeneration of hippocampal
neurons [16]. The authors suggested that the degenerating neu-
rons might be undergoing ferroptosis because the level of neuro-
degeneration was reduced when the mice were fed a high-
vitamin E diet or administered the ferroptosis inhibitor
liproxstatin-1 [16]. Another study published earlier this year
showed that overexpression and hyperphosphorylation of Tau
induced ferroptotic neuronal death and that α-lipoic acid admin-
istration rescued neurons by downregulating iron transferrin re-
ceptor, decreasing phospho-P38 level, and upregulating xCTand
GPX4 expression [125]. These studies suggest that ferroptosis
can potentially affect neurons important for learning and memo-
ry. As an extension, the findings also indicate that ferroptosismay
play an important role in neuronal death during AD progression.

Ferroptosis in Huntington’s Disease

Huntington’s Disease (HD) is yet another progressive neuro-
degenerative disorder that leads to rapid involuntary

Fig. 2 The role of ferroptosis in
diverse brain diseases. Various
inducers and inhibitors in
different brain diseases are
shown. AD, Alzheimer’s disease;
CoQ10, coenzyme Q10; DFO,
deferoxamine; DPI, diphenylene
iodonium; Fer-1, ferrostatin-1;
Flt3, FMS-like tyrosine kinase-3;
PD, Parkinson’s disease; PI3Kα,
phosphatidylinositol 3-kinase α;
PVL, periventricular
leukomalacia; RSL3, Ras-
selective lethal 3; WA, withaferin
A
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movements and dementia [126]. Oxidative damage [127], lip-
id oxidation [128], iron accumulation [17], dysregulation of
GSH [41], and decreased GPX activity [24] have been noted
in experimental HD animal models and in patients with HD.
Delivery of iron chelators has been shown to improve cogni-
tive function in an HD mouse [17].

To date, only one study has used a cellular model of HD
(overexpression of HD-causing gene, huntingtin [htt] exon 1)
to examine whether ferroptosis inhibitor Fer-1 could prevent
cell death [18]. The data indicated a probable role for
ferroptosis in the progressive neurodegeneration of HD.
In vivo studies are needed to validate the role of ferroptosis
in the progression of HD and its disease-specific pathologic
mechanisms.

Ferroptosis in Periventricular Leukomalacia

Periventricular leukomalacia (PVL) is a form of cerebral white
matter injury that affects premature infants. It is characterized
by the death of developing oligodendrocytes [129]. Several
studies have indicated an important role for iron in oligoden-
drocyte death, and some have found elevated levels of ROS
biomarkers [130–133]. In addition, an abundance of lipid ox-
idation products typical of ferroptosis have been found in the
cerebrospinal fluid of infants with white matter injuries [131].
Another study found that GSH depletion in rat oligodendro-
cytes induced cell death that could be prevented with vitamin
E (known to act as a ferroptosis inhibitor) [134]. All evidence
indicates that ferroptosis may play a role in PVL.

To mimic PVL in vitro, Skouta et al. cultured oligodendro-
cytes in cystine-free medium, which depletes GSH and causes
cell death [18]. Fer-1 and SRS11-92 (15-fold more potent than
the parent Fer-1) fully protected oligodendrocytes from cys-
tine deprivation [18]. These data suggest that ferroptosis is a
likely mechanism oligodendrocyte death in PVL.

Ferroptosis in General Neurotoxicity and Aging

Neurotoxicity is defined by the Environmental Protection
Agency as Ban adverse change in the structure or function of
the central and/or peripheral nervous system following expo-
sure to a chemical, physical, or biological agent^ [135]. In
their initial classification and identification of ferroptosis,
Dixon and colleagues found that using Fer-1 to inhibit
ferroptosis protected rat hippocampal slice cultures from
glutamate-induced neurotoxicity, suggesting a role for lipid
ROS-induced cell death and most likely ferroptosis in neuro-
toxicity [1]. One study from Sanford-Burnham Medical
Research Institute identified two potential ferroptosis inhibi-
tors with distinct molecular mechanisms: the PI3Kα inhibitor
protects neuronal cells by inducing partial restoration of de-
pleted GSH levels and accumulation of intracellular amino
acids, whereas the Flt3 inhibitor prevents lipid peroxidation,

a key mechanism of glutamate-mediated toxicity [51].
Another study showed that inhibition of HIF prolyl hydroxy-
lases prevents oxidative stress-induced ferroptosis in vitro
[90].

Levels of iron have long been known to increase with aging
[136]. Additionally, iron and intra-cell iron retention have
been associated with aging in diverse cell types, including
neurons [137]. During the process of aging, the distribution
of iron molecules changes between neurons and glial cells
[138]. Iron accumulation in aged glial cells has been shown
to damage neurons by increasing proinflammatory cytokines
and establishing neuroinflammation [139, 140]. It has been
reported recently that iron retention in neurons promotes pre-
mature aging via induction of DNA damage [141].
Intracellular iron retention also has been linked to damage in
the epigenome through hypomethylation and transposable el-
ements [142, 143]. The acceleration of aging via DNA dam-
age has recently been named ferrosenescence [137].

Research into senescent cells has revealed an increase in
iron accumulation, but impaired ferritinophagy, a lysosomal
process that promotes ferritin degradation and ferroptosis [36].
Impaired ferritin degradation leads to a phenotype of senes-
cent cells with elevated iron accumulation, whereby iron is
effectively trapped in ferritin, creating a perceived cellular
deficiency [36]. Thus, senescent cells are highly resistant to
ferroptosis [36].

Ferroptosis in Brain Tumors

Ferroptosis was first identified in the non-small cell lung can-
cer cell line HT-1080 [1]. Although research has been con-
ducted in relation to ferroptosis in many forms of cancer, little
work has examined the role of ferroptosis in brain cancers.
Nevertheless, Fer-1 recently was shown to have a neuropro-
tective role in the dopaminergic neuroblastoma cell line SH-
SY5Y under conditions of rotenone-induced oxidative stress
[10]. Fer-1 was able to decrease ROS/reactive nitrogen species
generated under rotenone insult, mitigate rotenone-inducedα-
synuclein aggregation, and even quench the stable radical
from 2,2-diphenyl-1-picrylhydrazyl (DPPH) [10]. Other in-
vestigators reported that mitochondrial ferritin (FtMt) overex-
pression in SH-SY5Y cells significantly inhibited erastin-
induced ferroptosis [144]. They also found that FtMt inhibited
ferroptosis by regulating iron homeostasis, in particular by
repressing cellular labile iron pool overload and altering
iron-related proteins [144].

Relatively more ferroptosis-related studies have pertained
to glioblastoma than to neuroblastoma. Shortly after
ferroptosis was discovered, a group in Russia transplanted
glioma-35 cells into mouse and found that administering
iron-containing water to tumor-bearing mice before radiation
therapy reduced the supercoiled DNA index on days 1 and 21
after irradiation. Additionally, it dramatically decreased the
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tumor volume compared with that of control on day 21 [19].
The same group repeated their study in a rat model and found
consistent results that iron-containing water promoted
radiation-induced tumor cell apoptosis and ferroptosis [145].
Injection of DFO into the tumor-bearing rats reduced the effi-
ciency of this treatment but had no effect on the efficiency of
radiotherapy alone [145].

From 2016 to 2018, the Savaskan group published five
papers discussing the role of glutamate exchanger xCT
(SLC7a11 gene coding protein, a subunit of system xc

−) in
temozolomide (Temodal/Temcad®, TMZ)-treated glioma
cells [60, 63, 146–148]. They reported that xCT expression
correlated with the malignancy grade of brain tumor and that
xCT inhibition disrupted the neurodegenerative and
microenvironment-toxifying activity of gliomas [146]. TMZ
efficacy can be potentiated when combined with erastin
(which inhibits system xc

−), and gliomas with high xCT ex-
pression are more vulnerable to combination treatment with
erastin-TMZ [146]. In the same year, they found that high
concentrations (> 200 μM) of sulfasalazine, a system xc

− in-
hibitor that inhibits glioma growth [149], reduced glioma tu-
mor volume bymechanistically inducing ferroptotic cell death
in glioma cells in vitro [60]. Importantly, neurons and normal
brain tissue barely responded to sulfasalazine, and isolated
astrocytes were less sensitive than glioma cells to
sulfasalazine toxicity [60]. Sulfasalazine treatment did not af-
fect experimental tumor growth, but it did reduce glioma-
derived edema in vivo [60]. Later, they revealed that activat-
ing transcription factor 4 (ATF4) was a vital step in elevating
cellular xCT and that ATF4 knockdown rendered glioma cells
susceptible to erastin, sorafenib, and RSL3-induced
ferroptosis [63]. Therefore, they confirmed the previous re-
sults [150] that inhibition of ATF4 may be an option for re-
ducing glioma tumor growth and angiogenesis [63], overcom-
ing chemo-resistance from TMZ, and promoting drug efficacy
in human gliomas [148]. Fan and colleagues found that, in
addition to AFT4, Nrf2 overexpressed in glioma and negative-
ly correlated with patient survival [147]. Consistent with stud-
ies in a lung carcinoma cell line [7], bladder carcinoma cells
[151], and other cancer cell lines [152], they found that Nrf2
upregulated xCT expression and that activation of Nrf2 sig-
naling promoted resistance to ferroptosis in glioma cell lines
[147]. However, Berghe’s group found that withaferin A in-
duced ferroptotic cell death in high-risk neuroblastoma cells
by binding to KEAP1 [21]. Consequently, it increased Nrf2
protein level and activated heme oxygenase-1 (HO-1).
Elevated HO-1 induced accumulation of Fe2+ and subse-
quently induced lipid ROS and ferroptosis [21]. Moreover,
withaferin A decreased GPX4 expression and induced
ferroptosis [21]. Although most researchers believe that ac-
tivation of the Nrf2 signaling pathway inhibits ferroptosis
[153], these results suggest that Nrf2 may play a role in
promoting ferroptosis under certain conditions.

Conclusions, Limitations, and Further Directions

The goal of this review was to discuss the role of ferroptosis, a
newly identified form of cell death, in various brain disease
processes, including neurologic disorders and brain tumors.
Although it was first identified in cancer cells [1], ferroptosis
has been shown to play an important role in the progression
and toxicity of numerous neurologic diseases, including stroke,
PD, and HD. As shown in Fig. 2, the common ferroptotic
mechanisms in brain diseases result from system xc

− blockade,
GSH depletion, GPX4 inactivity, lipoxygenase inactivation,
and/or intracellular iron accumulation. These mechanisms are
consistent with those seen in other disease states (renal disease,
ischemic-reperfusion-related disease, and brain tumor) that can
be modified by known ferroptotic inducers (glutamate, erastin,
and RSL3) and inhibitors (Fer-1, liproxstatin-1, DFO, and vi-
tamin E). However, whether MAPK, PI3K/Akt/mTOR, or
KEAP1/Nrf2/HO-1 signaling pathways are common to
ferroptosis-related brain diseases, or whether these signaling
pathways are disease-specific, remains an open question. In
addition, neurons differ from other brain cells (microglia, as-
trocytes, or oligodendrocytes) and cells from other organs in
their metabolism, dividing capacity, nerve impulse function,
circuit formation, etc. Thus, when neurons are challenged with
ferroptosis inducers, they could exhibit unique mechanisms
that have not yet been fully investigated.

Ferroptosis is a unique form of regulated cell death that
involves gene sets and signaling pathways distinct from those
of apoptosis, necrosis, autophagy, and oxytosis [1, 154].
Apoptotic cells exhibit classic features such as mitochondrial
cytochrome c release, caspase activation, and chromatin frag-
mentation. Additionally, apoptosis can be inhibited by caspase
inhibitors, and its main regulators are Bcl-2 and caspase-3 [1,
2]. Cells undergoing necrosis exhibit plasma membrane per-
meabilization and swollen organelles. Phosphorylation of
RIPK1 and RIPK3 play important roles in necrosis, and the
necrotic process can be inhibited by necrostatins [1, 2].
Autophagy is character ized by the formation of
autophagosomes and autolysosomes, and it can be inhibited
by 3-MA [1, 2]. Upregulation of Atg5 and Atg6 plays a vital
role in the autophagy pathway [1, 2]. Ferroptosis is induced by
iron-dependent lipid ROS [1]. Cells undergoing ferroptosis
exhibit shrunkenmitochondria and a highly intense mitochon-
drial membrane [1, 2]. However, emerging evidence shows
that ferroptosis might be a regulated necrotic cell death [4,
50]. In addition, studies have found that autophagy and
ferroptosis share key regulators (SLC7a11, GPX4, Nrf2,
p53, HSPB1, CISD1, FANCD2, and ACSL4) [155]. Some
elegant studies showed that autophagy promotes ferroptosis
by degradation of ferritin in cancer cells and fibroblasts [156]
and that activation of BECN1 (an important regulator in au-
tophagy) promotes ferroptosis by directly blocking system xc

−

activity in tumor cells [157].
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Oxytosis, also known as oxidative glutamate toxicity, is
another form of cell death that was identified 30 years ago
[158]. It is frequently compared to ferroptosis because the
two cell death forms have similar mechanisms of lethality
[154]. Oxytosis is induced by depletion of GSH that can result
from high concentrations of extracellular glutamate or other
reagents that inhibit system xc

− [2]. Mitochondrial ROS pro-
duction, Ca2+ influx, and oxidative stress are the hallmarks of
oxytosis [2]. Increasing evidence shows that oxytosis and
ferroptosis share many similarities, including inducers (gluta-
mate and RSL3), lethal mechanisms (GSH depletion and lipid
ROS), a key regulator (GPX4), metal dependency (iron), and
ultrastructural features (mitochondria abnormality) [1, 154,
159, 160]. Some researchers believe that these mechanisms
could be one cell death form with two names [154]. The data
remain controversial. Dixon et al. claimed that ferroptosis de-
pends on iron only [1], but recent studies showed that
ferroptosis may also involve copper and calcium, as oxytosis
does [154, 161]. Studies have shown that most ferroptotic
cells (erastin-treated MEF cells, erastin-treated BJeLR cells,
and RSL3-treated MEF cells) have shrunken mitochondria
with increased electron density [1, 6, 154]. In their review,
Lewerenz et al. noted that both ferroptotic cells (RSL3-
treated MEF cells) and oxytotic cells (glutamate-induced
HT4 cells) had swollen mitochondria with outer membranes
that ruptured in a time-dependent manner [154]. At this point,
more studies are needed to ascertain the relationship and
crosstalk between ferroptosis and other forms of cell death
and to determine whether ferroptosis belongs to one of those
forms of cell death.

This review is generally limited by the amount of research
currently being performed on ferroptosis. Given that
ferroptosis was only first identified in 2012, relatively few
studies have been published on the topic. Iron accumulation
that leads to cell death has been shown to contribute to many
disease states, but research into the role of ferroptosis in par-
ticular is still sparse. Most of the research to date has focused
on the contribution of ferroptosis to neurologic processes, but
future research should also address the therapeutic benefits of
inhibiting ferroptosis in brain cells that exhibit certain neuro-
degenerative disease characteristics and promoting ferroptosis
in brain cancers. Some studies have suggested a role for GSH
depletion in the progression of amyotrophic lateral sclerosis
(ALS) [43], a neurodegenerative disease that causes muscular
atrophy and paralysis [126]. However, conclusions have been
mixed, with some researchers indicating no change in GSH
levels [162, 163]. At present, the role of ferroptosis in ALS is
unclear and requires further research.

Epigenetic modifications are also important regulators of
cellular activity and cell death. Although several miRNAs
(miR-137 and miR-9) have been linked to ferroptosis [164,
165], studies are needed to investigate how long non-coding
RNA or circulating RNA regulates ferroptosis, and how

methylation status of the CpG island and modifications of
histone tails in the promoter regions of key regulators regulate
ferroptosis. Furthermore, little is known about the relationship
between ferroptotic cells and circulating immune system re-
action. Future research could focus on how ferroptotic cells
induce immune cell activation/infiltration or how surrounding
immune cells regulate ferroptosis in brain cells.

We believe that ferroptosis is one of the most important cell
death forms in brain diseases and that in-depth studies of
ferroptosis will provide new opportunities for diagnosis and
therapeutic intervention.
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